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SUMMARY  26 

Epigenetic mechanisms govern the transcriptional activity of lineage-specifying enhancers; but 27 

recent work challenges the dogma that joint chromatin accessibility and DNA demethylation are 28 

prerequisites for transcription. To understand this paradox, we established a highly-resolved 29 

timeline of DNA demethylation, chromatin accessibility, and transcription factor occupancy 30 

during neural progenitor cell differentiation. We show thousands of enhancers undergo rapid, 31 

transient accessibility changes associated with distinct periods of transcription factor 32 

expression. However, most DNA methylation changes are unidirectional and delayed relative to 33 

chromatin dynamics, creating transiently discordant epigenetic states. Genome-wide detection 34 

of 5-hydroxymethylcytosine further revealed active demethylation begins ahead of chromatin 35 

and transcription factor activity, while enhancer hypomethylation persists long after these 36 

activities have dissipated. We demonstrate that these timepoint specific methylation states 37 

predict past, present and future chromatin accessibility using machine learning models. Thus, 38 

chromatin and DNA methylation collaborate on different timescales to mediate short and long-39 

term enhancer regulation during cell fate specification. 40 
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INTRODUCTION 44 

Normal cell differentiation depends on the coordinated regulation of lineage-specifying gene 45 

enhancers to drive transcriptional programs. Epigenetic mechanisms mediate this process on 46 

multiple levels, from DNA methylation (DNAme) to chromatin accessibility (ChrAcc). Canonical 47 

models of gene regulation assume that both ChrAcc and DNA demethylation are inherent to 48 

gene transcription. However, we and others have demonstrated that DNAme and chromatin 49 

dynamics are not as tightly linked as previously thought, challenging the causal relationship 50 

between DNAme, gene enhancer regulation and transcription.1-3 51 

DNAme has been classically defined as transcriptionally repressive, playing an essential role in 52 

transposable element silencing and heterochromatin formation.4-9 Whole genome methylation 53 

data across distinct cell types and developmental stages have shown that, whereas most of the 54 

genome is methylated, hypomethylated regions denote gene regulatory elements.10-16 55 

Promoters are largely hypomethylated across cell types, while hypomethylation of enhancers is 56 
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cell-type specific and differentiation-dependent.17-20 Accordingly, gene enhancers commonly 57 

acquire both ChrAcc and DNA hypomethylation to promote transcription of lineage-specifying 58 

genes; but whether these two epigenetic changes occur on similar timescales or how the timing 59 

of demethylation affects enhancer function relative to accessibility is unknown.  60 

Previous studies report that TET oxidase activity, rather than passive demethylation, is 61 

responsible for establishing hypomethylation at most enhancers21, 22, and the by-product of TET 62 

activity, 5-hydroxymethylcytosine (5-hmC), is enriched at enhancers in embryonic stem cells.23 63 

Constitutive disruption of TET activity results in cell differentiation defects in both embryonic and 64 

adult cells.24-30 For example, loss of TET2 leads to increased methylation of neural progenitor 65 

cell (NPC) enhancers, delaying the induction of NPC differentiation genes.31, 32 Likewise, TET2 66 

plays a specific role in hematopoiesis33, and loss of TET2 leads to transcriptional skewing of 67 

hematopoietic stem cells.34 DNAme restricts the binding of certain transcription factors (TFs) to 68 

DNA;29, 35-41 thus, failure to demethylate lineage-specifying enhancers precludes the expression 69 

of critical genes, blocking cell differentiation cascades.42  70 

Despite these important findings, prior work comparing steady state data revealed 71 

transcriptionally “discordant” gene enhancers that are at once accessible and methylated or 72 

inaccessible and hypomethylated.1, 19, 43 Contrary to dogma, the implications of these studies are 73 

that ChrAcc and DNAme dynamics are not always concurrent and DNAme does not invariably 74 

repress enhancer activity. Moreover, in time course studies, we previously discovered that 75 

ChrAcc and gene activation occur irrespective of enhancer demethylation, and demethylation is 76 

not required for successful terminal differentiation of human macrophages.1, 44 Similarly, a 77 

separate study showed that gene activation precedes DNA demethylation during infection of 78 

post-mitotic dendritic cells.45 Whether this decoupling of DNAme, ChrAcc, and transcriptional 79 

dynamics extends to replicating cells must be determined.  80 

The maintenance and modification of DNAme patterns are subject to the kinetics of enzyme 81 

activity and DNA replication.22, 46 TET initiated 5-hmC represents an intermediate state that is 82 

eventually resolved through active base-excision repair mechanisms involving thymine DNA 83 

glycosylase (TDG) or by passive dilution during replication.47, 48 The demethylation mechanism 84 

depends on the developmental setting. In certain cell types , replication is required for the 85 

majority of methylation loss through either passive dilution of 5-mC or its oxidized 86 

intermediates.48, 49 Other cell types, such as post-mitotic neurons, rely on active removal of 87 

oxidized 5-mC products entirely.50, 51 Moreover, demethylation mechanisms may be fully 88 

dispensable in late differentiation settings.25, 49, 52, 53 Thus, the observation of DNAme dynamics 89 
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is likely affected by the temporal properties and mechanism of demethylation acting in the 90 

model system. 91 

Additionally, while ChrAcc is dictated by TF binding activities, some, but not all, TF interactions 92 

with DNA are methylation sensitive.2, 38 In fact, some TFs bind methylated, and even 93 

inaccessible, DNA.53 Single molecule studies probing DNAme and TF occupancy found that 94 

only a small subset of enhancers depends on DNA demethylation for transcriptional activity.2 95 

Further, dynamic transcriptional responses have been observed without DNA demethylation of 96 

regulatory sequences, suggesting transcriptional activity, at least in the short-term, supersedes 97 

DNA demethylation mechanisms.45, 54, 55  98 

These collective findings highlight a contradictory understanding of how DNAme relates to 99 

ChrAcc and transcription that is, to some extent, at odds with phenotypes observed in DNAme 100 

modifier mutants. Moreover, the temporal resolution to understand the significance of mixed, 101 

and in some cases “discordant”, epigenetic states is lacking in most datasets – especially for 102 

fate-specifying enhancers experiencing epigenetic transitions. The role of DNAme on gene 103 

regulation may be time and context dependent; thus, a key to understanding the causal 104 

relationship between DNAme, gene regulation, and cell differentiation is to determine the timing 105 

and order of DNAme changes compared to TF occupancy, ChrAcc, and transcription. 106 

Here, we simultaneously quantified DNAme, ChrAcc, and TF footprints from single DNA 107 

fragment libraries56 to construct a high-resolution timeline of their dynamics during NPC 108 

differentiation. Overall, we show a majority of lineage-specifying enhancers undergo periods of 109 

DNA demethylation that are temporally distinct from chromatin. In fact, a substantial subset of 110 

enhancers loses DNAme despite transient opening and closing of chromatin. The greatest loss 111 

in DNAme occurs several days after initial ChrAcc and transcriptional changes, primarily 112 

between two and 6 days of differentiation. Furthermore, hypomethylation of these enhancer 113 

regions persists after these activities subside. Measuring site-specific 5-hmC57, we identified 114 

regions and periods of active demethylation that initiate before, and continue after, TF binding, 115 

suggesting the arc of DNA demethylation from beginning to end occurs outside of TF activity. 116 

Finally, using machine learning, we show that 5-hmC accumulation forecasts future ChrAcc, 117 

while 5-mC logs past activity. Our findings clarify how enhancers are regulated on different 118 

timescales by ChrAcc and DNAme, arguing that DNAme is not a gatekeeper of transcription, but 119 

serves to stabilize enhancer transitions during cell fate specification. Understanding the 120 

timescale over which DNAme exerts its regulatory function is fundamental to interpreting the 121 

functional consequences of epigenetic patterns in normal and disease states.  122 
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RESULTS 123 

Directed differentiation of HESCs to NPCs displays extensive DNA demethylation within 124 

chromatin accessibility loci 125 

We used a well-established dual-SMAD inhibition protocol to differentiate human embryonic 126 

stem cells (HESCs) to neural progenitor cells (NPCs) (Figure 1A).58 With this system, two 127 

SMAD inhibitors, Noggin and SB431542, are applied to HESCs grown in a monolayer on 128 

Matrigel, allowing for robust, feeder-free generation of NPCs in less than two weeks. In contrast 129 

to our previous work1, this differentiation system has several important characteristics: 1) a 130 

longer differentiation timeline allows for frequent sampling of timepoints, 2) cells continue to 131 

proliferate throughout a 12-day time course, 3) NPCs retain the potential to be further 132 

differentiated into functionally specialized neural cells, and 4) the resulting cells can be 133 

characterized at each stage of differentiation using known HESC and NPC markers including 134 

Oct4, Sox1/2, Nestin and Pax6 (Figure S1A). Finally, using single cell RNA-seq for a subset of 135 

timepoints (0-, 2-, and 6-days post-induction), we observed cell clustering by timepoint. Within 136 

each time point, no distinct subclusters were observed, indicating homogeneous/synchronous 137 

differentiation of cells and ruling out cell heterogeneity as a potential confounder in our results, 138 

especially for genomic regions with mixed epigenetic states (Figure 1B). 139 

We performed ATAC-Me and bulk RNA-seq in parallel for two biological replicates of nine 140 

timepoints following NPC induction, including 0 hours, 6 hours, 12 hours, 24 hours, 48 hours, 3 141 

days, 4.5 days, 6 days, and 12 days (Figure 1A, Table S1-2). These timepoints were chosen to 142 

capture early, intermediate, and late events in the gene regulatory cascade as well as transient 143 

ChrAcc and DNAme states. For all timepoints, ATAC-Me and RNA-seq replicate libraries were 144 

reproducible and showed similar sequence complexities (Figure S1B-D; Spearman ρ: 0.86-145 

0.98). 146 

Capturing ChrAcc and DNAme from a single DNA fragment source with ATAC-Me combined 147 

with deep sampling of timepoints permits quantification of their relationship with high 148 

spatiotemporal precision (Figure 1C). Initial genome-wide analysis identified a total of 101,215 149 

chromatin accessibility loci from all time points collected. The majority of these loci remained 150 

static and open for the duration of the time course (n=63,026), whereas a substantial subset 151 

(n=38,189) displayed dynamic accessibility over time (Figure 1D, S1E). Dynamic regions are 152 

predominantly located in intronic and intergenic genomic locations (~85%) where cell specific 153 
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gene enhancers typically reside, while static regions locate to a greater degree near promoters, 154 

where accessibility is stable across cell and tissue types (Figure 1E).  155 

Contrary to data obtained from terminally differentiated (and post-mitotic) hematopoietic cells1, 156 

we captured extensive DNAme changes within these dynamic ChrAcc regions (Figure 1D, 157 

S1E). This result is expected given the differentially methylated regions previously identified 158 

from comparisons of steady state HESCs and NPC methylomes16, as well as the length of the 159 

time course and the extent of reprogramming required to achieve the cell phenotype transition in 160 

this model system. However, our initial analysis further demonstrates that, whereas chromatin 161 

accessibility changes are bidirectional, DNAme changes are not. Many early hypomethylated 162 

regions remain hypomethylated despite closing chromatin, and most opening sites lose rather 163 

than gain DNAme. Altogether, our approach reveals new insights regarding the unique timing of 164 

these epigenetic transitions, the direction of change, and the regulatory elements involved at a 165 

scale and resolution that have not been previously determined. 166 

Unsupervised clustering of chromatin accessibility reveals temporally distinct regulatory 167 

groups with divergent changes in enhancer states 168 

To identify temporal patterns across individual chromatin accessibility loci, we performed 169 

unsupervised clustering on the 38,189 dynamic regions using normalized read counts for each 170 

time point (Figure 2A).59 Using a combination of methods to determine the optimal number of 171 

C-means groups (Figure S2A-C), we defined seven clusters each containing unique 172 

accessibility regions that track closely with the nine selected time points (n=3929-7520 regions). 173 

Within 6 hours after differentiation induction, there are notable changes in chromatin 174 

accessibility and each subsequent timepoint is associated with a specific cluster of accessibility 175 

regions, illustrating how rapidly and transiently chromatin responds to differentiation signals.  176 

Chromatin accessibility represents one of the first steps in the regulatory cascade of enhancer 177 

regulation60, and we show that chromatin accessibility occurs in multiple waves over the time 178 

course; thus, we classified each cluster into three major categories: Opening, Closing, and 179 

Transient. These broad classifications can be further separated by specific temporal behaviors. 180 

The Gradual Closing cluster contains approximately 6,000 regions which begin closing almost 181 

immediately while Delayed Closing regions remain open for the first 12-24 hours (Figure 2A). 182 

The Transient groups each reach peak accessibility at different times but close by 12 days. 183 

Gradual Opening and Late Opening regions are both open at the NPC stage, but the rate of 184 
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accessibility differs with Gradual Opening regions undergoing a gradual increase where Late 185 

Opening regions do not become accessible until 6 days post induction. 186 

The temporal resolution of our time course enables dissection of accessibility dynamics and 187 

assignment of gene regulatory elements to discrete stages of HESC-to-NPC differentiation. 188 

Accordingly, each dynamic accessibility cluster is enriched for gene ontologies that draw a clear 189 

distinction between early, transient, and late events such as negative regulation of 190 

developmental processes like circulatory system development (early), neuron differentiation 191 

(transient), and forebrain and cerebral cortex development (late, Figure S2B-C). By contrast, 192 

static regions are enriched for genes involved in general housekeeping processes (Figure 193 

S2C).  194 

Overlap of dynamic regions with 18-state chromHMM annotations61 trained on data from either 195 

HESCs or NPCs revealed substantial overlap of enhancer and repressor states with dynamic 196 

regions compared to static regions (Figure 2B). Comparing the ESC chromHMM to NPC 197 

chromHMM annotations for the same regions shows that, in Opening regions, enhancer 198 

annotations increase substantially while quiescent annotations are lost (Figure S2D). Transient 199 

and Closing regions undergo substantial switching from enhancer states in HESCs to repressor 200 

and quiescent states in NPCs (41% and 45%, Figure 2C, S2E).  201 

Motif enrichment analysis revealed strong correspondence between distinct sets of TF motifs 202 

and time-point associated accessibility clusters (Figure 2D, Table S3). These TFs include 203 

canonical pluripotency factors like Oct4/Sox2/Nanog in Closing regions and NPC marker Pax6 204 

in Late Opening regions. Transient regions demonstrated staggered opening and closing 205 

dynamics, suggesting short-lived TF activity within those regulatory elements. The 4.5-day 206 

Transient regions, for example, are enriched for Otx2, a TF shown to drive neural fate during 207 

early differentiation.62  In total, we observed 14 different TF families that defined the sequence 208 

content of the cluster behaviors.  209 

Given that CpGs are the major substrate for DNA methylation, we considered the CpG content 210 

of each accessibility cluster. Whereas static regions have a higher CpG density 211 

(observed/expected~0.4, Figure S2F) supported by their higher CpG island promoter content, 212 

dynamic regions display a range of CpG densities (mean obs/exp=0.174-0.50, Figure S2F). We 213 

determined whether CpG density could be attributed to specific TF motifs, finding that CpG 214 

containing TF motifs were associated with Opening and Closing clusters, rather than Transient 215 
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regions (Figure 2D). This apparent dearth of CpG containing motifs in Transient clusters is 216 

supported by the significantly lower CpG density in these regions compared to Opening (p-value 217 

<2e-16) and Closing (p-value=3.06e-9) clusters, suggesting an underlying link between 218 

sequence and methylation kinetics (Figure 2D, S2G). 219 

DNAme dynamics are unidirectional and temporally discordant with chromatin 220 

accessibility 221 

To gain a detailed understanding of the temporal relationship between ChrAcc and DNAme, we 222 

quantified DNAme of regions within each accessibility group for every timepoint (Figure 3A). 223 

These data revealed that, whereas chromatin and transcriptional changes begin as early as 6 224 

hours post-induction, notable changes to DNAme do not begin until 48 hours (Figure 3A, S3A). 225 

Overall, open regions that remain constant are constitutively hypomethylated throughout the 226 

time course (Static regions, Figure 3A). Among the dynamic accessibility regions, many display 227 

“concordant” changes with DNAme, where decreases in DNAme accompany increases in 228 

ChrAcc (Figure 3B-C, S3B). In fact, DNAme loss is the most prevalent pattern across all 229 

dynamic regions; however, unlike rapid and transient changes in ChrAcc that occur in both 230 

directions, the greatest loss of DNAme occurs during a distinct window of time between 2-6 231 

days (Figure S3A-B). This delay creates a subset of regions that pass through a “discordant” 232 

state in which they are open and methylated during enhancer activation. 233 

Gain of DNAme was a less common occurrence in our dataset (15.3% of dynamic ChrAcc 234 

regions, Figure 3B-C). We hypothesized that this may be due to the slower kinetics of DNAme 235 

gain and loss. However, extended time does not result in substantial gain of methylation for 236 

newly closed regions, as demonstrated by Closing ChrAcc groups that remained 237 

hypomethylated after 12 days of differentiation (Figure 3D, S3B-C). Moreover, both Transient 238 

and Closing regions continue to lose DNAme even after the regions return to a closed state. 239 

These dynamics create another “discordant” epigenetic state whereby regions are inaccessible 240 

and hypomethylated or where regions are demethylated and remain hypomethylated despite 241 

opening and closing of chromatin (Figure 3C-D, S3C).  We performed unsupervised clustering 242 

analysis on DNAme of all accessible regions to obtain groups based on similarity of their 243 

methylation dynamics rather than ChrAcc dynamics (Figure S3D). These data confirm that the 244 

DNAme patterns emerge independently of ChrAcc, but largely recapitulate the patterns 245 

observed when regions are clustered by accessibility.  246 
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To determine whether this observation is due to a sampling bias (DNA fragments derived from 247 

closing regions are less abundant in ATAC-Me), we performed whole genome methylation 248 

profiling using 6-base sequencing57, an orthogonal method to bisulfite-based sequencing, at 0, 4 249 

and 8 days of differentiation. This approach showed high correlation with methylation measured 250 

by ATAC-Me and recapitulated the methylation patterns observed across the 7 accessibility 251 

behaviors (Pearson=0.83-0.9, Figure 3D, S3E). 252 

In line with previous studies1, gene expression changes tracked more closely with ChrAcc than 253 

DNAme (Figure S3F). For many genes associated with closing clusters, expression decreased 254 

in tandem. Likewise, gene expression increased for genes proximal to opening regions. In fact, 255 

these changes occurred long before associated DNAme changes appeared. These findings 256 

suggest a general decoupling of DNAme from the ChrAcc and gene expression changes that 257 

drive the ESC to NPC transition. Overall, we observed three major types of DNAme trends 258 

during differentiation: slow response relative to ChrAcc, limited restoration of DNAme to closed 259 

enhancer regions, and continued demethylation of Transient and Closing accessible regions. 260 

The combination of these DNAme characteristics with rapid ChrAcc responses produces 261 

enhancer regions with discordant epigenetic signatures, contradicting the textbook model that 262 

DNAme (or lack thereof) is immediately synonymous with chromatin and gene expression 263 

changes (Figure 3E). These data also demonstrate the role of DNA hypomethylation as a 264 

record of current and historically active enhancers. 265 

Enhancer demethylation appears prior to, and is maintained independently of, TF binding  266 

Using Tn5 cut site frequencies generated in the ATAC-Me libraries, we performed TF 267 

footprinting to estimate TF occupancy of dynamic accessibility regions (Figure 4A).63 We then 268 

calculated the average methylation at these binding sites for all timepoints (Figure 4B).  We 269 

considered identified sequence motifs in the JASPAR CORE Vertebrates collection, which 270 

allowed us to reduce redundancy and consolidate patterns generated from TFs with high 271 

degrees of similarity– especially those within the same family.64, 65  From our timepoint-paired 272 

RNA-seq data, we determined that patterns of TF expression specifically produce analogous 273 

groups to those produced by accessibility (Figure 4C, Table S4). Example footprint profiles of 274 

the POU family displayed in Figure 4A include footprints of OCT4, POU3F1, and BRN2, which 275 

are expressed at different times during differentiation (Figure S4A). These expression profiles 276 

follow a clear switch in binding events between 2-6 days across the different accessibility 277 

regions. This switch coincides with a window during which the highest level of DNAme loss 278 
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occurs and is representative of a larger trend we observe across TFs (Figure S3). Thus, to 279 

better predict the footprint source, we used TF expression to narrow the scope of TFs 280 

considered in our analysis. Integrating TF footprints and TF expression enabled us to calculate 281 

methylation of regions before, during, and after a predicted binding event, giving a clearer 282 

picture of the timing of regulatory changes. 283 

We plotted the distribution of methylation across all timepoints for all binding events observed at 284 

each timepoint (Figure 4D,E). Overall, TF binding sites are both hypomethylated and accessible 285 

(Figure S4B, S4C); however, 30% of all accessible regions undergo some type of transition 286 

over the 12-day time course, both at the level of TF binding and DNAme. For all sites that lose 287 

TF binding at any timepoint, we find that hypomethylation is maintained long after binding sites 288 

are lost (Figure 4D). These data suggest that hypomethylation is intentionally maintained 289 

regardless of TF binding and accessibility. Furthermore, the transcriptional silencing of these 290 

regions cannot be attributed to the gain of DNAme, as transcription of neighboring genes closely 291 

follows TF binding activities. By contrast, for regions that gain a TF binding site at any timepoint 292 

during NPC differentiation, loss of DNAme begins to appear just prior to TF binding and, in 293 

general, this loss steadily continues after the binding event (Figure 4E). This was unexpected 294 

considering that TF binding is thought to be the initiator of demethylation and that resulting 295 

hypomethylation allows for stable TF binding. Overall, these data allowed us to resolve the 296 

order of events related to TF expression, binding and DNAme, revealing that demethylation 297 

activities start before appreciable TF binding is observed.   298 

Early and sustained accumulation of 5-hmC demarcates demethylation timing at lineage 299 

specifying enhancers  300 

Of the three TET family members, TET1 and TET3 are highly expressed throughout the 301 

duration of our time course, in line with previous studies.66 While TET2 is less abundant than 302 

TET1/3, it is significantly upregulated (p-value = 0.0143) along with its co-factor IDAX (CXXC4, 303 

p-value = 0.0464) around 48 hours into differentiation, coinciding with the onset of substantial 304 

demethylation (Figure S5A). Likewise, global levels of 5-hmC increase significantly during 305 

differentiation, peaking at 4.5 days and decreasing to near baseline levels by day 12 (Figure 306 

5A, ANOVA p=0.0228, Tukey’s HSD 0/108 p=0.0114, 6/108 p = 0.05069). Given the specific 307 

timing of demethylation and its apparent decoupling from ChrAcc changes, we examined the 308 

relationship between 5-hmC and cell cycle dynamics, as replication rates also change during 309 

hESC differentiation. We combined BrdU labeling and 5-hmC staining in a single flow cytometry 310 
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panel to evaluate relative per-cell 5-hmC levels at each cell cycle stage (Figure S5B, S5C). We 311 

reasoned that, if 5-hmC is diluted during DNA synthesis, then levels of 5-hmC would be highest 312 

in G0 and G1 cells and would decrease as new DNA is synthesized. However, at all timepoints, 313 

cells in G2 displayed the highest 5-hmC, followed by S phase cells. These results support that a 314 

continuous, active demethylation mechanism is resolving 5-hmC to cytosine, as 5-hmC tracks 315 

more closely with total DNA content (Figure 5B).  316 

To quantify 5-hmC at nucleotide resolution, we performed 6-base sequencing, which is a whole 317 

genome sequencing approach capable of distinguishing between 5-mC and 5-hmC. We 318 

collected three timepoints in duplicate including 0 days, 4 days, and 8 days post-induction, as 319 

these timepoints capture the key phases of 5-hmC dynamics that we observed globally (Figure 320 

5A, 5C). We quantified 5-hmC levels within our dynamic accessibility regions, finding that, 321 

unlike 5-mC, gain and loss of 5-hmC tracks closely with accessibility changes (Figure 5D). 322 

Example loci are depicted in Figure 5E to illustrate these trends at higher resolution. Moreover, 323 

5-hmC levels increase prior to demethylation and then decrease as the demethylation process 324 

resolves, which is indicated by the decreased proportion of 5-mC in reads measured from the 325 

same locus (Figure 5E, F). This pattern is most clearly captured in 4.5 Transient and Gradual 326 

Opening clusters, likely due to the timeframe when these regions are most accessible (Figure 327 

5E). Regions that are open early show the highest level of 5-hmC at 0 days, prior to accessibility 328 

changes, but steadily decrease at 4 and 8 days (Early Transient and 2-day Transient). In 4.5-329 

day Transient, Gradual Opening, and Late Opening groups, 5-hmC also increases prior to peak 330 

chromatin accessibility (Figure S5D). These regions display the greatest increase in 5-hmC 331 

between 0 and 4 days (Figure 5G, S5D). Closing regions display low levels of 5-hmC that 332 

decreases moderately over the time course, which supports the observation that closing regions 333 

continue to lose methylation even after returning to a closed state (Figure 3D, S5E). This 334 

means that demethylase activity begins early in the process to generate the 5-hmC levels that 335 

anticipate accessibility changes. 5-hmC also lingers as regions are returning to a closed state or 336 

as accessibility stabilizes, supporting the observation that complete loss of DNAme is delayed in 337 

regions that open.  338 

Among dynamic regions, we observe a range of 5-hmC levels, indicating certain regions have 339 

greater 5-hmC than others (Figure S5F). We classified regions as “5-hmC high” if their regional 340 

average 5-hmC proportion was in the top 25% of all accessible regions. 5-hmC high regions 341 

were enriched within dynamic accessibility clusters compared to static regions, demonstrating a 342 

link between 5-hmC and ChrAcc dynamics (chi-squared: 0-day p-value < 2.2e-16, 4-day p-value 343 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 27, 2024. ; https://doi.org/10.1101/2024.08.27.609789doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.27.609789
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 12

< 2.2e-16, 8-day p-value < 2.2e-16, Figure 5H). We further observed that distinct subsets of 344 

TFs were specifically enriched in dynamic regions with high 5-hmC (Figure 5I). To examine 5-345 

hmC and TF binding activity, we focused on dynamic regions with high 5-hmC at 4 days that 346 

contain BHLHA15 root motifs, which includes NeuroD2 (Figure 5J, S5G).67 While both bound 347 

and unbound sites display an accumulation of 5-hmC at 4 days, bound sites, but not unbound 348 

sites, displayed a dearth of 5-hmC in the region immediately surrounding the binding site which 349 

becomes more prominent by 8 days. This result, combined with the progressive loss of DNAme 350 

signal, suggests demethylase activity begins early, prior to TF binding, but that complete 351 

demethylation follows TF binding. These data raise the possibility that 5-hmC can forecast 352 

accessibility changes and TF binding, at critical enhancers prior to being resolved through 353 

demethylation.  354 

A machine learning approach predicts chromatin accessibility patterns from timepoint 355 

specific DNA methylation states 356 

Previous machine learning approaches have used DNAme68-71, and more recently 357 

hydroxymethylation72, 73, to train models that predict gene expression or disease state. We 358 

developed a machine learning approach to test whether timepoint specific DNAme states can 359 

be used to predict past, present and future chromatin accessibility. Using XGBoost74-76, we 360 

began by training models separately on 5-mC, 5-hmC, and 5-mC + 5-hmC measured using 6-361 

base sequencing (0, 4, and 8 days) for either dynamic or static ChrAcc regions. Timepoints 362 

were matched to their nearest temporal neighbor, such that predicted ChrAcc values from 363 

models trained on 0-, 4-, and 8-day methylation data were compared with observed ChrAcc 364 

values from 0, 4.5, and 12 days, respectively (Figure S6A).  We tested each timepoint specific 365 

model on itself as well as other timepoints, generating a total of 9 models and 27 tests 366 

comparing observed vs. predicted ChrAcc (Figure S6B). For comparison, we also trained 367 

models on ChrAcc of enhancer and promoter regions using ENSEMBL annotations for NPCs or 368 

ESCs, irrespective of accessibility trend. Promoter trained models performed better at predicting 369 

promoter accessibility than those trained and tested on enhancers, with each timepoint 370 

performing equally well, especially when using models trained on both 5-mC and 5-hmC 371 

(Figure S6C). Similarly, we observed that models trained and tested on static ChrAcc regions 372 

performed better, on average, than models trained on dynamic regions (Figure 6A, B, S6D). In 373 

fact, static region models performed well at all timepoints, regardless of their training dataset 374 

(Spearman ρ>0.7). This is not surprising considering the prevalence of CpG dense promoter 375 
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regions and other CpG islands in static regions, which are predominantly constitutively 376 

hypomethylated; thus, stable methylation states are highly predictive of stable ChrAcc states.   377 

To understand whether DNAme can predict ChrAcc in dynamic regions, we focused on models 378 

trained on 4-day methylation data (Figure 6A, B), which represents the timepoint for which 5-379 

hmC was most frequently observed and coincides with the regions experiencing the greatest 380 

demethylation. While models trained on a combination of 5-mC and 5-hmC generally performed 381 

best at predicting ChrAcc, 5-mC and 5-hmC contributed differently to the model’s strength. For 382 

example, models trained on 5-mC alone performed best when tested at 0 days. This is 383 

especially true for 0-day trained data (Figure S6E, F). The strong model performance seen with 384 

‘5-mC only’ models (compared to ‘5-hmC only’) tested on 0-day accessibility is likely due to the 385 

shortage of 5-hmC at 0 days, not to mention that most open chromatin regions are stably 386 

hypomethylated in HESCs. As expected, 0-day trained data performed poorly at predicting 387 

ChrAcc at 4 and 12 days. 388 

By contrast, 4-day 5-mC + 5-hmC predictions showed higher correlations with observed 389 

accessibility levels at 0, 4 and 12 days (Figure 6A). Moreover, predictions from 5-hmC only 390 

models showed increasing correlation with observed accessibility from 0 to 12 days, indicating 391 

that 5-hmC contributes substantially to the 5-mC + 5-hmC models at later timepoints (Figure 392 

6B). These performance trends are replicated in the 8-day trained models, which performed 393 

best at predicting accessibility at 12 days. It is also important to note that models trained on 394 

dynamic regions, the majority of which are lineage-specifying enhancers, performed 395 

substantially better at predicting dynamic accessibility than models trained and tested on 396 

enhancer annotations (Figure 6A, S6C). Overall, these results argue that, in order to 397 

understand the relationship between DNAme and ChrAcc and their joint role in regulating 398 

transcription, consideration of time and a combination of DNAme states is crucial (Figure 6C). 399 

By capturing this information, our data support the hypothesis that DNAme states can predict 400 

past, present and future chromatin states.  401 

DISCUSSION 402 

Enhancers are activated progressively through recruitment of TFs and chromatin modifiers to 403 

permit access to DNA. Until recently, DNA demethylation was considered intrinsic to this 404 

process and essential for subsequent gene expression. However, in previous work we observed 405 

negligible enhancer demethylation during terminal cell differentiation despite robust ChrAcc and 406 
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transcriptional changes.1 Similarly, steady state ChrAcc and DNAme data has previously 407 

revealed that accessible enhancers can be nucleosome free while also displaying a range of 408 

DNAme levels, including hypermethylation.19, 20 Further, the presence of DNAme at enhancers 409 

does not necessarily restrict TF binding or transcription of associated genes.1, 2, 12, 45, 77  While 410 

these observations challenge textbook models of DNAme and its role in gene regulation, how 411 

these discordant patterns are produced and their functional significance remains unclear. 412 

In the present study, we address several important questions raised by previous work: First, our 413 

previous data was generated in cells that become post-mitotic, and the ability to observe 414 

substantial demethylation may be replication dependent.49, 53, 78 Here, we capture significant, 415 

primarily unidirectional, DNAme changes in proliferating NPCs over a substantially longer time 416 

course. Nonetheless, the decoupling of DNAme changes from ChrAcc and transcription still 417 

holds true, so the discordance between chromatin and DNAme changes is not a result of 418 

proliferative or developmental state. 419 

Second, past studies did not distinguish 5-mC from 5-hmC, so the initiation or completion of 420 

demethylation could not be pinpointed relative to ChrAcc. Using densely sampled ATAC-Me 421 

data with 6-base sequencing, we show that, as enhancers experience waves of ChrAcc and TF 422 

binding, 5-hmC appears early but resolves late in the process. This temporal separation 423 

produces discordant epigenetic states at individual timepoints. In light of these new insights, the 424 

conclusion that enhancers are wholly insensitive to methylation may require some 425 

reconsideration, as enhancers that are both accessible and methylated may be under transition.  426 

In addition, structural studies have demonstrated that TET1/2 are more efficient at catalyzing 5-427 

mC than 5-hmC substrates, so complete removal of 5-hmC may take longer to resolve than the 428 

initial oxidation step.79, 80 This may explain, in part, why treatment with vitamin C, which 429 

enhances TET catalytic activity, increases DNAme loss in both mitotic and post-mitotic cells.1, 81, 430 

82 Indeed, non-physiological levels of vitamin C may accelerate the resolution of oxidized 5-mC 431 

substrates, which are not distinguished from 5-mC in bisulfite sequencing data. Alternatively, 432 

conversion of 5-mC to 5-hmC alone may be sufficient to permit transcription and TF binding 433 

rendering complete demethylation unnecessary. 5-hmC signal described here may also indicate 434 

an additional function outside of its role as a methyl-intermediate.31 435 

While many TFs are considered insensitive to DNAme20, 35, 36, 38-40, their binding sites do 436 

ultimately display low DNAme levels, which we similarly observed. We examined DNAme levels 437 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 27, 2024. ; https://doi.org/10.1101/2024.08.27.609789doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.27.609789
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 15

from accessible DNA fragments before, during, and after predicted TF binding events. Loss of 438 

methylation appeared prior to TF binding and was corroborated by the presence of 5-hmC, 439 

which accumulated locally and diminished by subsequent timepoints. These findings indicate 440 

that the start of demethylation is at least concomitant with the start of TF binding. One caveat of 441 

our approach is that TF binding is indirectly determined by Tn5 cut-site frequencies, which is 442 

dependent on ATAC-Me sequencing depth. However, by integrating TOBIAS footprints with 443 

ChIP-seq data, we have previously shown that this method accurately distinguishes bound and 444 

unbound sites for specific TFs.83 Future studies may directly probe binding of TFs through ChIP-445 

based methods, combined with DNAme quantification84-87, to better understand temporal 446 

relationships between TF binding and DNAme.  447 

In proliferating cells, enhancer demethylation is likely achieved through a combination of TET-448 

mediated active and replication-mediated passive mechanisms. 46, 49, 53, 88 Across nine 449 

timepoints over twelve days, we found a distinct window during which the greatest loss of 450 

DNAme occurs, coinciding with increased TET2 expression and peak 5-hmC levels. We found 451 

that the specific timing of demethylation could be not explained by replication dynamics, as 5-452 

hmC levels track with DNA content, suggesting 5-hmC is not diluted passively in this system. A 453 

recent study combining metabolic labeling of DNA with mass spectrometry revealed that 5-hmC 454 

accumulates on parental single-stranded DNA post replication, which may support our 455 

conclusion that a continuous, active demethylation mechanism is resolving 5-hmC to cytosine46; 456 

however, we cannot concretely determine whether the resolution mechanism is base excision 457 

repair as observed in post-mitotic neurons.50 Regardless, the timing of DNA demethylation does 458 

not appear to be a result of changes in cell cycle dynamics. 459 

Apart from losing DNAme, few ChrAcc regions gained methylation. This predominate loss of 460 

methylation was observed in both opening and closing regions and persisted throughout the 461 

time course. Previous studies found that patterns of DNA hypomethylation capture both active 462 

and historically active enhancers, and that hypomethylated regions accumulate as cells 463 

differentiate.10, 17-19, 89, 90 However, these studies lacked the temporal resolution to determine 464 

how hypomethylated regions are established and their relationship to ChrAcc. Our findings 465 

corroborate these studies and additionally demonstrate that transcriptional silencing does not 466 

require the acquisition of DNAme at enhancers of associated genes. For these decommissioned 467 

enhancers, what maintains the long-term hypomethylation state is unclear, but we speculate 468 

that it could be repressive TFs capable of binding nucleosomal DNA91, the exclusion of 469 

methyltransferases, or both. 470 
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Our studies uncover not only that 5-mC patterns reflect historical enhancer accessibility, but 471 

unexpectedly that 5-hmC can predict future accessibility.  This stems from the finding that 5-472 

hmC accumulates ahead of increasing accessibility at some sites. 5-hmC has been associated 473 

with dynamic enhancers and ChrAcc regions92-96, but our detailed temporal analysis of these 474 

epigenetic states allowed us to build a machine learning model that captures and predicts the 475 

relationship between 5-mC, 5-hmC, and ChrAcc. This work underscores the distinct and time-476 

dependent relationship between these epigenetic features, which could be expanded upon to 477 

build models that are generalizable to differentiation-dependent accessibility changes across 478 

cellular systems.72 Ultimately, when considering the question of whether DNAme is deterministic 479 

of transcriptional patterns, our work argues that applying a comprehensive view of 480 

demethylation as a process, involving multiple intermediate states, is critical when evaluating 481 

the regulatory impact of DNAme. 482 
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FIGURE LEGENDS 507 

Figure 1: Directed differentiation of HESCs to NPCs displays extensive DNA 508 

demethylation within chromatin accessibility loci. (A) The experimental design of ATAC-Me 509 

consists of four main steps. HESCs are differentiated to NPCs for 12 days and samples are 510 

taken at nine time points throughout the differentiation process. DNA fragments are isolated 511 

from Tn5 accessible chromatin followed by sodium bisulfite conversion to quantify methylation 512 

state of open chromatin regions. Analysis of resulting data captures dynamic behaviors of 513 

DNAme and ChrAcc over time. (B) UMAPs of single cell RNA-seq data for samples analyzed at 514 

0, 2 and 6 days of differentiation. Groups (Batches) segregate according to timepoint and 515 

homogeneously express markers of ESCs (OCT4), intermediate NPCs (LHX5), and 516 

differentiated NPCs (PAX6). Marker gene overlays are scaled by normalized and transformed 517 

read count values. (C) UCSC Genome Browser tracks display ATAC-Me derived DNAme and 518 

ChrAcc measurements at the GLI3 locus. Grey boxes highlight two regions that gain 519 

accessibility and lose DNAme. The fraction methylated reads at each CpG site is represented 520 

by the height of the green bar. Accessibility is represented by normalized read counts shown in 521 

grey. Both tracks are merged signal of two replicates. (D) Heatmaps display the ChrAcc and 522 

DNAme signal of all dynamic ChrAcc peaks at each time point. Regions are sorted by 523 

decreasing normalized read count signal intensity at the 0-hour time point. Regions are scaled 524 

to 500 bp and plotted along the center of each +/- 0.5 kilobases and 1 kilobases for ChrAcc and 525 

DNAme, respectively. (E) Proportion of dynamic (n=38,189) and static (n=63026) regions 526 

annotated to genomic region classes is shown. Related to Figure S1. 527 

Figure 2: Unsupervised clustering of chromatin accessibility reveals temporally distinct 528 

regulatory groups with divergent changes in enhancer states. (A) ChrAcc regions with 529 

differential accessibility over time (|log2-fold| > 2, adjusted p-value < 0.05) were clustered using 530 

fuzzy C-means clustering. The standard difference of normalized ATAC-Me signal intensity (z-531 
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score) over time for each region within a cluster is shown, with line color representing the 532 

membership score defined by that cluster. Heatmaps displaying the normalized accessibility 533 

signal across the cluster regions for each timepoint are shown below. Heatmaps are sorted by 534 

decreasing normalized read count signal intensity at the 0-hour time point for each cluster. The 535 

region count for each cluster is displayed. (B) Chromatin state annotations of cluster regions 536 

using the chromHMM61 18-state annotations from HESCs and NPCs. The proportion of regions 537 

in each state for the cluster is displayed for all dynamic and static regions. (C) A Sankey plot 538 

displays the change in regions’ chromatin states from the ESC to NPC stages for all Transient 539 

regions. (D) Motif enrichment was performed for each dynamic ChrAcc group using HOMER. 540 

The relative enrichment (z-score of enrichment values across all dynamic clusters) of the 541 

topmost variable TFs are shown and are filtered for motif redundancy. For a comprehensive list, 542 

see Table S3. The enrichment score of the same motifs in static regions is also shown. TF 543 

family is displayed as an annotation column along with CpG content likelihood. CpG likelihood in 544 

each TF consensus motif is calculated as described in Motto97. Related to Figure S2. 545 

Figure 3: DNAme dynamics are unidirectional and temporally discordant with chromatin 546 

accessibility. (A) Dual-axis boxplots of accessibility signal distribution (normalized read counts, 547 

blue) for  each timepoint grouped by dynamic TCseq clusters. A pseudocount is added and the 548 

displayed data is log transformed for display. The corresponding average fraction methylation 549 

distribution across each region group and timepoint is shown in gold. The boxplots display the 550 

median of the signal distribution, and the line overlay represents the average signal at each 551 

timepoint. (B) The proportion of regions within each accessibility cluster that experience a gain, 552 

loss or no change in methylation over time. Regions were grouped based on the change of 553 

average regional methylation values over the entire time course, 0 to 12 days. The stable 554 

methylation group represents those regions which showed a change less than 10% between the 555 

0 hour and 12-day time point.  Methylation classification of “lose” or “gain” indicates a change of 556 

at least 10% in the average methylation between the 0 hour and 12-day timepoints in either 557 

direction. (C) The temporal relationship between accessibility and methylation behaviors 558 

represented by a Sankey plot. Accessibility subgroups represent dynamic regions from all 559 

TCseq clusters. Clusters were grouped by their dominant accessibility trend (i.e., opening, 560 

transient and closing) while the methylation classification from (B) was maintained. (D) Regional 561 

methylation and accessibility are displayed for all dynamic accessible regions. Heatmaps are 562 

grouped by accessibility subgroup then methylation behavior, the methylation classification from 563 

(B) was maintained. Yellow boxes highlight regions which display discordant epigenetic states 564 
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by the end of the time course. (E) Average fraction DNAme values determined by whole 565 

genome 6-base sequencing across regions contained in each ChrAcc cluster are shown. 6-base 566 

sequencing was performed on samples collected at 0, 4, and 8 days of differentiation. Regional 567 

methylation values represent the average fraction methylation from two biological replicates. 568 

Related to Figure S3. 569 

Figure 4: Enhancer demethylation appears prior to, and is maintained independently of, 570 

TF binding. (A) Heatmaps display cut site signal centered around TF footprint sites containing 571 

POU family motifs +/-200bp. Footprint sites are defined by POU motif sequences +/- 50bp. 572 

Regions are grouped by previously defined accessibility clusters and organized within each 573 

cluster according to descending cut site signal intensity. Horizontal bars indicate the larger 574 

subgroups defined by accessibility behavior over the time course. (B) The methylation heatmap 575 

displays the corresponding proportion methylation at each CpG site within in the footprint site 576 

with a flanking distance of +/-1kb. Regions are sorted according to (A). (C) Heatmap displays 577 

TF expression determined by RNA-seq for all TFs expressed at any time point. Normalized read 578 

counts (FPKM) are scaled by row and ordered by hierarchical clustering. Horizontal grey bars 579 

define six groups with specific temporal expression patterns. Select TFs are labeled to the right 580 

of their respective rows. (D, E) Line plots show average regional methylation values over time 581 

visualized by TF binding behavior. The dot represents the time point of the TF binding event, or 582 

the time point at which a motif transitions from being bound to unbound (lose events, E) or vice 583 

versa (gain events, D). Related to Figure S4. 584 

Figure 5: Early and sustained accumulation of 5-hmC demarcates demethylation timing 585 

at lineage specifying enhancers (A) Dotted line plot shows the average global %5-hmC of 586 

biological replicates measured by ELISA at nine timepoints. Individual biological replicates are 587 

shown as black dots. Each biological replicate is the average of two technical replicates. % 5-588 

hmC is determined via standard curve. (B) Boxplots display the distribution of 5-hmC signal 589 

across cell cycle stages for each timepoint. 5-hmC was measured by immunostaining and flow 590 

cytometry and is displayed as a transformed ratio versus the minimum median signal intensity 591 

using Cytobank.98 The transformed ratio was calculated using the minimum within each sample 592 

group (timepoint, See Methods). Events were gated into cell cycle stage using PI/BrdU staining, 593 

which is shown in Figure S5B. ANOVA and Tukey HSD were used to compare 5-hmC across 594 

cell cycle stages (p-value <2e-16 for all comparisons). (C) Boxplots show average proportion 5-595 

hmC (reads reporting 5-hmC/total reads) at CpG sites within dynamic accessible peaks at 2, 4, 596 

and 8 days. 5-hmC proportion was measured using whole genome 6-base sequencing for two 597 
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biological replicates. The mean proportion 5-hmC of individual replicates is shown for each 598 

timepoint as colored dots, *, p= 0.0365, one-sided t-test. (D) Boxplots display the average 599 

proportion 5-hmC (reads reporting 5-hmC/total reads) of CpG sites across regions in each 600 

accessibility cluster. Individual biological replicate means are displayed as points within the 601 

boxplot. Thumbnail visualizations of accessibility signal for each cluster are displayed. (E) 602 

Representative traces for proportion 5-hmC and (F) proportion 5-mC at three genomic loci 603 

displaying different types of 5-hmC changes between the three time points. Chromosome and 604 

coordinates (x1,000) for each locus are printed below the plot. Proportion 5-hmC is calculated 605 

as the average number of reads reporting 5-hmC over the average total number of reads for two 606 

biological replicates. Proportion 5-mC is calculated as the average number of reads reporting 5-607 

mC over the average total number of reads for two biological replicates. CpGs with coverage 608 

less than 15 reads over both replicates were excluded for this analysis. (G) The average change 609 

in proportion 5-hmC was calculated for ChrAcc regions in three representative dynamic ChrAcc 610 

clusters. “Total” represents the average difference between 8-day and 0-day timepoints, “0-4 611 

days” represents the difference between 4-day and 0-day timepoints, and “4-8 days” represents 612 

the difference between 8-day and 4-day timepoints. (H) The proportion of static and dynamic 613 

ChrAcc regions with high or low 5-hmC within at each 6-base timepoint. Regions with an 614 

average fraction 5-hmC ≥ 0.106 (top 25% of regional 5-hmC fractions) across replicates were 615 

termed “high” and regions with an average fraction 5-hmC < 0.106 across replicates were 616 

termed “low”. (I) Heatmap displaying motif enrichment for 5-hmC high and 5-hmC low regions at 617 

each timepoint. Motif enrichment is displayed as the fold-change over background and is scaled 618 

by TF across each row. Grey boxes represent values that were not significant (>0.05) at the 619 

respective timepoint. The boxed row represents the motif enrichment for BHLHA15 which is 620 

selectively enriched in regions with high 5-hmC at 4 days. (J) Aggregate profiles display 5-hmC 621 

signal at TF footprints for the JASPAR root cluster containing BHLHA15 (shown to the left). TF 622 

footprinting and binding state designation was performed using TOBIAS. Profiles display signal 623 

at footprint sites with a flanking distance of +/-1000bp. Signal is binned into 25bp bins. Related 624 

to Figure S5. 625 

Figure 6: Chromatin accessibility prediction by machine learning. (A) Scatter plots display 626 

the observed accessibility versus the predicted accessibility for machine learning models trained 627 

on 4-day 5-hmC and 5-mC data (5-mC alone, 5-hmC alone, and 5-mC + 5-hmC). XGBoost 628 

models were trained on dynamic ChrAcc regions (excluding regions on chromosome 1) using 629 

methylation data from each singular timepoint (0, 4, and 8 days) and tested on regions from 630 
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chromosome 1 at each timepoint. The spearman correlation coefficient is shown for each 631 

model. Dotted lines are defined by the slope between the points [minimum predicted value, 632 

minimum predicted value] and [maximum predicted value, maximum predicted value] in each 633 

scatterplot. (B) Bar plots of spearman ρ values (predicted vs. observed accessibility) for 634 

dynamic accessibility region models trained on 4-day or 8-day trained methylation data. Models 635 

were tested on all three timepoints in a similar fashion to those in A. Plots are divided by which 636 

methylation states were used for fitting. (C) A representative schematic of the molecular timeline 637 

proposed in this study. During the cell fate transitions that accompany NPC differentiation, 638 

enhancer regions that will be opened and activated first undergo 5-mC oxidation whereby 5-mC 639 

becomes 5-hmC (purple lollipops). This is followed by increases in accessibility and further 640 

oxidation, resulting in subsequent demethylation. TFs can bind these hydroxymethylated sites 641 

and facilitate the completion of demethylation while activating transcription of associated genes. 642 

Both the initial demethylation steps and the completion of the demethylation cycle are discretely 643 

timed events that occur between 2-6 days of differentiation. When an enhancer region is no 644 

longer required by the new cell fate, it loses TF binding and decreases in accessibility. However, 645 

the regions remain hypomethylated. Related to Figure S6.  646 
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STAR METHODS 647 

Resource Availability 648 

Lead contact 649 

Further information and requests for resources and reagents should be directed to and will be 650 

fulfilled by the lead contact, Emily Hodges (emily.hodges@vanderbilt.edu). 651 

Materials Availability 652 

All unique/stable reagents generated in this study are available from the lead contact without 653 

restriction. 654 

Data and Code Availability 655 

• ATAC-Me-seq, RNA-seq, single cell RNA-seq, and 6-base data have been deposited in 656 

the Gene Expression Omnibus (GEO) and are publicly available as of the date of 657 

publication. Accession numbers are listed in the key resources table. 658 

• All code has been deposited in a publicly available GitHub Repository. Links to 659 

repositories are listed in the key resources table. 660 

• Data can be visualized using the UCSC Genome Browser at the link listed in the key 661 

resource table.  662 

• Any additional information required to reanalyze the data reported in this paper is 663 

available from the lead contact upon request. 664 

Experimental Model and Subject Details 665 

Cell Culture and Treatments 666 

H9 human embryonic stem cells (gift of Dr. Vivian Gamma, Vanderbilt University) were cultured 667 

in mTeSR1 (StemCell Technologies). Culture conditions were maintained at 5% CO2, 37°C and 668 

80% humidity. During routine culture, H9 ESCs were maintained in colonies with daily media 669 

changes. Cells were passaged when 80% confluent, or approximately every 4-5 days using 670 

ReLeSR (StemCell Technologies).  671 

Neural Progenitor Cell Differentiation 672 

Neural progenitor cell differentiation was performed using the STEMdiff™ SMADi Neural 673 

Induction Kit, per the manufacturer’s instructions. Briefly, H9 ESCs were maintained as usual 674 

until 80% confluent. Cells were then dissociated using Accutase (StemCell Technologies) to 675 
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generate a single cell suspension. Cells were pelleted and resuspended in Neural Induction 676 

Media with Y-27632 (StemCell Technologies) to a final concentration of 1x106 cells/ml. Media 677 

was replaced daily for the next 5 days before being passaged again on day 6 of differentiation. 678 

On day 6, cells were similarly dissociated with Accutase (StemCell Technologies) to generate a 679 

single cell suspension. Cells were split 1 to 6 and plated into NIM with Y-27632 for the first 24 680 

hours after plating. Cells were cultured for another 6 days before the final collection at 12 days 681 

of differentiation.  682 

ATAC-Me  683 

The ATAC-Me protocol used in this system was optimized and detailed previously56. Briefly, 684 

cells were harvested using Accutase (StemCell Technologies) and a single cell suspension was 685 

generated. Following collection, 200,000 cells were lysed, and nuclei were collected. Cells were 686 

pelleted by centrifugation and resuspended in a gentle lysis buffer to isolate nuclei. Nuclei were 687 

then incubated in Tn5 transposition reaction buffer with Tn5 assembled with methylated 688 

adaptors. Accessible DNA fragments underwent purification, oligo replacement, and gap repair. 689 

Fragments then undergo heat denaturation and sodium bisulfite conversion using the EZ-690 

Methylation Gold Kit (Zymo). Libraries were amplified and indexed using 8-12 cycles of PCR. 691 

ATAC-Me libraries were sequenced using 2x150bp paired-end reads on the NovaSeq6000 692 

instrument. 693 

RNA-seq 694 

RNA was collected from 1x106 cells for each NPC differentiation time point by pelleting cells 695 

at 4°C, 500 R.C.F for 5 minutes. After removal of supernatant, cell pellet was resuspended 696 

in 1mL of TRIzol Reagent by repeatedly pipetting up/down with a 1mL micropipette tip. RNA 697 

was purified from Trizol according to manufacturer instructions. RNA-seq libraries were 698 

prepared using the NEBNext® Ultra™ II RNA Library Prep according to manufacturer’s 699 

instructions. RNA-seq libraries were sequenced using 2x150bp paired-end reads on the 700 

NovaSeq6000 instrument. 701 

scRNA-seq  702 

Cells were prepared using a Papain Dissociation kit (Worthington Biochemical Corporation) 703 

according to the manufacturers protocol with some modification. Samples for sequencing were 704 

grown as previously described in a 6-well plate. Briefly, 2.5 mL of Papain + DNase solution was 705 

added to each well of a 6-well plate. Plates were shaken at 70 RPM at 37°C and 5% CO2 for 30 706 

min. After incubation, cells were dissociated by pipetting up and down using a 1000μL pipette. 707 
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Cells were incubated again under the same conditions for 10 more minutes prior to gentle 708 

pipetting with a 10mL pipette. Resulting cell suspension was transferred to a 15mL conical tube 709 

containing 5mL Earle’s medium + 3mL reconstituted inhibitor solution. Tube is inverted 3-5 710 

times to mix. Cells are centrifuged at 300 x g for 7 minutes and supernatant is aspirated before 711 

resuspension of cells in 500μL 1x PBS. The PBS/cell suspension is then moved to a tube with a 712 

35uM nylon mesh filter cap. Cells were encapsulated using a modified inDrop platform99, and 713 

sequencing libraries were prepared using the TruDrop protocol100. Libraries were sequenced in 714 

a S4 flow cell using a PE150 kit on an Illumina NovaSeq 6000101, 102. 715 

Duet evoC 6-base Sequencing 716 

Cells were collected at 0, 4, and 8 days after induction of differentiation using Accutase. 717 

Genomic DNA was collected and purified using phenol-chloroform extraction prior to 718 

being sonicated for 45 seconds in a Diagenode One sonication device (Diagenode) 719 

generating fragments with an average size of 250bp. Libraries were made using the 720 

duet evoC kit (biomodal) with 50ng of fragmented DNA according to manufacturer’s 721 

instructions. Final libraries were sequenced using 2x150bp paired-end reads on the 722 

NovaSeq6000 instrument. 723 

5-hmC ELISA 724 

Genomic DNA was collected and purified using phenol-chloroform extraction. DNA was 725 

sonicated for 45 seconds in a Diagenode One sonication device (Diagenode) generating 200-726 

600bp fragments. 5-hmC quantification was performed using the Quest 5-hmC DNA ELISA Kit 727 

(Zymo) according to the manufacturer’s instructions using 20ng of fragmented DNA as input.  728 

Cell Cycle and 5-hmC Flow Cytometry 729 

Flow cytometry was performed as previously described with modifications103. Cells were treated 730 

with 20μM BrdU in mTeSR or NIM for 1 hour. Cells were then collected using Accutase 731 

(StemCell Technologies), washed once with PBS, and resuspended in methanol. Cells were 732 

incubated overnight in methanol at 4°C with rotation to fix. After centrifugation and removal of 733 

supernatant, cells were resuspended in 100mM Glycine in PBS and incubated for 20 min at 734 

25°C. Cells were centrifuged, and supernatant was removed before resuspension in 0.1% (v/v) 735 

Triton-X in PBS. Cells were incubated at 25°C for 30 minutes. After centrifugation and removal 736 

of supernatant, cells were resuspended in washing solution (0.5% BSA and 0.5% Tween in 737 

PBS) and incubated for 30 min at 25°C. Cells were counted at this step and cell count was 738 
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normalized between samples for staining. Between each staining step, cells were washed three 739 

times in washing solution. 5-hmC staining was done using 100μL of PBS with 1:100 anti-5-hmC 740 

(Active Motif) overnight at 4°C followed by secondary staining using 100μL of washing solution 741 

with 1:200 anti-rabbit IgG CF750 (Sigma) for 1 hour at room temperature. Following secondary 742 

staining, cells were resuspended in 100μL of 0.5% BSA in PBS. To each sample, 15μL of FITC-743 

α-BrdU (BD Biosciences) was added and incubated for 1 hour at room temperature. Finally, 744 

cells were washed before being resuspended in 300μL PI solution (0.4μg/mL PI, 8ng/μL RNase 745 

A, 0.5% BSA in PBS), incubated for 30 min at 25°C, and moved to a round bottom test tube with 746 

a cell strainer cap (Falcon). Samples were run on a 5 laser Fortessa instrument with FlowJo. 747 

Analysis and visualization were performed using Cytobank and ggplot2104. Signal was quantified 748 

as the fold-change in per-cell 5-hmC median fluorescence intensity per sample compared to the 749 

lowest median signal for same experiment. The inverse hyperbolic sine (arcsinh) with a cofactor 750 

was used to compare samples as previously described105. The arcsinh median of intensity value 751 

× with cofactor c was calculated as arcsinhc(x) = ln(x/c + √((x/c)2 + 1)). The cofactor (c) is a 752 

fluorophore-specific correction for signal variance.  753 

Quantification and statistical analysis 754 

Chromatin accessibility prediction by machine learning 755 

Machine learning models were generated in python (v3.11.0) using the scikit-learn (v1.1.3) and 756 

modality (v0.10.0) packages. The models were fit to predict chromatin accessibility from three 757 

layers of methylation data values (modC, mC, and hmC). Chromatin accessibility values were 758 

generated from filtered bams, merged by replicate (bigWigs), and normalized by the length of 759 

the region. Methylation values were derived from the biomodal 6-base duet evoC data and 760 

represented ‘modC,’ ‘mC,’ ‘hmC,’ and ‘mC + hmC’ average values tiled across genomic regions. 761 

The amount of CpGs per region were also recorded for model input. In the comparison between 762 

dynamic and static regions, dynamically accessible chromatin peaks were grouped together into 763 

a single BED file for input. For the comparison of regulatory regions, ‘enhancers’ and 764 

‘promoters’ were selected from an Ensembl genome annotation file downloaded from their FTP 765 

server (https://ftp.ensembl.org/pub/current_regulation/homo_sapiens/GRCh38/annotation/); 766 

promoters and enhancers were selected by matching strings (“promoter” and “enhancer,” 767 

respectively) in the third column. To standardize BED region size, we determined the central 768 

base pair for each region and extended these +/- 250 bp. Chromatin accessibility and 769 

methylation was mapped over the 500 bp region. Methylation windows were tiled at 500 bp 770 

intervals beginning at -1000bp and ending at +1000bp, resulting in 5 windows. Mapping was 771 
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performed with the pyranges.intersect() function. We used xgb.XGBRegressor() from the 772 

xgboost (v1.7.1) package to initialize a machine learning model. Training and testing data was 773 

split on chromosome 1, estimating a 90:10% split (~90.37:9.63% split among all peaks) such 774 

that training data included chromosomes 2-22, X, and Y.  Model parameters were optimized 775 

with GridSearchCV() through the parameter space: n_estimators - 100-600, 200; max_depth - 776 

3-8, 2; eta - 0.01-0.05, 0.01; subsample - 0.2-0.6, 0.1; colsample_bytree - 0.8-1.0, 0.05. For 777 

optimization, models were trained and tested on 0- and 8-day data, revealing identical optimized 778 

parameters. For subsequent analyses, the following parameter values were used:   779 

n_estimators - 500; max_depth - 7; eta - .02; subsample - 0.5; colsample_bytree - 0.95. Model 780 

performance was measured by mean squared error, r2, Pearson’s r, and Spearman’s ρ values. 781 

Plots display Spearman’s ρ values and were generated in ggplot2 (v3.3.6) in R (v4.1.2).  782 

ATAC-Me Library Processing 783 

All ATAC-Me library reads were trimmed of adapters using TrimGalore script wrapper for 784 

Cutadapt106 and FastQC using the --fastqc and --paired parameters. ATAC-Me reads were 785 

mapped with WALT107 to the hg38 genome assembly using the -sam -m 6 parameters. 786 

Methylation analysis of ATAC-Me reads was performed using the MethPipe (v5.0.1, now 787 

DNMTools) suite of tools108. Symmetrical CpGs with 5 reads or greater coverage were included 788 

in all analyses. Proportion methylation at symmetrical GpGs were calculated using symmetric-789 

cpgs from the MethPipe package with default settings after duplicates were removed. Mapped 790 

reads were filtered using samtools109 to exclude reads on ChrM, reads within blacklisted 791 

regions, and read with a MAPQ < 30. Regions enriched for chromatin accessibility in ATAC-Me 792 

data were identified using the Genrich (available at https://github.com/jsh58/Genrich) peak caller 793 

with the following parameters: -r -e chrX,chrY,chrM -j -p 0.005 -q 0.01 -v . Regions displaying 794 

dynamic chromatin accessibility were identified with the TCseq R-package59. Regional 795 

methylation levels were determined by roimethstat from MethPipe. HOMER was used for all 796 

transcription factor motif analysis of dynamic or static chromatin accessible regions without 797 

background. Annotation and gene association for dynamic and static chromatin accessible 798 

regions was performed with the ChIPseeker110 and ClusterProfiler111 R-packages. Transcription 799 

factor footprinting was performed on ATAC-Me libraries using the TOBIAS suite of tools63. The 800 

samtools109, bedtools112 and deeptools113 suites of tools were used to aid in data manipulation 801 

and visualization. Preseq114 was used to compare library complexity across timepoints for 802 

ATAC-Me libraries.  803 

RNA-seq Library Processing 804 
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RNA libraries were mapped with the STAR aligner115 run on untrimmed reads using the 805 

following parameters: --runMode alignReads --runThreadN 8 --outSAMtype BAM 806 

SortedByCoordinate --quantMode GeneCounts. Mapped reads were filtered using samtools109 807 

to exclude reads on ChrM, reads within blacklisted regions, and read with a MAPQ < 30. Read 808 

coverage across transcripts was determined through featurecounts116 using the Gencode v38 809 

annotation file.   Preseq114 was used to compare library complexity across timepoints for RNA-810 

seq libraries. Differential RNA expression was performed using DESeq2117.  811 

6-base Library Processing 812 

6-base sequencing libraries were analyzed with the duet pipeline (v1.2.0)57. Briefly, FASTQ files 813 

were trimmed and quality-filtered using cutadapt118, and the epigenetic states in each read pair 814 

were then resolved using couplet. Resolved reads were then aligned using BWA-MEM119 to a 815 

standard four-base reference genome comprising of both GRCh38 and spiked-in control 816 

sequences. Quantification of epigenetic modifications was calculated at each CpG context = 817 

present in the reference genome and covered in the sequencing. Further downstream 818 

processing was performed using the modality suite, developed by biomodal.  For regional 819 

analyses, cytosines with a read coverage >= 15 over both replicates were included. modality 820 

(v0.10.0), bedtools112, and ggplot2 were used to aid in data manipulation and visualization. 821 

scRNA-seq Library Processing 822 

Single cell RNA-seq libraries were analyzed as done previously101. Briefly, reads were 823 

demultiplexed, aligned, and corrected with the DropEst pipeline120, using the STAR115 aligner 824 

with reference genome hg38 and  paired with the corresponding GTF annotations. We identified 825 

high-quality, cell-containing droplets and their respective barcodes through a QC pipeline 826 

previously described121. 827 

Quantification and Statistical Analysis 828 

ATAC-Me chromatin accessibility peaks were filtered using the Benjamini-Hochberg corrected p 829 

value (q-value) reported by the Genrich peak-calling algorithm (corr. p value < 1x10−10). 830 

Differentially accessible genomic loci across the time course were selected using the TCseq R-831 

package, utilizing a FDR corrected p value cutoff  produced by the likelihood ratio test 832 

implemented in the R-package (corr. p value < 5x10−3). Differentially expressed genes were 833 

filtered using corrected p values produced by the likelihood ratio test implemented in the 834 

DESeq2 R-package for the comparison between the 0 day and 12-day timepoints (corr. p 835 

value < 5x10−3). Statistical analyses were performed within the R computing environment and 836 
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visualized with ggplot2104 or deeptools113. Specific statistical analyses can be found in relevant 837 

figure legends. All visualization and analysis code can be found on our Github page. 838 

REFERENCES 839 

1. Barnett, K.R., et al. (2020). ATAC-Me Captures Prolonged DNA Methylation of Dynamic 840 

Chromatin Accessibility Loci during Cell Fate Transitions. Mol Cell, 77, 1350-1364 e6. 841 

10.1016/j.molcel.2020.01.004 842 

2. Kreibich, E., et al. (2023). Single-molecule footprinting identifies context-dependent 843 

regulation of enhancers by DNA methylation. Molecular Cell, 83, 787-802.e9. 844 

10.1016/j.molcel.2023.01.017 845 

3. Luo, C., P. Hajkova, and J.R. Ecker. (2018). Dynamic DNA methylation: In the right place 846 

at the right time. Science, 361, 1336-1340. doi:10.1126/science.aat6806 847 

4. Greenberg, M.V.C. and D. Bourc’his. (2019). The diverse roles of DNA methylation in 848 

mammalian development and disease. Nature Reviews Molecular Cell Biology, 20, 590-849 

607. 10.1038/s41580-019-0159-6 850 

5. Cusack, M., et al. (2020). Distinct contributions of DNA methylation and histone 851 

acetylation to the genomic occupancy of transcription factors. Genome Res, 30, 1393-852 

1406. 10.1101/gr.257576.119 853 

6. Bourc'his, D. and T.H. Bestor. (2004). Meiotic catastrophe and retrotransposon 854 

reactivation in male germ cells lacking Dnmt3L. Nature, 431, 96-9. 10.1038/nature02886 855 

7. Karimi, M.M., et al. (2011). DNA methylation and SETDB1/H3K9me3 regulate 856 

predominantly distinct sets of genes, retroelements, and chimeric transcripts in mESCs. 857 

Cell Stem Cell, 8, 676-87. 10.1016/j.stem.2011.04.004 858 

8. Rowe, H.M., et al. (2013). De novo DNA methylation of endogenous retroviruses is 859 

shaped by KRAB-ZFPs/KAP1 and ESET. Development, 140, 519-29. 10.1242/dev.087585 860 

9. Sharif, J., et al. (2016). Activation of Endogenous Retroviruses in Dnmt1(-/-) ESCs 861 

Involves Disruption of SETDB1-Mediated Repression by NP95 Binding to 862 

Hemimethylated DNA. Cell Stem Cell, 19, 81-94. 10.1016/j.stem.2016.03.013 863 

10. Hon, G.C., et al. (2013). Epigenetic memory at embryonic enhancers identified in DNA 864 

methylation maps from adult mouse tissues. Nature Genetics, 45, 1198-1206. 865 

10.1038/ng.2746 866 

11. Ziller, M.J., et al. (2013). Charting a dynamic DNA methylation landscape of the human 867 

genome. Nature, 500, 477-81. 10.1038/nature12433 868 

12. Lister, R., et al. (2009). Human DNA methylomes at base resolution show widespread 869 

epigenomic differences. Nature, 462, 315-22. 10.1038/nature08514 870 

13. Hodges, E., et al. (2011). Directional DNA methylation changes and complex 871 

intermediate states accompany lineage specificity in the adult hematopoietic 872 

compartment. Mol Cell, 44, 17-28. 10.1016/j.molcel.2011.08.026 873 

14. Molaro, A., et al. (2011). Sperm methylation profiles reveal features of epigenetic 874 

inheritance and evolution in primates. Cell, 146, 1029-41. 10.1016/j.cell.2011.08.016 875 

15. Bock, C., et al. (2012). DNA methylation dynamics during in vivo differentiation of blood 876 

and skin stem cells. Mol Cell, 47, 633-47. 10.1016/j.molcel.2012.06.019 877 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 27, 2024. ; https://doi.org/10.1101/2024.08.27.609789doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.27.609789
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 29

16. Xie, W., et al. (2013). Epigenomic analysis of multilineage differentiation of human 878 

embryonic stem cells. Cell, 153, 1134-48. 10.1016/j.cell.2013.04.022 879 

17. Jadhav, U., et al. (2019). Extensive Recovery of Embryonic Enhancer and Gene Memory 880 

Stored in Hypomethylated Enhancer DNA. Mol Cell, 74, 542-554 e5. 881 

10.1016/j.molcel.2019.02.024 882 

18. Scott, T.J., et al. (2023). Cross-tissue patterns of DNA hypomethylation reveal genetically 883 

distinct histories of cell development. BMC Genomics, 24, 623. 10.1186/s12864-023-884 

09622-9 885 

19. Schlesinger, F., et al. (2013). De novo DNA demethylation and noncoding transcription 886 

define active intergenic regulatory elements. Genome Research, 23, 1601-1614. 887 

10.1101/gr.157271.113 888 

20. Stadler, M.B., et al. (2011). DNA-binding factors shape the mouse methylome at distal 889 

regulatory regions. Nature, 480, 490-5. 10.1038/nature10716 890 

21. Charlton, J., et al. (2020). TETs compete with DNMT3 activity in pluripotent cells at 891 

thousands of methylated somatic enhancers. Nature Genetics, 52, 819-827. 892 

10.1038/s41588-020-0639-9 893 

22. Ginno, P.A., et al. (2020). A genome-scale map of DNA methylation turnover identifies 894 

site-specific dependencies of DNMT and TET activity. Nat Commun, 11, 2680. 895 

10.1038/s41467-020-16354-x 896 

23. Stroud, H., et al. (2011). 5-Hydroxymethylcytosine is associated with enhancers and 897 

gene bodies in human embryonic stem cells. Genome Biology, 12, R54. 10.1186/gb-898 

2011-12-6-r54 899 

24. Ansari, I., et al. (2023). TET2 and TET3 loss disrupts small intestine differentiation and 900 

homeostasis. Nature Communications, 14, 4005. 10.1038/s41467-023-39512-3 901 

25. Orlanski, S., et al. (2016). Tissue-specific DNA demethylation is required for proper B-cell 902 

differentiation and function. Proceedings of the National Academy of Sciences, 113, 903 

5018-5023. 10.1073/pnas.1604365113 904 

26. Verma, N., et al. (2018). TET proteins safeguard bivalent promoters from de novo 905 

methylation in human embryonic stem cells. Nature Genetics, 50, 83-95. 906 

10.1038/s41588-017-0002-y 907 

27. Dawlaty, Meelad M., et al. (2014). Loss of Tet Enzymes Compromises Proper 908 

Differentiation of Embryonic Stem Cells. Developmental Cell, 29, 102-111. 909 

10.1016/j.devcel.2014.03.003 910 

28. Koh, K.P., et al. (2011). Tet1 and Tet2 Regulate 5-Hydroxymethylcytosine Production and 911 

Cell Lineage Specification in Mouse Embryonic Stem Cells. Cell Stem Cell, 8, 200-213. 912 

10.1016/j.stem.2011.01.008 913 

29. Zhang, X., et al. (2016). DNMT3A and TET2 compete and cooperate to repress lineage-914 

specific transcription factors in hematopoietic stem cells. Nat Genet, 48, 1014-23. 915 

10.1038/ng.3610 916 

30. Stoyanova, E., et al. (2021). 5-Hydroxymethylcytosine-mediated active demethylation is 917 

required for mammalian neuronal differentiation and function. eLife, 10, e66973. 918 

10.7554/eLife.66973 919 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 27, 2024. ; https://doi.org/10.1101/2024.08.27.609789doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.27.609789
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 30

31. Hon, G.C., et al. (2014). 5mC oxidation by Tet2 modulates enhancer activity and timing 920 

of transcriptome reprogramming during differentiation. Mol Cell, 56, 286-297. 921 

10.1016/j.molcel.2014.08.026 922 

32. Qiao, Y., et al. (2015). AF9 promotes hESC neural differentiation through recruiting TET2 923 

to neurodevelopmental gene loci for methylcytosine hydroxylation. Cell Discov, 1, 924 

15017. 10.1038/celldisc.2015.17 925 

33. Solary, E., et al. (2014). The Ten-Eleven Translocation-2 (TET2) gene in hematopoiesis 926 

and hematopoietic diseases. Leukemia, 28, 485-96. 10.1038/leu.2013.337 927 

34. Izzo, F., et al. (2020). DNA methylation disruption reshapes the hematopoietic 928 

differentiation landscape. Nat Genet, 52, 378-387. 10.1038/s41588-020-0595-4 929 

35. Yin, Y., et al. (2017). Impact of cytosine methylation on DNA binding specificities of 930 

human transcription factors. Science, 356, 10.1126/science.aaj2239 931 

36. Domcke, S., et al. (2015). Competition between DNA methylation and transcription 932 

factors determines binding of NRF1. Nature, 528, 575-9. 10.1038/nature16462 933 

37. Maurano, M.T., et al. (2015). Role of DNA Methylation in Modulating Transcription 934 

Factor Occupancy. Cell Rep, 12, 1184-95. 10.1016/j.celrep.2015.07.024 935 

38. Kribelbauer, J.F., et al. (2017). Quantitative Analysis of the DNA Methylation Sensitivity 936 

of Transcription Factor Complexes. Cell Reports, 19, 2383-2395. 937 

10.1016/j.celrep.2017.05.069 938 

39. Gaston, K. and M. Fried. (1995). CpG methylation has differential effects on the binding 939 

of YY1 and ETS proteins to the bi-directional promoter of the Surf-1 and Surf-2 genes. 940 

Nucleic Acids Res, 23, 901-9. 10.1093/nar/23.6.901 941 

40. Heberle, E. and A.F. Bardet. (2019). Sensitivity of transcription factors to DNA 942 

methylation. Essays Biochem, 63, 727-741. 10.1042/EBC20190033 943 

41. Monteagudo-Sánchez, A., et al. (2024). The impact of the embryonic DNA methylation 944 

program on CTCF-mediated genome regulation. Nucleic Acids Research, 945 

10.1093/nar/gkae724 946 

42. Jackson, M., et al. (2004). Severe global DNA hypomethylation blocks differentiation and 947 

induces histone hyperacetylation in embryonic stem cells. Mol Cell Biol, 24, 8862-71. 948 

10.1128/MCB.24.20.8862-8871.2004 949 

43. Charlet, J., et al. (2016). Bivalent Regions of Cytosine Methylation and H3K27 950 

Acetylation Suggest an Active Role for DNA Methylation at Enhancers. Mol Cell, 62, 422-951 

431. 10.1016/j.molcel.2016.03.033 952 

44. Kriaucionis, S. and R.J. Klose. (2020). ATACing DNA Methylation during Differentiation. 953 

Mol Cell, 77, 1159-1161. 10.1016/j.molcel.2020.02.026 954 

45. Pacis, A., et al. (2019). Gene activation precedes DNA demethylation in response to 955 

infection in human dendritic cells. Proc Natl Acad Sci U S A, 116, 6938-6943. 956 

10.1073/pnas.1814700116 957 

46. Stewart-Morgan, K.R., et al. (2023). Quantifying propagation of DNA methylation and 958 

hydroxymethylation with iDEMS. Nat Cell Biol, 25, 183-193. 10.1038/s41556-022-01048-959 

x 960 

47. He, Y.-F., et al. (2011). Tet-mediated formation of 5-carboxylcytosine and its excision by 961 

TDG in mammalian DNA. Science, 333, 1303-1307. 10.1126/science.1210944 962 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 27, 2024. ; https://doi.org/10.1101/2024.08.27.609789doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.27.609789
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 31

48. Onodera, A., et al. (2021). Roles of TET and TDG in DNA demethylation in proliferating 963 

and non-proliferating immune cells. Genome Biol, 22, 186. 10.1186/s13059-021-02384-964 

1 965 

49. Barwick, B.G., et al. (2016). Plasma cell differentiation is coupled to division-dependent 966 

DNA hypomethylation and gene regulation. Nat Immunol, 17, 1216-1225. 967 

10.1038/ni.3519 968 

50. Wu, W., et al. (2021). Neuronal enhancers are hotspots for DNA single-strand break 969 

repair. Nature, 593, 440-444. 10.1038/s41586-021-03468-5 970 

51. Guo, Junjie U., et al. (2011). Hydroxylation of 5-Methylcytosine by TET1 Promotes Active 971 

DNA Demethylation in the Adult Brain. Cell, 145, 423-434. 10.1016/j.cell.2011.03.022 972 

52. Tsagaratou, A., et al. (2017). TET Methylcytosine Oxidases in T Cell and B Cell 973 

Development and Function. Frontiers in Immunology, 8, 10.3389/fimmu.2017.00220 974 

53. Donaghey, J., et al. (2018). Genetic determinants and epigenetic effects of pioneer-975 

factor occupancy. Nature Genetics, 50, 250-258. 10.1038/s41588-017-0034-3 976 

54. de Mendoza, A., et al. (2022). Large-scale manipulation of promoter DNA methylation 977 

reveals context-specific transcriptional responses and stability. Genome Biol, 23, 163. 978 

10.1186/s13059-022-02728-5 979 

55. Kreibich, E. and A.R. Krebs. (2023). Relevance of DNA methylation at enhancers for the 980 

acquisition of cell identities. FEBS Letters, 597, 1805-1817. 10.1002/1873-3468.14686 981 

56. Guerin, L., K.R. Barnett, and E. Hodges. (2021). Dual detection of chromatin accessibility 982 

and DNA methylation using ATAC-Me. HodgesGenomicsLab/NatProtocols_ATACme, 983 

10.5281/zenodo.5062153 984 

57. Füllgrabe, J., et al. (2023). Simultaneous sequencing of genetic and epigenetic bases in 985 

DNA. Nature Biotechnology, 41, 1457-1464. 10.1038/s41587-022-01652-0 986 

58. Chambers, S.M., et al. (2009). Highly efficient neural conversion of human ES and iPS 987 

cells by dual inhibition of SMAD signaling. Nature Biotechnology, 27, 275-280. 988 

10.1038/nbt.1529 989 

59. Wu, M. and L. Gu. (2020). TCseq: Time course sequencing data analysis. R package 990 

version 1.12.1,  991 

60. Levine, M., C. Cattoglio, and R. Tjian. (2014). Looping back to leap forward: transcription 992 

enters a new era. Cell, 157, 13-25. 10.1016/j.cell.2014.02.009 993 

61. Ernst, J. and M. Kellis. (2012). ChromHMM: automating chromatin-state discovery and 994 

characterization. Nat Methods, 9, 215-6. 10.1038/nmeth.1906 995 

62. Inoue, F., et al. (2019). Identification and Massively Parallel Characterization of 996 

Regulatory Elements Driving Neural Induction. Cell Stem Cell, 25, 713-727.e10. 997 

10.1016/j.stem.2019.09.010 998 

63. Bentsen, M., et al. (2020). ATAC-seq footprinting unravels kinetics of transcription factor 999 

binding during zygotic genome activation. Nature Communications, 11, 4267. 1000 

10.1038/s41467-020-18035-1 1001 

64. Portales-Casamar, E., et al. (2009). JASPAR 2010: the greatly expanded open-access 1002 

database of transcription factor binding profiles. Nucleic Acids Research, 38, D105-D110. 1003 

10.1093/nar/gkp950 1004 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 27, 2024. ; https://doi.org/10.1101/2024.08.27.609789doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.27.609789
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 32

65. Rauluseviciute, I., et al. (2023). JASPAR 2024: 20th anniversary of the open-access 1005 

database of transcription factor binding profiles. Nucleic Acids Research, 52, D174-D182. 1006 

10.1093/nar/gkad1059 1007 

66. Qiao, Y., et al. (2015). AF9 promotes hESC neural differentiation through recruiting TET2 1008 

to neurodevelopmental gene loci for methylcytosine hydroxylation. Cell Discovery, 1, 1009 

15017. 10.1038/celldisc.2015.17 1010 

67. Hahn, M.A., et al. (2019). Reprogramming of DNA methylation at NEUROD2-bound 1011 

sequences during cortical neuron differentiation. Sci Adv, 5, eaax0080. 1012 

10.1126/sciadv.aax0080 1013 

68. Li, J., et al. Using epigenomics data to predict gene expression in lung cancer. in BMC 1014 

bioinformatics. 2015. Springer. 1015 

69. Li, J., et al. (2015). Using epigenomics data to predict gene expression in lung cancer. 1016 

BMC Bioinformatics, 16, S10. 10.1186/1471-2105-16-S5-S10 1017 

70. Crowgey, E.L., et al. (2018). Epigenetic machine learning: utilizing DNA methylation 1018 

patterns to predict spastic cerebral palsy. BMC bioinformatics, 19, 1-10.  1019 

71. Gunasekara, C.J., et al. (2021). A machine learning case–control classifier for 1020 

schizophrenia based on DNA methylation in blood. Translational Psychiatry, 11, 412.  1021 

72. Gonzalez-Avalos, E., et al. (2024). Predicting gene expression state and prioritizing 1022 

putative enhancers using 5hmC signal. Genome Biology, 25, 142.  1023 

73. Walker, N.J., et al. (2022). Hydroxymethylation profile of cell-free DNA is a biomarker for 1024 

early colorectal cancer. Scientific Reports, 12, 16566.  1025 

74. Mak, J.K., F. Störtz, and P. Minary. (2022). Comprehensive computational analysis of 1026 

epigenetic descriptors affecting CRISPR-Cas9 off-target activity. BMC genomics, 23, 805.  1027 

75. Chen, T. and C. Guestrin, XGBoost: A Scalable Tree Boosting System, in Proceedings of 1028 

the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data 1029 

Mining. 2016, Association for Computing Machinery: San Francisco, California, USA. p. 1030 

785–794. 1031 

76. Vekariya, V., K. Passi, and C.K. Jain. (2022). Predicting liver cancer on epigenomics data 1032 

using machine learning. Frontiers in Bioinformatics, 2, 954529.  1033 

77. Reimer, M., Jr., et al. (2019). Deletion of Tet proteins results in quantitative disparities 1034 

during ESC differentiation partially attributable to alterations in gene expression. BMC 1035 

Dev Biol, 19, 16. 10.1186/s12861-019-0196-6 1036 

78. Otani, J., et al. (2013). Cell cycle-dependent turnover of 5-hydroxymethyl cytosine in 1037 

mouse embryonic stem cells. PloS one, 8, e82961.  1038 

79. Hu, L., et al. (2015). Structural insight into substrate preference for TET-mediated 1039 

oxidation. Nature, 527, 118-22. 10.1038/nature15713 1040 

80. Ito, S., et al. (2011). Tet Proteins Can Convert 5-Methylcytosine to 5-Formylcytosine and 1041 

5-Carboxylcytosine. Science, 333, 1300-1303. doi:10.1126/science.1210597 1042 

81. Blaschke, K., et al. (2013). Vitamin C induces Tet-dependent DNA demethylation and a 1043 

blastocyst-like state in ES cells. Nature, 500, 222-6. 10.1038/nature12362 1044 

82. Cimmino, L., et al. (2017). Restoration of TET2 function blocks aberrant self-renewal and 1045 

leukemia progression. Cell, 170, 1079-1095. e20.  1046 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 27, 2024. ; https://doi.org/10.1101/2024.08.27.609789doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.27.609789
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 33

83. Hansen, T.J. and E. Hodges. (2022). ATAC-STARR-seq reveals transcription factor-bound 1047 

activators and silencers within chromatin-accessible regions of the human genome. 1048 

Genome Res, 32, 1529-1541. 10.1101/gr.276766.122 1049 

84. Brinkman, A.B., et al. (2012). Sequential ChIP-bisulfite sequencing enables direct 1050 

genome-scale investigation of chromatin and DNA methylation cross-talk. Genome Res, 1051 

22, 1128-38. 10.1101/gr.133728.111 1052 

85. Statham, A.L., et al. (2012). Bisulfite sequencing of chromatin immunoprecipitated DNA 1053 

(BisChIP-seq) directly informs methylation status of histone-modified DNA. Genome 1054 

research, 22, 1120-1127.  1055 

86. Li, Y. and T.O. Tollefsbol. (2011). Combined chromatin immunoprecipitation and bisulfite 1056 

methylation sequencing analysis. Methods Mol Biol, 791, 239-51. 10.1007/978-1-61779-1057 

316-5_18 1058 

87. Lhoumaud, P., et al. (2019). EpiMethylTag: simultaneous detection of ATAC-seq or ChIP-1059 

seq signals with DNA methylation. Genome Biology, 20, 248. 10.1186/s13059-019-1853-1060 

6 1061 

88. Liao, J., et al. (2015). Targeted disruption of DNMT1, DNMT3A and DNMT3B in human 1062 

embryonic stem cells. Nature genetics, 47, 469-478. 10.1038/ng.3258 1063 

89. Dos Santos, C.O., et al. (2015). An epigenetic memory of pregnancy in the mouse 1064 

mammary gland. Cell Rep, 11, 1102-9. 10.1016/j.celrep.2015.04.015 1065 

90. Bell, E., et al. (2020). Dynamic CpG methylation delineates subregions within super-1066 

enhancers selectively decommissioned at the exit from naive pluripotency. Nature 1067 

Communications, 11, 1112. 10.1038/s41467-020-14916-7 1068 

91. Moyers, B.A., et al. (2023). Characterization of human transcription factor function and 1069 

patterns of gene regulation in HepG2 cells. Genome Research, 33, 1879-1892.  1070 

92. Szulwach, K.E., et al. (2011). Integrating 5-hydroxymethylcytosine into the epigenomic 1071 

landscape of human embryonic stem cells. PLoS genetics, 7, e1002154.  1072 

93. Tsagaratou, A., et al. (2014). Dissecting the dynamic changes of 5-1073 

hydroxymethylcytosine in T-cell development and differentiation. Proceedings of the 1074 

National Academy of Sciences, 111, E3306-E3315.  1075 

94. Lio, C.-W.J., et al. (2019). TET enzymes augment activation-induced deaminase (AID) 1076 

expression via 5-hydroxymethylcytosine modifications at the Aicda superenhancer. 1077 

Science Immunology, 4, eaau7523. doi:10.1126/sciimmunol.aau7523 1078 

95. Lio, C.-W., et al. (2016). Tet2 and Tet3 cooperate with B-lineage transcription factors to 1079 

regulate DNA modification and chromatin accessibility. eLife, 5, e18290. 1080 

10.7554/eLife.18290 1081 

96. Li, J., et al. (2018). Decoding the dynamic DNA methylation and hydroxymethylation 1082 

landscapes in endodermal lineage intermediates during pancreatic differentiation of 1083 

hESC. Nucleic acids research, 46, 2883-2900.  1084 

97. Wang, M., et al. (2020). Motto: Representing Motifs in Consensus Sequences with 1085 

Minimum Information Loss. Genetics, 216, 353-358. 10.1534/genetics.120.303597 1086 

98. Cytobank Support. Statistics and fold change equations in the Illustration Editior. 2021  1087 

[cited 2024; Available from: https://support.cytobank.org/hc/en-us/articles/205399587-1088 

Statistics-and-fold-change-equations-in-the-Illustration-Editior. 1089 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 27, 2024. ; https://doi.org/10.1101/2024.08.27.609789doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.27.609789
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 34

99. Klein, A.M., et al. (2015). Droplet barcoding for single-cell transcriptomics applied to 1090 

embryonic stem cells. Cell, 161, 1187-1201. 10.1016/j.cell.2015.04.044 1091 

100. Southard-Smith, A.N., et al. (2020). Dual indexed library design enables compatibility of 1092 

in-Drop single-cell RNA-sequencing with exAMP chemistry sequencing platforms. BMC 1093 

Genomics, 21, 1-15. 10.1186/s12864-020-06843-0 1094 

101. Chen, B., et al. (2021). Differential pre-malignant programs and microenvironment chart 1095 

distinct paths to malignancy in human colorectal polyps. Cell, 184, 6262-6280.e26. 1096 

10.1016/j.cell.2021.11.031 1097 

102. Simmons, A.J. and K.S. Lau. (2022). Dissociation and inDrops microfluidic encapsulation 1098 

of human gut tissues for single-cell atlasing studies. STAR Protocols, 3, 101570. 1099 

10.1016/j.xpro.2022.101570 1100 

103. Prikrylova, T., et al. (2019). 5-hydroxymethylcytosine Marks Mammalian Origins Acting 1101 

as a Barrier to Replication. Scientific Reports, 9, 11065. 10.1038/s41598-019-47528-3 1102 

104. Wickham, H., Data Analysis, in ggplot2: Elegant Graphics for Data Analysis, H. Wickham, 1103 

Editor. 2016, Springer International Publishing: Cham. p. 189-201. 1104 

105. Irish, J.M., et al. (2010). B-cell signaling networks reveal a negative prognostic human 1105 

lymphoma cell subset that emerges during tumor progression. Proceedings of the 1106 

National Academy of Sciences, 107, 12747-12754.  1107 

106. Martin, M. (2011). Cutadapt removes adapter sequences from high-throughput 1108 

sequencing reads. EMBnet.journal; Vol 17, No 1: Next Generation Sequencing Data 1109 

AnalysisDO - 10.14806/ej.17.1.200,  1110 

107. Chen, H., A.D. Smith, and T. Chen. (2016). WALT: fast and accurate read mapping for 1111 

bisulfite sequencing. Bioinformatics, 32, 3507-3509. 10.1093/bioinformatics/btw490 1112 

108. Song, Q., et al. (2013). A Reference Methylome Database and Analysis Pipeline to 1113 

Facilitate Integrative and Comparative Epigenomics. PLOS ONE, 8, e81148. 1114 

10.1371/journal.pone.0081148 1115 

109. Li, H., et al. (2009). The Sequence Alignment/Map format and SAMtools. Bioinformatics, 1116 

25, 2078-9. 10.1093/bioinformatics/btp352 1117 

110. Yu, G., L.G. Wang, and Q.Y. He. (2015). ChIPseeker: an R/Bioconductor package for ChIP 1118 

peak annotation, comparison and visualization. Bioinformatics, 31, 2382-3. 1119 

10.1093/bioinformatics/btv145 1120 

111. Yu, G., et al. (2012). clusterProfiler: an R package for comparing biological themes 1121 

among gene clusters. Omics, 16, 284-7. 10.1089/omi.2011.0118 1122 

112. Quinlan, A.R. and I.M. Hall. (2010). BEDTools: a flexible suite of utilities for comparing 1123 

genomic features. Bioinformatics, 26, 841-2. 10.1093/bioinformatics/btq033 1124 

113. Ramírez, F., et al. (2014). deepTools: a flexible platform for exploring deep-sequencing 1125 

data. Nucleic Acids Research, 42, W187-W191. 10.1093/nar/gku365 1126 

114. Daley, T. and A.D. Smith. (2013). Predicting the molecular complexity of sequencing 1127 

libraries. Nat Methods, 10, 325-7. 10.1038/nmeth.2375 1128 

115. Dobin, A., et al. (2013). STAR: ultrafast universal RNA-seq aligner. Bioinformatics, 29, 15-1129 

21. 10.1093/bioinformatics/bts635 1130 

116. Liao, Y., G.K. Smyth, and W. Shi. (2014). featureCounts: an efficient general purpose 1131 

program for assigning sequence reads to genomic features. Bioinformatics, 30, 923-30. 1132 

10.1093/bioinformatics/btt656 1133 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 27, 2024. ; https://doi.org/10.1101/2024.08.27.609789doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.27.609789
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 35

117. Love, M.I., W. Huber, and S. Anders. (2014). Moderated estimation of fold change and 1134 

dispersion for RNA-seq data with DESeq2. Genome Biology, 15, 550. 10.1186/s13059-1135 

014-0550-8 1136 

118. Chen, S., et al. (2018). fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics, 1137 

34, i884-i890. 10.1093/bioinformatics/bty560 1138 

119. Li, H. (2013). Aligning sequence reads, clone sequences and assembly contigs with BWA-1139 

MEM. arXiv:1303.3997v2   1140 

120. Petukhov, V., et al. (2018). dropEst: pipeline for accurate estimation of molecular counts 1141 

in droplet-based single-cell RNA-seq experiments. Genome Biology, 19, 78. 1142 

10.1186/s13059-018-1449-6 1143 

121. Chen, B., et al. (2021). Processing single-cell RNA-seq data for dimension reduction-1144 

based analyses using open-source tools. STAR Protoc, 2, 100450. 1145 

10.1016/j.xpro.2021.100450 1146 
 1147 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 27, 2024. ; https://doi.org/10.1101/2024.08.27.609789doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.27.609789
http://creativecommons.org/licenses/by-nc-nd/4.0/


Scale
chr7:

2 kb hg38
42,065,000 42,070,000

GLI3

0d

6d

2d

UM
AP

1

Batch

UMAP2

PAX6

OCT4

UM
AP

1

LHX5

UMAP2

A

D

  

0
10
20
30

0h 6h 12h 24h 2d 3d 4.5d 6d 12d

0.0
0.4
0.6
1.0

M  
 

Genome location
0

1

0

x

ATAC-based DNA fragment capture

Bisulfite conversion of ATAC fragments

Quantify gains and losses

TimeR
el

at
iv

e 
si

gn
al

Norm.
read

counts

Normalized
Read 
Counts

Avg. Fraction
5-mC

B

C
Guerin et al, Figure 1

0h 6h 12h 24h 2d 3d 4.5d 6d 12d

H1ESC NPC

Genome location

Fraction
5-mC

x

0

1
0

Time-resolved relationship between
accessibility and methylation

n=38,189 

Normalized read count scale: 0-200
Fraction 5-mC scale 0-1 

D
yn

am
ic

 A
cc

es
si

bi
lit

y 
P

ea
k 

R
eg

io
ns

2
1
0

-1

2
1
0

3
2
1
0

3

Promoter 
5' UTR
3' UTR
Exon
Intron
Downstream
Distal Intergenic

Static

Dynamic

Percentage(%)
0 50 1007525

E

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 27, 2024. ; https://doi.org/10.1101/2024.08.27.609789doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.27.609789
http://creativecommons.org/licenses/by-nc-nd/4.0/


Gradual Opening4.5-day Transient  Late Opening

2-day Transient Delayed Closing Early TransientGradual Closing

-2
-1
0
1
2

0.2

0.4

0.6

0.8

Membership 
Score

0h 6h 12
h
24

h 2d 3d4.5
d 6d 12

d

A

B

n=5978 n=5884 n=5757 n=3929

n=4149 n=4972 n=7520
-2
-1
0
1
2

C

0h 6h 12
h
24

h 2d 3d4.5
d 6d 12

d 0h 6h 12
h
24

h 2d 3d4.5
d 6d 12

d

ESC Annotation 

Static

Gradual Open

Late Open

Early Trans

2-day Trans

4.5-day Trans

Grad. Close

Delayed Close

Proportion 

ChromHMM 
State

TssA
TssFlnk
Tx
TxWk
EnhG
EnhA
EnhWk
ZNF/Rpts
Het
TssBiv
EnhBiv
ReprPC
ReprPCWk
Quies

NPC Annotation 

0.0 0.25 0.5 0.75 1.0 0.0 0.25 0.5 0.75 1.0

C
lu

st
er

 R
eg

io
ns

0
5
10
15
20
25
30

Accessibility 
Signal

Guerin et al., Figure 2

Transient Regions

TSS

Enhancer

Repressor

Quiescent

TSS

Enhancer

Repressor

Quiescent

ESC
Annotations

NPC
Annotations 

0.26

0.15

0.42

0.18

n= 5,317

n= 4,531

n= 11,470

n= 1,064

n= 6,731

n= 4,241

n= 7,717

n= 3,693

Gradual Closing

Delayed Closing

Early Transient

2-day Transient

4.5-day Transient

Gradual Opening

Late Opening

Static
DUX

PHOX2B
LH

X2
OTX2

SOX4
JU

ND
RFX2

PAX6

ZNF52
8

ELK
1
MAFF

ETS1
FLI1 SP1

KLF
4

TEAD3

FOSL2
JU

NB
MAFK

BACH1
RARG

FOXK2

FOXP1
ZEB1

SIX
4

bHLH
bZIP
CP2
ETS
Forkhead
HMG
Homeobox
HTH
NR
NRF
Paired
TEA
TEAD
Zf

CpG
Likelihood

2.0

1.0

0.0

-2
-1
0
1
2

SOX9
NRF1

Relative FC
Enrichment 

D

Z-
sc

or
e(

R
P

K
M

) 
Z-

sc
or

e(
R

P
K

M
) 

C
lu

st
er

 R
eg

io
ns

0h 6h 12
h
24

h 2d 3d4.5
d 6d 12

d

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 27, 2024. ; https://doi.org/10.1101/2024.08.27.609789doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.27.609789
http://creativecommons.org/licenses/by-nc-nd/4.0/


0.00

0.25

0.50

0.75

1.00

P
ro

po
rti

on
 o

f R
eg

io
ns Methylation

Change 

Lose

Stable

Gain

Stat
ic

MethylationAccessibility

Opening

Transient

Closing

Lose 

Gain 

Stable
Hypomethylation

Late Opening StaticGradual Opening

Early Transient 2-day TransientGradual Closing Delayed Closing

4.5-day Transient
0.0

0.5

1.0

A
vg

. F
ra

ct
io

n 
5-

m
C

log
2 (A

ccessibility+1)

Accessibility

DNA Methylation

C

0.0

0.5

1.0

0

2

4

6

0

2

4

6

0

5

10

15

20

25

0.0

0.2

0.4

0.6

0.8

Closing

Transient

Opening
Avg. Fraction
5-mC

Normalized 
Accessibility 
Signal

Gain

Lose

Stable

Gain

Lose

Stable

Gain

Lose

Stable

Grad
ua

l C
los

.

Dela
ye

d C
los

.

Earl
y T

ran
s.

2-d
ay

 Tr
an

s.

4.5
-da

y T
ran

s.

Grad
ua

l O
pe

n.

La
te 

Ope
n.

B

A

D
0h 6h 12

h
24

h 2d 3d 4.5
d 6d 12

d 0h 6h 12
h

24
h 2d 3d 4.5

d 6d 12
d 0h 6h 12

h
24

h 2d 3d 4.5
d 6d 12

d 0h 6h 12
h

24
h 3d 4.5

d 6d 12
d

Guerin et al., Figure 3

0.00

0.25

0.50

0.75

1.00

Av
g.

 F
ra

ct
io

n 
5-

m
C

Early 
Transient

2-day 
Transient

Gradual 
Closing

Delayed
Closing

Late 
Opening Static

Gradual 
Opening

4.5-day 
Transient

2d

0h 4d 8d 0h 4d 8d 0h 4d 8d 0h 4d 8d 0h 4d 8d 0h 4d 8d0h 4d 8d 0h 4d 8d

E

n=11949

n=19539

n=20561

n=27229

n=6568

n=18252

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 27, 2024. ; https://doi.org/10.1101/2024.08.27.609789doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.27.609789
http://creativecommons.org/licenses/by-nc-nd/4.0/


6h 12
h

24
h 2d 3d 4.5

d 6d 12
d0h

A
vg

. F
ra

ct
io

n 
5-

m
C

0h 6h 12
h

24
h 2d 3d

4.
5d 6d 12
d

0.00

0.25

0.50

0.75

1.00

 

0h 6h 12h 24h 3d 6d
POU Family Footprints

12d2d 4.5d

−2−1012

0.0 0.01 0.02 0.03 0.04 0.0 0.2 0.4 0.6 0.8 1.0

Gain FootprintsLose Footprints

Footprint Region Methylation

C
lo

si
ng

Tr
an

si
en

t
O

pe
ni

ng

Avg. Fraction 5-mCTn5 Cut Site Signal

A B

C D E

Guerin et al, Figure 4

0h 6h 12h 24h 3d 6d 12d2d 4.5d

0.00

0.25

0.50

0.75

1.00

0h 6h 12
h

24
h 2d 3d

4.
5d 6d 12
d

Z-score of
Norm. Read Counts

OTX2
SOX2
LHX9

RFX5

DLX3

POU3F2
PAX6
LHX2

RUNX2
ATF2

TFAP2C
ZIC3
BARHL1

POU5F1
NANOG

FOXJ1
EMX1

n= 658

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 27, 2024. ; https://doi.org/10.1101/2024.08.27.609789doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.27.609789
http://creativecommons.org/licenses/by-nc-nd/4.0/


0.0

0.2

0.4

0.6

0.8

0h 12d

%
 5

-h
m

C
A C

D

0.0

0.1

0.2

0.3

0.4

0.5

5-
hm

C

0d
 

4d
 

8d
 

*

Guerin et al, Figure 5

B

Tr
an

sf
or

m
ed

 R
at

io
 v

s.
 

C
ol

um
n 

M
in

im
um

8 days4.5 daysESC

sin
gle

ts
G1 S G2

sin
gle

ts
G1 S G2

sin
gle

ts
G1 S G2

0.0

0.2

0.4

0.6
***

***
***

***
***

***
***

***
***

0.0
0.1
0.2
0.3
0.4
0.5

0.0
0.1
0.2
0.3
0.4
0.5

0.0
0.1
0.2
0.3

0.3

0.4
0.5

0.0
0.1
0.2

0.4
0.55-

hm
C

 

Gradual Closing Delayed Closing

Early Transient 2-day Transient

4.5-day Transient Gradual Opening

Late Opening Static

0d 4d 8d 0d 4d 8d

E

F

 5
-m

C
5-

hm
C

82
,84

0

82
,84

5

82
,85

0

82
,85

5

82
,86

0

82
,86

5

82
,87

0

82
,87

5

43
,27

0

43
,28

0

43
,29

0

43
,30

0

43
,31

0

43
,32

0

43
,33

0chr17: chr7:
45

,39
2

45
,39

4

45
,39

6

45
,39

8

45
,40

0

45
,40

2

45
,40

4chr19:

0.65

0.70

0.75

0.80

0.85

0.90

0.40

0.50

0.60

0.70

0.80

0.90

0.65

0.70

0.75

0.80

0.85

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.00

0.01

0.02

0.03

0.04

0.05

0d
4d
8d

Gain 5-hmC Transient 5-hmC Lose 5-hmC

Tota
l

5-
hm

C
 S

ig
na

l

0-4
 da

ys

4-8
 da

ys

Tota
l

0-4
 da

ys

4-8
 da

ys

Tota
l

0-4
 da

ys

4-8
 da

ys

G

J

4.5-day Transient Gradual Opening Late Opening

−0.05

0.00

0.05

0.10

H I

dy
na

mic
sta

tic

dy
na

mic
sta

tic

dy
na

mic
sta

tic
0.00

0.25

0.50

0.75

1.00

P
ro

po
rti

on

hmC level: high low

0 days 4 days 8 days

5hmC high

5hmC low

TEAD
Bach2
Fosl2
Jun-AP1
Fra2
AP-1
Atf3
Sp1
Zfp281
Zic
Brn1
Oct11
Oct4
Otx2
LEF1
Sox2
MyoD
Sox4
PAX6
Dlx3
Ap4
Tcf21
Myf5
Sox17
BHLHA15
RFX
X-box
Nanog
Sox9
LXH9
Isl1
Nkx6.1

-2-1012

Motif Center Motif Center Motif Center
0.14
0.16
0.18
0.20
0.22
0.24
0.26

0 days 4 days 8 days
Bound
Unbound

Bound
Unbound

Bound
Unbound

5hmC high

5hmC low

5hmC high

5hmC low

0 days 4 days 8 days

Root Cluster
containing BHLHA15

24h 4.5d 6d

∆
 5

-h
m

C

Enrichment Z-score

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 27, 2024. ; https://doi.org/10.1101/2024.08.27.609789doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.27.609789
http://creativecommons.org/licenses/by-nc-nd/4.0/


5-mC

5-hmC

5-mC + hmC

0d 4.5
d

12
d

0.3
0.4
0.5
0.6
0.7
0.8

0.3
0.4
0.5
0.6
0.7
0.8

0.3
0.4
0.5
0.6
0.7
0.8

Test Data

4d Trained 8d Trained

0d 4.5
d

12
d

Test Data

Guerin et al., Figure 6

0d Tested  4.5d Tested 12d Tested

4d TrainedA B
O

bs
er

ve
d 

lo
g(

A
cc

es
si

bi
lit

y)

C

5mC 5hmC

TET

TET

0 days 12 days

Predicted log(Accessibility)

S
pe

ar
m

an
 (ρ

)
S

pe
ar

m
an

 (ρ
)

S
pe

ar
m

an
 (ρ

)

0d 4.5
d

12
d 0d 4.5

d
12

d

0d 4.5
d

12
d 0d 4.5

d
12

d

unmodified cytosine

R2=0.277, Spearman ρ=0.601 R2=0.410, Spearman ρ=0.636 R2=0.388, Spearman ρ=0.640

R2=0.035, Spearman ρ=0.280 R2=0.244, Spearman ρ=0.487 R2=0.309, Spearman ρ=0.583

R2=0.382, Spearman ρ=0.655 R2=0.251, Spearman ρ=0.480 R2=0.135, Spearman ρ=0.369

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 27, 2024. ; https://doi.org/10.1101/2024.08.27.609789doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.27.609789
http://creativecommons.org/licenses/by-nc-nd/4.0/

