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Mitochondrial diseases (MD) are rare disorders caused by deficiency of the mitochondrial
respiratory chain, which provides energy in each cell. They are characterized by a
high clinical and genetic heterogeneity and in most patients, the responsible gene is
unknown. Diagnosis is based on the identification of the causative gene that allows
genetic counseling, prenatal diagnosis, understanding of pathological mechanisms,
and personalized therapeutic approaches. Despite the emergence of Next Generation
Sequencing (NGS), to date, more than one out of two patients has no diagnosis
in the absence of identification of the responsible gene. Technologies currently used
for detecting causal variants (genetic alterations) is far from complete, leading many
variants of unknown significance (VUS) and mainly based on the use of whole exome
sequencing thus neglecting the identification of non-coding variants. The complexity
of human genome and its regulation at multiple levels has led biologists to develop
several assays to interrogate the different aspects of biological processes. While
one-dimension single omics investigation offers a peek of this complex system, the
combination of different omics data allows the discovery of coherent signatures. The
community of computational biologists and bioinformaticians, in order to integrate data
from different omics, has developed several approaches and tools. However, it is
difficult to understand which suits the best to predict diverse phenotypic outcome. First
attempts to use multi-omics approaches showed an improvement of the diagnostic
power. However, we are far from a complete understanding of MD and their diagnosis.
After reviewing multi-omics algorithms developed in the latest years, we are proposing
here a novel data-driven classification and we will discuss how multi-omics will change
and improve the diagnosis of MD. Due to the growing use of multi-omics approaches
in MD, we foresee that this work will contribute to set up good practices to perform
multi-omics data integration to improve the prediction of phenotypic outcomes and the
diagnostic power of MD.
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INTRODUCTION

Mitochondrial diseases (MD) are rare disorders caused by a
deficiency of the mitochondrial respiratory chain, which provides
energy to individual cells through oxidative phosphorylation
(Munnich and Rustin, 2001). These diseases are extremely
heterogeneous, both clinically and genetically, making their
diagnosis a real challenge (Gorman et al., 2016). Although
mitochondria have their own genome, most proteins involved
in their biogenesis are encoded by nuclear genes. Therefore,
MD can be caused by pathogenic variants (changes or
sequence alterations) affecting either mitochondrial DNA
(mtDNA) or nuclear genes (Alston et al., 2017). The advent
of high-throughput sequencing (HTS) and its implementation
in hospital laboratories has improved the performance of
diagnosis which today is based on the analysis of the entire
mtDNA and large panels of nuclear genes (Vasli et al., 2012;
Plutino et al., 2018). Advances in exome sequencing (WES)
and whole genome sequencing (WGS), which is not used
routinely, have greatly accelerated the identification of new
genes responsible for the disease (Wortmann et al., 2015).
However, in one out of two patients, the gene responsible
remains unknown.

Genome regulation encompasses all facets of gene expression,
from biochemical modifications of DNA to the physical
arrangement of chromosomes and the activity of transcription
mechanisms. To understand how the different layers of gene
regulation act together in pathophysiological contexts, multiple
types of data are needed. Lately, several techniques have
developed to interrogate this complex process in multiple
dimensions (DNA, RNA, proteins, and metabolites), known as
“omics.” While these approaches can reveal physiopathological
mechanisms in the sample, only the joint use of several omics
on the same sample is the key toward the understanding
of the associated phenotype. However, there is the need to
develop integrative computational approaches to enable the
integration of this type of data. The main challenges are to
identify models that allow efficient selection of important
characteristics and to analyze high-dimensional, scattered
and heterogeneous data. To meet these challenges, several
algorithms and mathematical structures have been used
(Bayesian approaches, matrix factorization methods, multi-step
analyses, network-based or machine learning approaches).
However, no reference method has been identified yet.
Omics data analyzed independently often prove unable to
identify genes responsible for MD and explain the complexity
of all the molecular phenomena leading to these diseases
on their own, thus methods of integrating multiple omics
represent a real hope for reducing the diagnostic deadlock for
patients with MD.

In this review we will discuss why multi-omics will
improve the diagnosis of MD, the few approaches used in
the literature on these diseases and their limitations. We
will present an up-to-date list of multi-omics algorithms
developed in the latest years and we will discuss why
these are not employable for MD. A new nomenclature
to summarize the different approaches and a data driven

interpretation of recent benchmarks will be presented.
Finally, we will provide guidelines to develop multi-omics
approaches to be used to improve the diagnostic power of
mitochondrial diseases.

MITOCHONDRIAL DISEASES

Mitochondria are present in all the cells of the body, in
variable quantities depending on the energy needs of the organs.
MD are due to an energy deficit caused by a dysfunction of
the mitochondrial respiratory chain and ATP synthase, which
supplies energy to the cells in the form of ATP. MD are a group
of rare diseases that are extremely heterogeneous both clinically
and genetically. Prevalence is estimated at 1/5,000 births, i.e.,
about 150 new cases per year in France. MD begin at any
age with neonatal forms that are generally more severe than
those beginning in adulthood. These diseases therefore affect
all organs in isolation or in combination and are generally
evolutive. This clinical heterogeneity makes the diagnosis of
MD challenging. In addition, many pathological situations and
other genetic diseases can lead to a secondary respiratory
chain deficiency and there is no single reliable biomarker
for MD. The proper functioning of the respiratory chain is
dependent on mitochondrial biogenesis and it is estimated
that more than 1,500 mitochondrial proteins are involved
(MitoCarta2.0). The majority of these proteins are encoded
by nuclear DNA (nDNA) but 13 are encoded by mtDNA.
Each cell contains 2–10 copies of mitochondrial genome which
also codes for 22 transfer RNAs and 2 ribosomal RNAs. As
a result, mitochondria are under the control of two genomes,
and each clinical presentation results from mutations either in
nuclear genes or in mtDNA. In mtDNA encoded disease, a
correlation between mutational heteroplasmy level and disease
severity is usually observed with a “threshold effect” for disease
expression. Heteroplasmy (coexistence of wild-type and mutated
mtDNA molecules) is an additional difficulty in the diagnostic
process because it requires looking for enzyme deficiency in
the affected tissue. This double genetic control also explains
why all modes of transmission are observed in these diseases:
maternal for mtDNA variants, autosomal dominant, autosomal
recessive or X-linked for nuclear genes. De novo occurrence
is also possible.

The diagnosis of MD is based on the identification of
the responsible gene which allows genetic counseling, prenatal
diagnosis and sometimes directs treatment choices. Furthermore,
it is the first step toward understanding of the disease
mechanisms. Today, more than 400 nuclear genes are known
to be responsible for MD and the list of candidate genes
continues to grow (Craven et al., 2017). Although diagnosis
of MD has been completely transformed by the emergence
of NGS technologies, to date, more than one out of two
patients has no diagnosis in the absence of identification
of the responsible gene. Therefore, omics technologies are
essential to improve our knowledge of mitochondrial functions
(Rahman and Rahman, 2018).
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OMICS

Simple Omics Data Types
The twenty-first century has been marked by the arrival of HTS,
such as NGS, which have revolutionized the world of biology.
Omics appeared at that time and represent a different strategy,
i.e., they study not a single molecule but a set of molecules from
the same biological domain, making possible to study biological
mechanisms in the globality of living organisms and in the
complexity of their interactions.

There are several types of omics (summarized in Table 1). The
first to emerge is genomics, which studies the entire genome or
the exome. Today, widely used in medical research, it allows the
identification of genetic variants that modify the DNA sequence.
The study of changes related to the environment or epigenetic
factors, is called epigenomics. It improves the functional
interpretation of genetic variants found in regions often specific
to tissues associated with the disease. Transcriptomics, which
is the study of all RNAs products of the genome transcription,
allows quantitative and qualitative measurements of transcripts
of genes expressed in tissue or cells, identification of new splicing
sites and development of knowledge on non-coding RNAs (long
RNA, short RNA, circular RNA, etc.). Thanks to the development
of mass spectrometry, proteomics (the study of all proteins) and

metabolomics (the study of all metabolites: carbohydrates, amino
acids, fatty acids, etc.) have been developed, allowing the study of
the global interactions of proteins and the quantification of post-
translational modifications. The simultaneous quantification of
different types of molecules in order to understand the metabolic
functions, which in case of deregulation are often involved
in diseases, is also possible. Further reviews that explain the
different omics technologies in detail are (Hasin et al., 2017;
Misra et al., 2019).

Simple Omics as a Tool for MD Diagnosis
The search for genes involved in MD is done by NGS and based
on the identification of pathogenic nucleotide variants through
two techniques: WES (Whole Exome Sequencing) and WGS
(Whole Genome Sequencing). WES allows the sequencing of
all exons, and exon-intron boundaries that represent 2% of the
genome. On average, it allows us to find 20,000 coding variants
per individual, of which only 9,000 concern the modification of
an amino acid (Stenton et al., 2019). This technique has improved
the diagnostic yield of MD estimated at 50% (Stenton et al.,
2019). The causes of this low yield are multiple: many VUS, the
inability to detect non-coding variants of the genome. In most
cases, the potential pathogenicity of VUS cannot be confirmed
or invalidated by in silico studies. Functional studies in model

TABLE 1 | Different omics technologies and their characteristics: molecule targeted, omics targeted, sequencing techniques, and their purposes.

Omics technology Molecule Target Technique/s Purposes

Genomics DNA Genome NGS WES–WGS Identification of genetic variants

Epigenomics DNA methylation,
histone acetylation

Epigenome NGS (ChIP-seq, MeDIP-seq,
BS-seq et d’autre variantes

Determination of epigenetic changes in
DNA that regulate gene expression

Transcriptomics RNA Transcriptome NGS RNA-seq Small RNA-seq Characterization expression levels of
genes and identification of non-coding
transcripts; alternative splicing events;

Aberrant Expression

Aberrant Splicing

Microbiomics RNA16s Microbiome NGS (16S ribosomal
abundance)

Identification of microorganisms
populating the skin, mucosal surfaces
and the gut

Proteomics/Metabolomics Proteins/Metabolites Proteome/
metabolome

Mass spectrometry Characterization of the abundance of
proteins/metabolites
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organisms may be necessary. For an example, the Undiagnosed
Diseases Network (UDN),1 launched by the NIH, offers platforms
such as the Model Organisms Screening Center (MOSC) that uses
genetics and biology of Drosophila melanogaster, Caenorhabditis
elegans, and Danio rerio to help in the diagnostic of rare diseases.
In addition, WGS is used to detect coding and non-coding
variants of the genome. However, the number of variants to be
interpreted by WGS is very high (about 3 million per individual)
and makes difficult its usage in routine diagnosis.

Toward Multi-Omics Approaches to
Improve MD Diagnosis
Omics have thus progressed thanks to technological advances,
which have enabled high-powered analysis of biological
molecules, with a reduction in cost-effectiveness. Nevertheless,
simple omics allow understanding the functioning of
biological and pathological processes at a single level, as
the different methodologies assess different parts of the complex
physiopathology of disease development and progression.
However, it is essential to understand the relationships between
different molecular entities and their interactions, as well as their
role in regulating gene expression (Wani and Raza, 2019).

Despite the wide range of data that can be generated to
characterize differences between healthy and diseased cells or
tissues, the analysis of a single subset therefore provides an
incomplete picture of the underlying biology. More importantly,
how do we select the most meaningful types of omics data to be
generated, considering the costs and tissue availability?

Whether WES or WGS, they do not allow for the
understanding of transcript expression levels or tissue-specific
expression that reflects the functionality of a gene and the effect
of a variant on it. Thus, the study of the transcriptome by RNA-
sequencing (RNA-seq) is a major complement to the WES. Recent
studies have shown that the joint use of RNA-seq and WES
increases the diagnostic yield of MD by 10% (Kremer et al.,
2017). In transcriptomics, three main events are studied and
allow to prioritize candidate genes responsible for rare diseases:
aberrant transcriptome expression, aberrant splicing and mono-
allelic expression (MAE).

Another omics tool that can be used to determine the
impact of these variants is proteomics. This omics technique
provides a functional validation of variants and completes the
outliers detected in transcriptomics. A significantly reduced
protein level in a sample compared to other samples or controls
is a strong evidence of the presence of a variant that is
responsible for this decrease (Stenton et al., 2019). This work
has paved the way for multi-omics approaches in the study
of MD (Figure 1). Instead of using the results of the omics
analyses separately, better results are obtained if the results of
several different omics analyses are cross-referenced. The use
of existing databases, bioinformatics and literature, in addition
to multi-omics improves the understanding of mitochondrial
diseases in order to improve the health of patients through
personalized treatment.

1https://undiagnosed.hms.harvard.edu/

Mitochondrial Databases
Since their first employ, omics techniques have generated a
significant amount of complex and voluminous data. These
data are available on online databases. There are many
mitochondrion-specific ones such as MitoCarta (Calvo et al.,
2016), MITOMAP (Kogelnik et al., 1996), MitoMiner (Smith and
Robinson, 2018), or HmtDB (Clima et al., 2017) that contain data
on the mitochondrial genome and its variants. An exhaustive list
of these databases is provided in Table 2.

However, the volume of data creates considerable challenges to
enable meaningful conclusions to be drawn. To date, MITOMAP
contains 14,431 mtDNA variants, MitoMiner and MitoCarta
contain approximately 1,157 human and mouse genes encoding
mitochondrial proteins. There are also databases associating
clinical data or pathologies with genetic variants such as OMIM
(Amberger et al., 2015), ClinVar, ClinVar (Landrum et al., 2013),
Miner (Henrie et al., 2018), or HGMD (Stenson et al., 2017;
Bris et al., 2018).

Other Public Omics Databases
Multi-omics data broadly cover the domains of “-omes” and can
provide useful biological information at several levels and thus
help to understand the mechanisms of pathologies, contribute
to diagnosis, prognosis and potential therapeutic interventions
(Urbanski et al., 2019). There are many examples of massive data
production in specific applications for human diseases. Most of
these projects are publicly funded and are collected in open access
online databases (listed in Table 3). However, much of this data is
either not used or not fully analyzed, creating a great disparity
between the generation and use of data. Moreover, this huge
amount of data does not translate into knowledge and it is not
currently applied in clinical practice.

Finding an appropriate method for data integration and
interpretation is often complicated because the data are
heterogeneous, large and composed of several variables.
Although there are several methods for multi-omics analysis,
choosing the most appropriate method for each dataset is
quite difficult. To meet these needs, the development of a new
classification of multi-omics analytical methods is fundamental.

THE ERA OF MULTI-OMICS

New Classification of Multi-Omics
Integration Methods
Multi-omics methods are emerging as valuable tools for
understanding the functioning of the mitochondria. Data
integration is defined as a process by which data from different
sources are combined statistically to make large-scale conclusions
about a disease and to obtain a comprehensive view of biological
processes. Omics integrative approaches increase the reliability
of a biological discovery if it can be validated by concordant
omics signatures (genomics, transcriptomics, and proteomics)
(Maldonado et al., 2019).

The classification of methods for multi-omics integration
is currently quite complex because each article proposes its
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FIGURE 1 | The contribution of multi-omics for MD. Blood or tissue samples (skin or muscle biopsy) are obtained from patients affected by MD. Fibroblasts or
myotubes are prepared and cultured from tissue biopsies. Different omics analyses are carried out separately in order to identify the gene(s) responsible for the
pathology. However, these analyses are not always conclusive. Despite the validity of the single-omics approach, the complexity of MD limits the success of the
diagnosis. This is where multi-omics comes in. Thanks to bioinformatics and the development of algorithms, the integration of data from several different omics
analyses is possible and leads to better results. Multi-omics combined with databases and literature provide with a better understanding of mitochondrial diseases.
Their diagnosis is therefore improved and a personalized treatment can be proposed for each patient.

own classification, making the choice of their use complicated.
Subramanian et al. (2020) classify the different methods into
six categories, but also into three different case studies to
answer biological questions. Huang et al. (2017) detail integration
methods by examining unsupervised, supervised, and semi-
supervised algorithms. Rappoport and Shamir (2018) classified
the methods into three categories: early, intermediate and
late integration.

All these classifications are mainly based on the type of
algorithm, making difficult to choose which method to use
depending on the characteristics of the dataset. For this purpose,
we propose a new classification with three categories based
on the way the methods analyze the data: “feature selection,”
“clustering,” and “fusion” (Figure 2, a list of methods belonging
to each classification is reported in Table 4).

In the next paragraphs, the main multi-omics integration
techniques existing in the literature will be presented according
to our new classification with examples of the most commonly
used algorithms.

Feature Selection Methods
Feature selection methods take the results of simple omics
data, concatenate them, and perform variable selection using
different techniques (Figure 2B). The most cited methods are
mixOmics (Rohart et al., 2017), JIVE (Lock et al., 2013),
CONEXIC (Akavia et al., 2010), jActive Modules (Ideker et al.,
2002), and IntergrOmics (Lê Cao et al., 2009). For example,

MixOmics (Rohart et al., 2017) allows the integration of multi-
omics datasets using different methods such as PCA and partial
least squares regression. MixOmics can address both disease
subtype and biomarker prediction. It is very often used in the
context of cancers. Another example, multi-omics factor analysis
(MOFA) (Argelaguet et al., 2018) is an unsupervised method
for finding the main sources of variation in multi-omics data
sets. MOFA allows a variety of downstream analyses, including
sample subgroup identification, data imputation and outlier
detection. It was applied to a cohort of patients with chronic
lymphocytic leukemia (Subramanian et al., 2020). It identified the
main factors of variability between patients, which improved the
interpretation of data and facilitated the definition of predictive
models of clinical outcomes.

Clustering Methods
Clustering methods use clustering techniques to identify clusters
on single omics data (Figure 2C). In classification problems,
data can first be transformed through similarity or covariance
before joining them. This category preserves the specific
properties of the data types and allows the addition of external
classification (biological, metabolic pathways) to improve the
performances. Methods such as Similarity network fusion (SNF)
(Wang et al., 2014), iClusterPlus (Mo et al., 2013), or Pathway
Recognition Algorithm using Data Integration on Genomic
Models (PARADIGM) (Vaske et al., 2010) are widely used and are
applicable to all types of omics. SNF method (Wang et al., 2014)
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TABLE 2 | Non-exhaustive list of available mitochondrial databases.

Database Content Web site Last update

Dedicated mtDNA databases

MITOMAP A compendium of polymorphisms and mutations in human
mitochondrial DNA

https://www.mitomap.org 2020

MSeqDR List of mitochondrial disease with associated symptoms,
genes and variants

https://mseqdr.org 2020

HmtVar Variability and pathogenicity information about mtDNA
variants

https://www.hmtvar.uniba.it 2019

HmtDB Human mitochondrial genome sequences annotated with
population and variability data

https://www.hmtdb.uniba.it 2019

EMPOP Collection of mtDNA haplotypes from various world
populations

https://empop.online/ 2019

MitoMiner Mitochondrial localization evidence and phenotype data for
mammals, zebrafish and yeasts

http://mitominer.mrc-mbu.cam.ac.uk 2018

MitoBreak Curated datasets of mtDNA rearrangements. http://mitobreak.portugene.com/ 2017

MitoProteome Object-relational mitochondrial gene/protein sequence
database and annotation system

http://www.mitoproteome.org/ 2016

Human MitoCarta2.0 Inventory of 1,158 human and mouse genes encoding
proteins with strong support of mitochondrial localization

http://www.broadinstitute.org/pubs/MitoCarta 2015

mtDB Clinical features of mitochondrial disease http://mitodb.com/ 2015

MitoP2 Human, Mouse and Yeast proteins with mitochondrial
localization

https://omictools.com/mitop2-tool 2009

Human Mitochondrial Protein Database Comprehensive data on mitochondrial and human nuclear
encoded proteins involved in mitochondrial biogenesis and
function

https://bioinfo.nist.gov/ 2007

mtSNP Mitochondrial SNPs associated with different conditions
(age, Alzheimer, Parkinson, obesity)

http://mtsnp.tmig.or.jp 2006

Databases including mitochondrial data

ClinVar Links between variations and human phenotypes https://www.ncbi.nlm.nih.gov/clinvar/ 2020

OMIM Online catalog of human genes and genetic disorders https://omim.org/ 2020

ClinVar Miner Interpretation data for ClinVar variants https://clinvarminer.genetics.utah.edu/ 2020

Human Gene Mutation Database (HGMD) Collection of germline mutations in nuclear genes
associated with human hereditary diseases

http://www.hgmd.cf.ac.uk/ 2017

Table listing the databases containing information on mitochondria and mitochondrial diseases, links to web site databases and the year of their last update.

is a network approach to integrate multi-omics data using
a network fusion method. The advantage of this method is
that weak connections disappear with iterations, while strong
connections are reproduced until convergence. It was tested
on data from patients with different glioblastoma subtypes.
PARADIGM is another example and allows the activities of
patient-specific biological pathways to be inferred from multi-
omics data (Vaske et al., 2010).

Fusion Methods
Fusion methods directly take all available single omics data and
merge them (Figure 2D). This preserves the properties of each
specific data type, as we are able to analyze each type individually,
however their mutual relationship are not known, which can
lower down the performances of the final model. This is why
the methods in this category in general can only be applied
to two types of omics (transcriptomics and genomics) and are
less cited than methods in the other two categories. Methods
such as non-negative matrix factorization (NMF) (Zhang et al.,
2012), Penalized Multivariate Analysis (PMA) (Witten and
Tibshirani, 2009), Semidefinite Programming/Support Vector
Machine (SDP/SVM) (Lanckriet et al., 2004) appear to be equally

effective. Multiple co-inertia analysis (MCIA) (Meng et al., 2014)
is another example of fusion method that can be used for
determining co-relationships between datasets (such as gene
expression, microRNA expression, protein expression).

Comparison Between Integration
Methods
How can the performances of these methods be evaluated?
To answer this question, the researchers conducted studies on
several data sets to show the performance and limitations of the
different methods. Here we will discuss the main findings of these
valuable benchmarks.

The paper by Huang et al. (2017) demonstrated that the
SNF, cluster method, achieved the highest performances in
the majority of the tests (9/22) and proved to be the most
robust especially when the complexity of the data increase.
Their analysis also showed that the integration of more and
more omics data allows a better classification of samples and
increases the precision. However, this process can add noise and
decrease the signal strength of the omics data, which negatively
influences the results.
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TABLE 3 | Non-exhaustive list of the main public omics databases (listed alphabetically).

Databases Types of data Number of sites Number of samples Links

ArrayExpress Healthy + Diseases 5 types of molecules 27,462 https://www.ebi.ac.uk/arrayexpress/
CCLE Cell line cancers 39 tissues 1,457 https://portals.broadinstitute.org/ccle
ColPortal Healthy + Diseases 48 253 https://colportal.imib.es/colportal/index.jsf
CPTAC Cancers 10 tissues 772 https://proteomics.cancer.gov/programs/cptac
dbGAP Healthy + Diseases 1,513 studies 2,935,530 https://www.ncbi.nlm.nih.gov/gap/
ENCODE Healthy + Diseases 94 7,536 https://www.encodeproject.org
GDC Cancers 67 tissues 84,031 https://portal.gdc.cancer.gov
GEO Healthy + Diseases 55,176 entries 1,957,921 https://www.ncbi.nlm.nih.gov/geo/browse/
gnomAD Healthy + Diseases 9 populations 71,702 https://gnomad.broadinstitute.org
GTEx Healthy 54 tissues 17,382 https://www.gtexportal.org/home/
HMDB Healthy + Diseases 114,184 metabolites 25,000 https://hmdb.ca
ICGC Cancers 22 tissues 24,289 https://icgc.org
METABRIC Breast cancers 1 tissues 2,509 https://www.cbioportal.org/study/summary?id=brca_metabric
MGnify Healthy + Diseases 20 127,417 https://www.ebi.ac.uk/metagenomics/
Omics discovery index Healthy + Cancers 30 tissues 92,846 https://www.omicsdi.org
PCAWG Cancers of ICGC 20 tissues 2,793 https://dcc.icgc.org/pcawg
PDB Healthy + Diseases 5 types of polymers entities 47,552 https://www.rcsb.org
Roadmap epigenomics Healthy + Diseases 310 127 https://egg2.wustl.edu/roadmap/web_portal/index.html
TARGET Pediatric cancers 16 tissues 6,197 https://ocg.cancer.gov/programs/target
TCGA Cancers 30 tissues 11,315 https://www.cancer.gov/about-nci/organization/ccg/research/

structural-genomics/tcga
1000 genomes Healthy ( Diseases 26 populations 2,504 https://www.internationalgenome.org/home

For each database, we report the type of data (healthy or Diseases), the number of site (tissues, populations, experiments) available, the number of human samples
available, and the links to web databases. Numbers are only given for organism Homo Sapiens. CCLE, Cancer Cell Line Encyclopedia; CPTAC, Clinical Proteomic
Tumor Analysis Consortium; dbGAP, database of Genotypes and Phenotypes; ENCODE, Encyclopedia of DNA Elements; GDC, Genomic Data Commons; GEO, Gene
Expression Omnibus; gnomAD, genome aggregation database; GTEx, Genotype-Tissue Expression; HMDB, The Human Metabolome Database; ICGC, International
Cancer Genome Consortium; METABRIC, Molecular Taxonomy of Breast Cancer International Consortium; PCAWG, Pan Cancer Analysis of Whole Genomes; PDB,
Protein Data Bank; SRA, Sequence Read Archive; TARGET, Therapeutically Applicable Research To Generate Effective Treatments; TCGA, The Cancer Genome Atla.

Tini et al. (2017) compare five methods belonging to the
three categories (feature selection: JIVE and Multiple factor
analysis (MFA); clustering: SNF; fusion: mCCA). According to
the authors, none of the methods is the most efficient one and
they all need to be improved, for example by adding information
on the relationships between different data in omics, which could
reduce false positives while improving the relevance of true
molecular interactions (Tini et al., 2017).

Rappoport et al. demonstrated that in most of the cases
the rMKL-LPP (Rappoport and Shamir, 2018), feature selection
method, achieved the best results in terms of clinical enrichment,
and outperformed all but the mCCA (feature selection) and
MultiNMF (fusion) methods in terms of survival. Although the
high performances of mCCA and MultiNMF are remarkable
(Speicher and Pfeifer, 2015), they should not always be
preferred because of multiple factors such as: complexity
of multi-omics data, noise due to sequencing technique,
medical issues, etc.

Overall, in case of complex biological data (several subtypes,
several omics, low signal), it is recommended to choose a method
from the feature selection category that performs a feature
selection step to attenuate the noise.

Multi-Omics Approaches for
Mitochondrial Diseases
To date, algorithms for multi-omics data integration, have very
little application to MD because they are developed to be used on

a large number of patients and which are not applicable on rare
disorders as MD.

The limited number of patients is not the only difficulty in
applying existing algorithms for multi-omics integration to MD.
MD are rare and heterogeneous and the causative variant(s) are
usually unique or “private” for each patient (or family). They
require a methodology that identifies unique signatures making
difficult to apply most of multi-omics methods available because
they are more suitable to identify common signatures.

The specificity of MD has led scientists to reinvent new
approaches to integrate multi-omics data from MD patients to
improve their diagnosis. In this paragraph, the first studies that
have demonstrated the feasibility and usefulness of multi-omics
approaches for MD will be described.

Kremer et al. decided to integrate WES data with RNA-seq
data to identify variants responsible for MD for a cohort of 48
patients (Kremer et al., 2017). They have developed a pipeline
to detect three main causes responsible for variants: aberrant
transcript expression, aberrant splicing and MAE. Thanks to
their bioinformatics approach created ad hoc, they found one
aberrantly expressed gene, five aberrant splicing events and six
mono-allelically expressed variants. This approach resulted in
the diagnosis of 5 patients from the 48-patient cohort with
undiagnosed MD and the identification of a candidate gene for
36 other patients.

To improve the results and design a tool that can be
used on other datasets, most of the same authors as this
pioneer work, developed the OUTRIDER (OUTlier in RNA-seq
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TABLE 4 | Non-exhaustive list of the main integration tools and methods grouped by the new classification and sorted by category, then by year and by decreasing number of citations.

Category Methods References Quotes Supervised/
Unsupervised

Techniques Types of OMICS Advantages/Disadvantages

Feature selection MOFA Argelaguet et al., 2018 97 (2018)
4 (2017)

Unsupervised Bayesian All types Works only for linear relationships

Feature selection mixOmics Rohart et al., 2017 401 Supervised and
unsupervised

Multivariate/Matrix
factorization

All types High-performance, but noise-sensitive classification

Feature selection rMKL-LPP Speicher and Pfeifer, 2015 70 Unsupervised Multiple kernel All types Different choices of reduction methods, more flexibility and
comparable results

Feature selection Joint Bayes Factors Ray et al., 2014 50 Unsupervised Matrix
factorization/Bayesian

All types Student’s test, assumes a close relationship between the
different levels of data, linear relationship between latent space
and observation space

Feature selection JIVE Lock et al., 2013 197 Unsupervised Matrix factorization All types Processes only Gaussian distribute data. Sensitive to noise and
outliers

Feature selection CONEXIC Akavia et al., 2010 235 Unsupervised Network-
based/Bayesian

Transcriptomics/
Genomics

Score-guided search to identify a combination of genes
Information on the role of associated factors and genes

Feature selection IntergrOmics Lê Cao et al., 2009 217 Unsupervised Regression-based All types Exploration by canonical correlation analysis (maximizes
correlation) and by least squares (maximizes covariance)

Feature selection MFA de Tayrac et al., 2009 51 Unsupervised Multivariate/Matrix
factorization

All types Better performance on simulated data (=2 types of omics)
Little affected by noise
Gives a balanced representation of individual and common
structures

Feature selection jActive Modules Ideker et al., 2002 418 Supervised Network-based All types External contribution of significance measurements on genes
Subjected to the gene interaction network
High performance for finding the hidden directory on the control
channels

Clustering iOmicsPASS Koh et al., 2019 5 Supervised Network-based All types Predictive feature across molecular interactions
Very limited search space
Good prediction error rate
Very suitable for small sample sizes

Clustering SNF Wang et al., 2014 622 Unsupervised Network-based All types A deeper and more global vision
Noises of weak similarities are eliminated, and strong similarities
are added.
Flexible, few constraints on the input files

Clustering iClusterPlus Mo et al., 2013 209 Unsupervised Matrix
factorization/Bayesian

All types Different modeling assumptions (logistic, linear, logit, fish.)
No non-negative constraints, but need to preselect features
Takes into account categorical + continuous variables (absent
in iCluster)
Difficult statistical inference, complexity of the calculation and
very time consuming

Clustering BCC Lock and Dunson, 2013 138 Unsupervised Bayesian All types Assumes that the data is represented normally

Clustering MDI Kirk et al., 2012 114 Unsupervised Bayesian All types Flexible, can group to a single dimension in multiple data

Clustering PARADIGM Vaske et al., 2010 402 Unsupervised Network-
based/Bayesian

All types External classification (NCI, PID)
Does not take into account interactions (independently
measured pathways)

Fusion method iGC Lai et al., 2017 8 Supervised Student test Transcriptomics/
Genomics

Fast, easy to use
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fInDER) method that identifies “outlier” genes that are aberrantly
expressed in the entire cohort (Brechtmann et al., 2018).
OUTRIDER is based on the use of auto-encoders, a deep
learning approach. However, OUTRIDER does not yet allow
the integration of multi-omics data but only RNA-seq data
from different platforms (e.g., patients vs. Genotype Tissue
Expression database). Further development of this promising
method would allow the integration of multi-omics data for
MD in the future.

Stenton et al. (2019) also used an ad hoc bioinformatics
approach. They analyzed the inconclusive cases in the WES
samples by running transcriptomics and proteomics analyses in
parallel. They tracked the impact of a variant on the abundance
of transcripts and their sequences during translation and vice
versa by tracing the aberrant expression and splicing back to the
responsible protein.

Gonorazky et al. (2019) developed a pipeline based on
transcriptome analysis. They extracted total RNA from muscle
and skin biopsy samples. They focused on a panel of 132 genes
known to be involved in neuromuscular diseases. The rest of the
pipeline is very similar to the one put in place by Kremer et al.
for RNA-seq data. The main difference is that Gonorazky et al.
identify variants on transcriptome data. Using this strategy, they
solved 36% of the inconclusive WES and/or gene panel cases.

These first attempts at multi-omics data integration, although
promising, need to be improved. In particular, there is the
need to implement algorithms that are reproducible and widely
employable beyond ad hoc approaches in order to standardize the
analysis of multi-omics data for MD. For example, the WeiGhted
Correlation Network Analysis (WGCNA) (Langfelder and
Horvath, 2008) method that integrates genomic, transcriptomic
and recently metabolomic data could be applied to MD to analyze
multi-omic data, with no constraints on the number of patients
needed. This tool allows to explore metabolic pathways in order
to identify which pathway is deregulated and therefore which
genes are involved.

Bioinformatics tools particularly useful in MD include
SAVNet (Splicing-Associated Variant detection by NETwork
modeling) (Yamada et al., 2019). It allows the variants obtained
to be cross-referenced with aberrant splicing sites to determine
whether certain variants are responsible for these events that
subsequently cause changes in gene expression and protein
abundance. It is therefore conceivable to integrate this tool into
the pipeline set up by Kremer et al. to integrate WES and RNA-
seq data.

METHODOLOGICAL CHALLENGES IN
THE FIELDS OF MULTI-OMICS
INTEGRATION

Although many data are public, they cannot be integrated simply
or directly into a mathematical framework or statistical model.
The integration of these data to obtain a global understanding of
biological processes and diseases presents particular challenges:
the underlying heterogeneity of the omics data, the large size
of the data leading to intensive analysis of the calculations, and
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FIGURE 2 | Classifications of multi-omics integration methods. (A) Structure of omics data before integration: each omics (OMIC N) correspond to a matrix with p
lines (patients) and g, m, or s columns (features). (B–D) New classification of omics integration tools: “Feature selection,” “Clustering,” “Fusion methods,” (B) single
omics are integrated together, then a step of features selection is employed; (C) clustering is done at single omics level, then clusters are integrated together; (D)
single omics are directly integrated together.

the lack of studies to prioritize the various tools (Subramanian
et al., 2020). One of the main limitations of integrative approaches
is related to dimensionality, because even though several layers
allow a more complete understanding of the biological system,
the dimension of the problem increases (Bersanelli et al., 2016).
Clinical information is a dimension that could also enhance the
interpretation of multi-omics data.

In addition to these challenges, one of the major obstacles is
the non-standardization of data formats in different technologies.

Most multi-omics integrative analysis tools require the data
to be in specific formats (Figure 2A), so individual omics
data must be pre-processed. The pre-processing stage includes
data filtering, systematic standardization, batch effect removal
and quality control. It becomes imperative to use these pre-
processing steps carefully as they have a considerable influence
on the integrative analysis. But these data are difficult to
transform into machine-readable format, often because of the
lack of uniform data representations, the absence of standard
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nomenclature for designating biological entities (genes, proteins,
. . . ), incorrect data annotation and ambiguous vocabulary
(Subramanian et al., 2020).

The availability of methods that are not specific to a type
of omics will allow the extension of integration applications
to approaches that are still little addressed by specific methods
(proteomics, metabolomics) (Bersanelli et al., 2016). A crucial
factor for ergonomics and dissemination of methods is to have
well-documented and easy-to-use software. However, there are
still cases where software is not provided.

Finally, the main key to any integrative analysis is the right
choice of method to answer the question of biological or medical
interest. There are many studies that provide a comparative
analysis of integration tools (as discussed in the paragraph
“Comparisons between integration methods”), but they are not
comprehensive enough in terms of the choice of tools and the
biological context. Further studies of this type are needed to
guide the community in gaining a better understanding of the
wide range of tools.

BEYOND MD: THE INTEGRATION OF
OMICS IN PERSONALIZED MEDICINE

A new era of personalized medicine has arrived, offering a
project of individualized care with treatment and medical
management targeted and adapted to each patient. The
continuous improvement of broadband technologies facilitates
this process by transmitting detailed information about the
human body (Chen and Snyder, 2012). The integration of
omics allows the pathophysiological status of the patient to be
reflected at the time of sample collection, thus providing a better
understanding of the biology of pathology and drug response
(Rotroff and Motsinger-Reif, 2016).

The personalized approach in omics catalyzes precision
medicine on two levels. For diseases and biological processes
whose mechanisms are still unclear, it will facilitate research that
would greatly advance our understanding; and when mechanisms
are clarified, individualized care can be provided through health
surveillance, preventive medicine and personalized treatment.
This approach also facilitates the development of other important
health-related fields, such as nutritional systems biology, which
studies personalized diet and its relationship to health from a
systems perspective (Chen and Snyder, 2012).

With the rapidly declining costs of omics technologies, we
expect an increasing number of applications in the development
of personalized medicine and in many aspects of health care.
This will considerably improve the price charged to patients
and reduce the cost of care for the general public. Scientists,
governments, pharmaceutical companies and patients should
work closely together to ensure the success of this transformation.
As part of health surveillance, the iPOP (integrative personal
omics profiles) tool (Chen and Snyder, 2012) is used to track
individual genomics, transcriptomics, proteomics, metabolomics
and autoantibody profiles. This technology is successfully used
to identify the health and disease states of a single individual,
which shows the real interest in personalized medicine. These

approaches are currently underdeveloped but offer great hope for
the management and prevention of complex diseases.

DISCUSSION AND CONCLUSION: OPEN
CHALLENGES AND FUTURE
DIRECTIONS

Progress in the NGS has reduced the number of patients
in diagnostic impasse, but it is still not enough. Multi-
omics approaches are very promising for improving diagnostic
performances, but several problems remain to be solved. They are
generally developed for cancer research where large numbers of
samples are available, which is not the case for MD. Therefore,
there is a need to develop multi-omics approaches applicable to
small cohorts. Moreover, in oncology, these methods look for
common signatures, whereas for MD, there are mainly “private”
signatures for one patient or one family, i.e., an altered gene
for a patient. However, it could be possible to identify common
signatures for small groups of patient, e.g., deficiency of a specific
complex of the respiratory chain.

Another challenge is to develop databases specific to MD.
For rare diseases, very few patients are affected, so few data
are available and especially very few patients share the same
pathogenic variant. Data from a single hospital are not sufficient
and the establishment of interoperable national and European
clinical-biological databases would allow us to expand the
available cohorts and accelerate the knowledge of these diseases.
Several initiatives have been set up, including the RD-Connect
project. Funded by the European Union since 2012, RD-
Connect is developing data sharing mechanisms and tools for
omics and bioinformatics analysis that are incorporated into
an integrated platform linking patient registries, biobanks and
clinical bioinformatics data into a central resource for rare disease
research (Johnston et al., 2014).

In the future, international and interdisciplinary
collaborations are essential to develop more effective tools
and share data to fight the diagnostic impasse and improve
patient management.

This review has therefore enabled us to develop a new
classification by summarizing the main methods of multi-omics
integrations, which will benefit the entire scientific community
by simplifying their choice of a method adapted to each
type of data set.

In conclusion, multi-omics is nowadays evolving in
bioinformatics and will soon go beyond the use of single
omics in biological and medical research to obtain a better
understanding of human diseases, to develop approaches for
predicting outcomes, biomarker discoveries and molecular
signatures (Figure 1).

Nevertheless, in the future several points remain to be
developed. First, more comparative analyses will be needed to
assess the performance of tools in contexts other than cancer,
as this will allow the selection of the right tool based on the
dataset, even if one tool may not always be preferred. Reference
data sets should also be developed using simulation tools, which
will allow for more accurate estimation of false positives and false
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negatives. Two other points need to be developed. On one hand,
the development of tools that can be used on small cohorts and
capable of managing more variables than patients. On the other
hand, the development of databases for healthy individuals that
will be used as a control to calibrate the tools.

Collaboration between scientists from different fields is also
essential for the integration of multiple layers of information.
This superimposition of information is very useful for elucidating
how pathological processes occur, as well as for the development
of new therapeutic interventions.
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