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ABSTRACT: One of the most significant threats to global public health in the
21st century is the novel coronavirus disease (COVID-19) caused by SARS-CoV-
2. It rapidly turned into a global pandemic after it was identified in late 2019, and
the World Health Organization announced the end of the pandemic on May 5,
2023. Current strategies for managing this disease include vaccination and
repurposing antimalarial and antibiotic medications to alleviate symptoms like
fever and throat pain, which are associated with acute respiratory distress
syndrome (ARDS). Antiviral drugs such as chloroquine, hydroxychloroquine,
azithromycin, remdesivir, and favipiravir have been repurposed for the treatment
of COVID-19. They were previously recommended for treating SARS-CoV and
MERS-CoV. However, the inefficacy and adverse side effects of these repurposed
drugs led to a decrease in their widespread use in treating COVID-19 patients.
The lack of approved drugs for combating this coronavirus and its unpredictable
variants remains a significant challenge.

1. INTRODUCTION
The whole world was intoxicated due to the COVID-19
pandemic during December 2019−May 2023, and everybody
had the nervous apprehension of a nuclear-holocaust-like
situation that might lead to the destruction of this planet.
Those were the days when new words like pandemic,
lockdown, quarantine, containment zone, doomsday warnings,
political paranoia, etc., were the leading headlines of daily
newspapers. According to the latest World Health Organ-
ization (WHO) report, as of July 26, 2024, COVID-19
touched 775 673 955 lives and caused 7 053 524 confirmed
deaths.1 The current social media are flooded with over-
whelming reports of the new variants of this deadly virus. JN.1,
KP.2, KP.3, etc. now collectively belong to the family of
FLiRT, continuously flirting with all human beings.2 In this
mini-review we have selected a few drugs as mentioned in the
cited references and discussed their pros and cons as
repurposed drugs in the treatment of COVID-19 patients.

2. A BRIEF HISTORY OF SARS, MERS, AND COVID-19
Three viruses, specifically, severe acute respiratory syndrome
(SARS, 2002, China), Middle East respiratory syndrome
(MERS, 2012, Saudi Arabia), and coronavirus disease
(COVID-19), may be considered as the worst viruses of
mankind in the 21st century. The Chinese Centre for Disease
Control and Prevention (CDC) detected a novel coronavirus
from the throat swab sample of one patient at the end of
December 2019, and it was subsequently named SARS-CoV-2,

causative agent of novel coronavirus 2019 by World Health
Organization (WHO). WHO declared the SARS-CoV-2 an
outbreak, issued a Public Health Emergency of International
Concern (PHEIC), and officially renamed SARS-CoV-2 as
coronavirus disease 2019 (COVID-19).3 In light of the rapidly
increasing transmission speed and severity of the outbreak,
surpassing 13-fold infected cases in countries outside China, on
March 11, 2020, WHO declared the COVID-19 outbreak a
global pandemic.4

Coronaviruses are single-stranded positive-sense RNA
viruses and classified into four types: α-coronavirus (α-
COV), β-coronavirus (β-COV), δ-coronavirus (δ-COV), and
γ-coronavirus (γ-COV).5 Coronaviruses, including SARS-CoV,
MERS-CoV, and SARS-CoV-2, cause respiratory tract
infections in humans, leading to a condition known as acute
respiratory distress syndrome (ARDS). SARS-CoV-2 encodes
four major structural proteins: the spike protein (S), the
nucleocapsid protein (N), the membrane protein (M), and the
envelope protein (E).6 The receptor binding domain of the S
protein of SARS-CoV-2 is similar to that of a coronavirus
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isolated from bat and pangolins, indicating the zoonotic
origin.7

3. PREVENTION OF COVID-19 AND REPURPOSED
DRUGS FOR TREATMENT ON HIT AND TRIAL

The transmission of coronaviruses from person to person
occurs through various pathways, including droplets and direct
or indirect contact with surfaces. COVID-19 infection
syndrome begins with fever, cough, and fatigue. Signs of
progression include sputum production, headache, hemoptysis,
diarrhea, breathing disorders, and lymphopenia.
3.1. Self-Precaution. The most effective way to avoid

getting infected is by minimizing exposure to the virus. The
primary preventive measures are social and physical distancing,
washing hands with soap and water or using hand sanitizers,
and wearing masks, gloves, and personal protective equipment
(PPE) for frontline workers such as healthcare and security
professionals.
3.2. Vaccine Discovery. Effective vaccines within 1 year of

the emergence of COVID-19 was unprecedented. However, in
view of the urgency of the outbreak, the development of
vaccines or oral pills and testing them in hit-and-trial (trial-
and-error) experiments and dissemination of the results of
their effectiveness in combating the pandemic were the only
targets of cutting-edge research during 2020−2023. More than
30 vaccines have received approval for general or emergency
use in countries globally. Vaccines based on viral vector and
nucleic acid technologies for COVID-19 have been extensively
used in clinical practice, resulting in high effectiveness in
preventing severe disease and death. However, many of these
vaccines have merits and demerits. To put an end to the
pandemic, we must address new challenges in the global
immunization process. These include dealing with new virus
strains and addressing public vaccine hesitancy.

Some drawbacks of these vaccines include allergic reactions,
soreness, pain at the injection site, fatigue, headaches, fever,
and muscle or joint pains. Additionally, their effectiveness
against specific variants of SARS-CoV-2, such as Delta and
Omicron, is reduced. There have also been reports of
reinfection occurring after receiving the full prescribed doses
of the vaccine.8,9

3.3. Repurposing of Drugs. Patients with COVID-19
disease who have comorbidities, such as bronchitis, pneumo-
nia, severe acute respiratory distress syndrome (ARDS),
hypertension, and diabetes mellitus, are more likely to develop
a more severe course and progression of the disease. In severe
cases, antiviral, antiparasitic, and antibiotic drugs have emerged
as important therapeutic tools against COVID-19. Drug
repurposing is a cost-effective and rapid approach to
discovering new applications for existing drugs with well-
established safety profiles. In 2020, the United States Food and
Drug Administration (U.S. FDA) and the National Institutes
of Health (NIH) recommended the use of remdesivir, and
emergency approval was given to all repurposed therapeutics.10

Thus, many countries started advocating several drugs to
affected patients fighting different stages of symptoms like viral
fever, flu, and respiratory problems related to lungs on a
clinical trial basis. Several potential therapeutic agents,
including lopinavir, ritonavir, oseltamivir, umifenovir, remde-
sivir, favipiravir, chloroquine, hydroxychloroquine, interferon,
ribavirin, tocilizumab, and sarilumab, have been repurposed for
clinical trials and emergency cases.11 Among the antiviral
drugs, chloroquine, hydroxychloroquine, remdesivir, favipir-

avir, and the antibiotic azithromycin are considered the most
effective. This mini-review provides an overview of the
chemical structures of these synthetic drugs and their potential
applications in COVID-19 treatment through hit-and-trial
reactions.
3.3.1. Chloroquine (CQ) and Hydroxychloroquine (HCQ).

Chloroquine (CQ; Figure 1) and hydroxychloroquine (HCQ;

Figure 2) belong to the class of heterocyclic compounds called
4-aminoquinolines. They are synthetic drugs and are
considered substituted drugs for the antimalarial natural
product quinine. CQ was reported to possess strong antiviral,
anti-inflammatory, and immunomodulatory properties and
thus was considered to be a suitable drug candidate for the
treatment of COVID-19-associated pneumonia in 2020.12 As
drug discovery research advances rapidly, a more effective drug
for the treatment of malaria called hydroxychloroquine has
been discovered and is sold under the brand name Plaquenil. It
is used to prevent and treat malaria in areas where the disease
is still sensitive to chloroquine. HCQ, considered less toxic
than chloroquine with fewer side effects, is extensively used for
the treatment of malaria, lupus erythematosus, and rheumatoid
arthritis.

Even though hydroxychloroquine sulfate tablets are
approved for the treatment of malaria, lupus erythematosus,
and rheumatoid arthritis, a dearth in finding suitable lead
molecules to control the outbreak pushed the U.S. Food and
Drug Administration issued an emergency use authorization of
HCQ for treatment of COVID-19.13 In spite of the global
debate regarding its efficacy and side effects, it is considered
one of the most promising drugs since the number pf cases
started to spike. It has been reported that hydroxychloroquine
(HCQ) can increase the pH of the cell and, when combined
with zinc, potentially block the entry of the virus into the cell.14

However, the use of hydroxychloroquine in combination
with other antibiotics led to complications in COVID-19
patients with comorbidities, particularly cardiovascular dis-
eases.15 Axfors and co-workers found no improvement in the
mortality rate when hydroxychloroquine and chloroquine were
given to COVID-19 patients.16

3.3.2. Favipiravir and Umifenovir. The anti-influenza
medicine favipiravir (Figure 3) has been repurposed and
approved as an experimental treatment for COVID-19
infections. The drug has been found to be effective in treating

Figure 1. Structure of chloroquine.

Figure 2. Structure of hydroxychloroquine.
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mild to moderate cases of COVID-19 infection. It has
prevented the replication of the virus and improved the
condition of the lungs, as confirmed by X-rays.17,18

Umifenovir (shown in Figure 4), another drug candidate
commonly known as Arbidol in medical parlance, is a highly

substituted derivative of indole. This small molecule
demonstrates potential inhibitory activity against various
viruses such as influenza A and B, parainfluenza, and
hepatitis.The hemaglutinin envelope glycoprotein (HA) of
the influenza virus is the target of this antiviral drug, which can
reduce the growth of the virus. A group of researchers from
China reported that COVID-19 patients in China showed no
detectable virus after 14 days of umifenovir monotherapy.19

The most likely mechanism of action is the prevention of
virus−cell membrane fusion and virus−endosome internal-
ization through the incorporation of umifenovir molecules into
the cell membrane. Umifenovir could enhance the humoral
immune response and interferon production. Another possible
mechanism was based on the combination of umifenovir with
interferons, which may lead to a synergistic therapeutic effect
against SARS-CoV-2.20 However, randomized clinical trials
showed no improvement in the mortality rates of COVID-19
patients, and thus, the widespread application of umifenovir
was reduced again in subsequent years.21

3.3.3. Lopinavir, Ritonavir, and Nirmatrelvir. Lopinavir
(Figure 5) and ritonavir (Figure 6) are commonly used for the
treatment of AIDS.22 Ritonavir, also known as Norvir, is used
to treat HIV/AIDS and hepatitis C as it inhibits proteases.

Ritonavir is also used in the management of COVID-19 in
combination with other antiviral and antiretroviral agents such
as lopinavir, nirmatrelvir, simnotrelvir, ombitasvir, and
paritaprevir. These medications are oral antiviral agents that
target the 3-chymotrypsin-like protease, which is essential for
SARS-CoV-2 viral replication.23

Figure 7 displays the structure of nirmatrelvir, an oral drug
used to treat mild coronavirus symptoms effectively.24

Paxlovid, a combination of ritonavir and nirmatrelvir,
demonstrated an 89% efficacy in reducing hospitalization and
death.25

However, the popularity of the drugs declined soon due to
ineffectiveness. This was evidenced by the rebound of the viral
load, risk factors, or negative results of the clinical trials, similar
to the previous drugs. Controversy surrounding the effective-
ness of these drugs in reducing patient numbers and mortality
in hospitalized patients led to the discontinuation of testing by
WHO-promoted Solidarity.26,27

3.3.4. Molnupiravir and Remdesivir. Molnupiravir (Figure
8) has a heterocyclic pyrimidine structure based on a class of
nucleosides known as cytidine NHC (β-D-N(4)-hydroxycyti-
dine). The drug was initially developed to treat diseases caused
by RNA viruses like influenza and encephalitic alphaviruses.
However, it was later discovered that it has broad-spectrum
antiviral activity and can be used as a repurposed drug to treat
several coronaviruses, including SARS-CoV-2. It exhibits

Figure 3. Structure of favipiravir.

Figure 4. Structure of umifenovir.

Figure 5. Structure of lopinavir.

Figure 6. Structure of ritonavir.

Figure 7. Structure of nirmatrelvir.

Figure 8. Structure of molnupiravir.
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antiviral activity against SARS-CoV, SARS-CoV-2, MERS-
CoV, influenza virus, respiratory syncytial virus (RSV), bovine
viral diarrhea virus (BVDV), hepatitis C virus (HCV), and
Ebola virus (EBOV). In animal models, molnupiravir
demonstrated beneficial effects as a potent therapeutic and
prophylactic agent in clinical trials against various coronavi-
ruses, including SARS-CoV-2, SARS-CoV, and MERS-CoV.28

This drug is available for oral application and has potent
antiviral activity. It has been reported as a suitable therapeutic
candidate against COVID-19. Its best application for antiviral
activity has been in reducing hospitalization or death in mild
COVID-19 cases that test positive for SARS-CoV-2 in
nasopharyngeal samples.29

Figure 9 shows remdesivir, a complex heterocyclic
compound with a nucleotide analogue known as an RNA

polymerase inhibitor. Remdesivir was applied in treatment of
diseases related to hepatitis C, Ebola, and Marburg viruses. It
was repurposed for the treatment of COVID-19 early in the
pandemic, and it was approved by the FDA as a prescription
drug.30

The efficacy of remdesivir has been disputed and shrouded
in controversy due to the lack of evidence demonstrating a
decrease in mortality rates, as well as various adverse effects
such as respiratory failure, kidney injury, anemia, hypotension,
constipation, and hepatocellular toxicity.31,32

3.3.5. Ivermectin. Ivermectin (Figure 10) is an antiparasitic
drug used orally for onchocerciasis, strongyloidiasis, and other

diseases caused by helminthiasis. It is approved by FDA for the
treatment COVID-19 based on its inhibitory effects on the in
vitro replication of SARS-CoV-2.33 Several research groups
have reported a decrease in SARS-CoV-2 replication after
applying ivermectin at higher concentrations than the limited
authorized doses.34 Initially, ivermectin was found to be well-
tolerated at lower concentrations, but adverse side effects were
also reported with much higher concentrations.35

3.3.6. Azithromycin. Azithromycin (Figure 11) is an
antibiotic used to treat gastrointestinal and respiratory

problems, as well as inflammatory infections causing throat
pain and enteric fever. Chemically, it is an azalide, a subclass of
macrolide antibiotics. Structurally, it consists of a complex
heterocyclic structure with oxygen and nitrogen as the
heteroatoms. It is known to inhibit bacterial protein synthesis
and is used in the treatment of various bacterial infections,
including pneumonia, some sexually transmitted diseases,
bronchitis, and certain infections of the ear, throat, lungs,
and sinuses. Azithromycin decreased the SARS-CoV-2 virus
binding to host cells by raising the pH of the trans-Golgi
network. This action can halt the spike protein binding to
target cells through glycosylation of the hACE2 receptor. A few
recent studies have received significant media attention for
suggesting that the combination of hydroxychloroquine and
azithromycin may be effective in treating COVID-19.36

Perhaps these reports influenced some public figures during
the early days of the COVID-19 pandemic in 2020, leading to
the endorsement of emergency applications of hydroxychlor-
oquine, chloroquine, azithromycin, and remdesivir. However,
multiple research studies have shown that either the
combination of repurposed drugs or azithromycin alone is
not effective.37 According to international guidelines from the
WHO and NIH, there is a strong recommendation against
using azithromycin in conjunction with hydroxychloroquine or
azithromycin alone.
3.3.7. Dexamethasone. Dexamethasone (Figure 12) is a

tetracyclic ring structure that belongs to the glucocorticoid

class of steroid drugs. It is a synthetic drug possessing the
potential for pleiotropic effects on multiple signaling pathways
and has been widely used in many disorders such as severe
allergies, asthma, several forms of arthritis, intestinal disorder,
blood or bone marrow problems, kidney problems, and skin
conditions. Owing to its potent anti-inflammatory and
immunosuppressant properties, it was recommended in 2020
for treating COVID-19 patients requiring mechanical

Figure 9. Structure of remdesivir.

Figure 10. Structure of ivermectin.

Figure 11. Structure of azithromycin.

Figure 12. Structure of dexamethasone.
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ventilation or supplemental oxygen. Dexamethasone has been
reported as the first drug that can reduce the mortality rate of
COVID-19 patients admitted to the hospital by 20−35%.38

However, like the previous drugs, the adverse side effects of
dexamethasone also became apparent soon after, leading to a
sudden decrease in its popularity for the treatment of COVID-
19.39

3.3.8. Heparin. Heparin (Figure 13) belongs to glucosami-
noglycans, which are polysaccharide carbohydrates that

naturally occur in the liver and other tissues. It inhibits
blood coagulation. The potential of heparin, with its antiviral
and anti-inflammatory properties, in reducing mortality rates
among COVID-19 patients was tested in several clinical trials.
One of these trials was a multicenter study involving 2075
hospitalized COVID-19 patients across 17 hospitals in Spain.40

Out of the total, 1447 patients recovered, while 301 patients
died. The use of low molecular weight heparins (LMWH)
reduced the mortality rate in patients with high D-dimer levels,
which is a byproduct of the blood clotting and breakdown
process. Additionally, COVID-19 patients with elevated D-
dimer levels, an abnormal coagulation parameter, exhibited a
poor prognosis when treated with this medication.41 There-
fore, more randomized clinical trials are necessary to
investigate the effectiveness of heparin in COVID-19 patients.
3.3.9. Baricitinib. Baricitinib (Figure 14) is a heterocyclic

compound based on a pyrrolo[2,3-d]pyrimidine structural

framework with two other heterocycles, pyrazole and azetidine,
as substituents. Baricitinib inhibits Janus-associated kinases 1
and 2 (JAK1 and JAK2). This inhibition interferes with the
signal transduction from growth receptors or cytokines, leading
to a decrease in immune cell function and hematopoiesis.
Baricitinib can also bind to the associated protein kinase 1 of

the virus, preventing the formation of viral particles and the
intracellular passage of viral cells. It was identified as a
potential repurposed drug for treating SARS-CoV-2 based on
its mechanism of action, which involves modulating the
cytokine storm caused by the infection and inhibiting the virus
from entering host cells. The combination of baricitinib with
remdesivir has been found to be more effective than either
baricitinib or remdesivir alone. Several clinical trials have
demonstrated that the use of baricitinib with remdesivir was
more effective in reducing recovery time in COVID-19
patients receiving high-flow oxygen or noninvasive ventilation
compared to remdesivir alone.42,43 Baricitinib remains a highly
recommended drug for COVID-19 treatment, especially when
compared to previously mentioned medications. However, it is
crucial to prioritize safety and adhere to standard care for
treating critically ill hospitalized adults.44

4. CONCLUSION
The coronavirus disease (COVID-19) poses a serious global
health issue and a threat to our normal lives. The rate of
contagion and transmission patterns makes us feel like we have
no control, but the safety measures in place also require us to
keep our distance from others. This means we cannot engage
in activities we naturally enjoy, such as spending time with
friends and family and finding solace in the company of others.
We have faced various forms of lockdown situations during the
COVID-19 pandemic. The COVID-19 pandemic appears to
be lingering for the foreseeable future. It is essential to conduct
more clinical trials to confirm the effectiveness and safety of
vaccines and repurposed drugs in treating COVID-19.
Randomized clinical trials (RCTs) testing various COVID-19
therapies are currently being carried out in several countries,
but the results are not yet published. There is a global effort to
develop more effective vaccines and drugs in addition to those
already recognized or branded.
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