
METHODOLOGY ARTICLE Open Access

Drug-target interactions prediction using
marginalized denoising model on
heterogeneous networks
Chunyan Tang1,2* , Cheng Zhong2*, Danyang Chen2 and Jianyi Wang3

* Correspondence: tangchunyan@
gxu.edu.cn; chzhong@gxu.edu.cn
1School of Computer Science and
Engineering, South China University
of Technology, Guangzhou, China
2School of Computer, Electronics
and Information, Guangxi University,
Nanning, China
Full list of author information is
available at the end of the article

Abstract

Background: Drugs achieve pharmacological functions by acting on target proteins.
Identifying interactions between drugs and target proteins is an essential task in old
drug repositioning and new drug discovery. To recommend new drug candidates
and reposition existing drugs, computational approaches are commonly adopted.
Compared with the wet-lab experiments, the computational approaches have lower
cost for drug discovery and provides effective guidance in the subsequent
experimental verification. How to integrate different types of biological data and
handle the sparsity of drug-target interaction data are still great challenges.

Results: In this paper, we propose a novel drug-target interactions (DTIs) prediction
method incorporating marginalized denoising model on heterogeneous networks
with association index kernel matrix and latent global association. The experimental
results on benchmark datasets and new compiled datasets indicate that compared
to other existing methods, our method achieves higher scores of AUC (area under
curve of receiver operating characteristic) and larger values of AUPR (area under
precision-recall curve).

Conclusions: The performance improvement in our method depends on the
association index kernel matrix and the latent global association. The association
index kernel matrix calculates the sharing relationship between drugs and targets.
The latent global associations address the false positive issue caused by network link
sparsity. Our method can provide a useful approach to recommend new drug
candidates and reposition existing drugs.

Keywords: Drug-target interaction, Marginalized denoising model, Drug discovery
prediction, Drug repositioning prediction
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Background
Identifying drug-target interactions (DTIs) is a critical work in drug discovery and drug

repositioning. Although high-throughput screening and other biological assays are be-

coming available, the experimental methods for DTIs identification remain to be ex-

tremely costly. Different computational methods for predicting potential DTIs were

proposed in the past decade [1–5].

In 2008, Yamanishi et al. [6] proposed a bipartite network model by integrating the

chemical and genomic spaces to predict DTIs for four classes of target proteins, which

are enzymes, ion channels (IC), G protein-coupled receptors (GPCR), and nuclear re-

ceptors (NR). Based on the four datasets, several methods to improve the accuracy of

DTIs prediction were proposed. In early studies, the DTI prediction problem was

treated as a binary classification problem. Some classical classifiers such as support vec-

tor machines (SVM) and regularized least squares (RLS) were used to predict drug-

target interactions. A supervised bipartite local model (BLM) using SVM classifier was

proposed to predict drug and target sets respectively [7]. To solve the problem of

selecting negative samples, a semi-supervised learning method called Laplacian Regu-

larized Least Squares (LapRLS) was proposed [8]. To analyze the relevance between the

network topological information and DTIs prediction, a Gaussian interaction profile

(GIP) kernel was defined to capture the topological information in DTIs network. And

a Regularized Least Squares (RLS) classifier was employed with GIP kernel to predict

DTIs [9]. The methods mentioned above focus on existing drug-target interaction pairs

and mainly deal with the old drug reposition problem.

To predict new drugs or targets, a bipartite local model with neighbor-based

interaction profile inferring (BLM-NII) was proposed [10]. A weighted nearest

neighbor (WNN) profile and the GIP kernel were incorporated to handle new drug

compounds [11]. A robust model against the overfitting problem of traditional stat-

istical methods was proposed base on the Random Forest (RF) method [12]. Matrix

factorization (MF) method is a feature extraction method widely used in recom-

mendation system [13]. The MF method was used to identify latent features of

drugs and targets to handle new drug discovery problem [14–19]. Zheng et al. [15]

used collaborative matrix factorization (CMF) to predict potential DTIs. Liu et al.

[17] used the logistic matrix factorization and neighborhood information of drugs

and targets to predict DTIs. There are also some methods which form the final

kernel matrix using the linear combination of two or more kernel matrices [7–9,

15, 17]. Hao et al. [18] combined different kernel matrix with nonlinear kernel dif-

fusion, and employed the diffused kernel matrix with RLS classifier to predict

DTIs. Hao et al. [19] integrated logistic matrix factorization and kernel diffusion to

improve the accuracy of DTIs prediction. The model based on diffused kernel

matrix outperforms the model based on the linearly weighted kernel matrix for

DTIs prediction.

To predict more realistic drug-target interactions, some researchers used drug-target

binding affinity. Binding affinity indicates the strength of interactions between drug-

target pairs. Binding affinity is usually measured by the dissociation constant (Kd),

inhibition constant (Ki), or the half maximal inhibitory concentration (IC50). Kro-

necker_rls [9, 20] is a method to predict drug-target binding affinity [21]. For more ac-

curate prediction on continuous drug-target binding affinity data, a non-linear method
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called SimBoost was proposed by using the gradient boosting regression trees as the

learning model [22].

With rapidly development of deep learning, some deep learning frameworks have

been applied in the field of drug discovery [23–27]. Stacked auto-encoder was used to

construct deep representation of drug-target pairs [24]. Hu et al. [25] used convolu-

tional Neural Network (CNN) to predict DTIs. A new compound-protein interaction

(CPIs) prediction approach was developed by combining graphical neural network

(GNN) for compounds and convolutional neural network (CNN) for proteins [26].

Based on deep neural network (DNN), Tian et al. [27] proposed a method called DL_

CPI to predict large-scale compound-protein interactions. Deep learning method has

the advantages in dealing with growing compounds data. But analyzing deep learning

models is difficult due to their black-box nature, more effective models are needed to

improve the accuracy of DTIs prediction.

From the perspective of networks, the DTIs prediction problem can be treated as a

network link prediction problem [28]. Chen et al. [29] developed a model of network-

based random walk with restart on heterogeneous networks (NRWRH) to predict po-

tential DTIs. Lan et al. [30] used the models of random walk with restart, k nearest

neighbors (kNN), and heat kernel diffusion to label unknown DTIs to predict potential

DTIs. Recently, Chen et al. used marginalized denoising model (MDM) to predict hid-

den or missing links in a given relational matrix by transforming a network link predic-

tion problem to a matrix denoising problem [31]. The MDM-based method can predict

new protein-protein interaction in the PPI network better than the MF-based methods.

But the MDM-based predicting method has not been applied to the heterogeneous net-

work such as drug-target interactions.

To further improve the accuracy of DTIs prediction, this paper proposes an inte-

grated method using the marginalized denoising model on heterogeneous networks, as-

sociation index and kernels fusion. We transform the DTIs prediction problem to a

noise reduction problem on heterogeneous networks. The heterogeneous network is

constructed by combining drug and target kernel matrices and the existing DTIs net-

work. To construct the kernel matrix, we introduce the association index kernel matrix

to measure the sharing interaction relationship between drugs and the sharing inter-

action relationship between targets. The sharing interaction relationship is derived from

the common targets between drugs and the common drugs between targets. Further-

more, we not only use the information of associations of the nearest neighbors to per-

form DTIs prediction, but also incorporate the global association between drugs and

targets to reduce the sparsity of DTIs network and improve prediction accuracy.

The rest of this paper is organized as follows. The experimental results are reported

in section 2. The discussion of experimental results is given in section 3. The conclu-

sion is given in section 4. The source of the benchmark dataset selected and new com-

piled dataset, construction of the matrices of similarity between drugs and similarity

between targets, MDM model and our proposed prediction method are described in

section 5.

Results
Similar to the previous studies [11, 15, 17, 19], we conducted the experiments by five

trials of 10-fold cross-validation (CV). We employed the area under curve of receiver
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operating characteristic (AUC) and area under precision-recall curve (AUPR) as the

evaluation metrics. To valid our prediction method in drug reposition, in completely

new drug discovery, and in completely new targets discovery respectively, we conducted

the cross-validation under the following three settings:

(1) CVP (cross-validation based on the drug-target interaction pairs): Validating for

drug reposition. 90% of the drug-target interaction pairs in drug-target interaction

network Y were randomly selected as training data, and the left 10% of the drug-

target interaction pairs were selected as testing data. The CVP setting is used to

verify the performance of the prediction method in drug reposition.

(2) CVD (cross-validation based on the drugs): Validating for new drug in known

targets. 90% of rows (drugs) in Y were randomly selected as training data, and the

left 10% of rows (drugs) were selected as testing data. The CVD setting is used to

verify the performance of the prediction method in new drug discovery.

(3) CVT (cross-validation based on the targets): Validating for new target in known

drugs. 90% of columns (targets) in Y were randomly selected as training data, and

the left 10% of columns (targets) were selected as testing data. The CVT setting is

used to verify the performance of the prediction method in new target discovery.

We evaluated our method DTIP_MDHN and three existing DTIs prediction methods

BLM-NII [10], RLS-WNN [11], NRLMF [17], and DNILMF [19] on the benchmark

datasets and the new dataset1. BLM-NII method integrated BLM model with neighbor-

based interaction profile to handle the new drugs/targets problem. RLS-WNN is a GIP-

based prediction method with a weighted nearest neighbor profile for predicting new

drug compounds. NRLMF and DNILMF are two MF-based prediction methods. We

implemented algorithm DTIP_MDHN in MATLAB. The experiment was conducted at

the high-performance computing center of Guangxi University.1

We first evaluated our method DTIP_MDHN and other four methods BLM-NII,

RLS-WNN, NRLMF and DNILMF in terms of AUC and AUPR on benchmark data. To

verify the performance of the prediction methods in drug reposition, we conducted the

experiment under CVP setting. The experimental results are shown in Table 1. In

addition, to verify the performance of prediction methods in new drug/target discovery,

we conducted the experiment under CVR and CVC settings. The experimental results

are shown in Tables 2 and 3, respectively.

We can see from Tables 1, 2 and 3 that compared with other four methods, our

method DTIP_MDHN achieves better results for AUC metric on the benchmark data-

sets under CVP and CVD settings, and obtains higher scores on IC, GPCR and NR

datasets under CVT setting. For AUPR metric, DTIP_MDHN outperforms other four

methods on all datasets under CVP and CVD settings, and achieves higher scores on

IC, GPCR and NR datasets under CVT setting. The GPCR and NR datasets are sparser

than Enzyme and IC datasets, so the prediction accuracy on GPCR and NR datasets is

always lower in previous study. In our method DTIP_MDHN, the Jaccard index is in-

troduced to measure the sharing interaction relationship between drugs and targets,

the indirect interactions are introduced by global association to solve the data sparsity

1http://hpc.gxu.edu.cn
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Table 1 AUC and AUPR scores of five methods under CVP setting

Dataset Method AUPR AUC

Enzyme BLM-NII 0.7560 0.9792

RLS-WNN 0.7160 0.9640

NRLMF 0.8920 0.9870

DNILMF 0.9220 0.9890

DTIP_MDHN 0.9609 0.9970

Ion Channel (IC) BLM-NII 0.8256 0.9810

RLS-WNN 0.7170 0.9590

NRLMF 0.9060 0.9890

DNILMF 0.9380 0.9900

DTIP_MDHN 0.9744 0.9976

GPCR BLM-NII 0.5420 0.9550

RLS-WNN 0.5200 0.9440

NRLMF 0.7490 0.9690

DNILMF 0.8120 0.9750

DTIP_MDHN 0.9540 0.9957

Nuclear Receptor (NR) BLM-NII 0.6740 0.9153

RLS-WNN 0.5890 0.9010

NRLMF 0.7280 0.9500

DNILMF 0.7510 0.9550

DTIP_MDHN 0.8626 0.9913

The best results in each column are in bold

Table 2 AUC and AUPR scores of five methods under CVD setting

Dataset Methods AUPR AUC

Enzyme BLM-NII 0.2568 0.8230

RLS-WNN 0.2780 0.8820

NRLMF 0.3580 0.8710

DNILMF 0.7960 0.9640

DTIP_MDHN 0.8378 0.9834

Ion Channel (IC) BLM-NII 0.3310 0.7973

RLS-WNN 0.2580 0.7970

NRLMF 0.3440 0.8130

DNILMF 0.8220 0.9610

DTIP_MDHN 0.8587 0.9845

GPCR BLM-NII 0.3250 0.8315

RLS-WNN 0.2950 0.8910

NRLMF 0.3640 0.8950

DNILMF 0.7810 0.9670

DTIP_MDHN 0.8487 0.9864

Nuclear Receptor (NR) BLM-NII 0.4389 0.8010

RLS-WNN 0.5040 0.8900

NRLMF 0.5450 0.9000

DNILMF 0.7760 0.9560

DTIP_MDHN 0.8463 0.9917

The best results in each column are in bold
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problem. The experimental result indicates that our method can improve the prediction

accuracy, and it is more suitable for predicting DTIs on more sparse datasets such as

GPCR and NR under CVT setting.

Constructing the final kernel matrices of drugs and targets is a key step to predict la-

tent DTIs. To compare the effects of different final kernel matrices on the DTIs predic-

tion results, we evaluated our constructed final kernel matrices KFJD and KFJT with

other two final kernel matrices in GIP [9] and DNILMF [19], in terms of AUC and

AUPR on benchmark data. In Table 4, we denote the final kernel matrices of drugs and

targets constructed from GIP [9] as KGD and KGT respectively, the final kernel matri-

ces of drugs and targets constructed from DNILMF [19] as KFD and KFT respectively.

Table 4 shows the scores of AUC and AUPR of DTIP_MDHN using these kernel matri-

ces under CVP setting.

The experimental results in Table 4 indicate that our constructed final kernel matri-

ces of drugs and targets KFJD and KFJT indeed leads to more accurate predictions in

our method DTIP_MDHN than the final kernel matrices in GIP [9] and DNILMF [19].

Next, we evaluated our proposed prediction model with other machine learning models,

such as supervised learning models SVM and RF, and Matrix Factorization (MF) model.

We extracted our constructed final kernel matrices KFJD/KFJT as the features of drug-

target pairs, drug-target interaction matrix Y as the classification labels for supervised

learning prediction models. We used BLM [7] as the SVM-based method, DDR [12] as

the RF-based method, and DNILMF [19] as the MF-based method. While the scores of

Table 3 AUC and AUPR scores of five methods under CVT setting

Dataset Methods AUPR AUC

Enzyme BLM-NII 0.7376 0.9190

RLS-WNN 0.5660 0.9470

NRLMF 0.8120 0.9660

DNILMF 0.8890 0.9780

DTIP_MDHN 0.8848 0.9463

Ion Channel (IC) BLM-NII 0.7658 0.9153

RLS-WNN 0.6960 0.9500

NRLMF 0.7850 0.9640

DNILMF 0.8870 0.9700

DTIP_MDHN 0.9092 0.9705

GPCR BLM-NII 0.3532 0.7781

RLS-WNN 0.5500 0.9260

NRLMF 0.5560 0.9300

DNILMF 0.6840 0.9330

DTIP_MDHN 0.8865 0.9593

Nuclear Receptor (NR) BLM-NII 0.4523 0.5430

RLS-WNN 0.5310 0.9350

NRLMF 0.4490 0.8510

DNILMF 0.4830 0.8560

DTIP_MDHN 0.8113 0.9823

The best results in each column are in bold
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AUPR and AUC were calculated under CVP setting. Table 5 shows the scores of AUC

and AUPR for four prediction models.

The experimental results in Table 5 indicate that our proposed prediction model

achieves higher scores of AUC and AUPR than SVM, RF, and MF models in DTIs

prediction.

In addition to the final kernel matrices of drugs and targets, there are two key param-

eters in DTIP_MDHN. One is the noise value (noise), and another one is the dimension

of latent layer (k). We evaluated how the values of noise and k affect the scores of AUC

and AUPR for DTIP_MDHN on the benchmark datasets respectively. The noise is set

to 0.65, 0.75, 0.85 and 0.95, and k is set to the value in range [10, 150] according to the

Table 5 AUC and AUPR scores of four prediction models

Dataset Method AUPR AUC

Enzyme BLM 0.9552 0.9890

DDR 0.9457 0.9849

DNILMF 0.9367 0.9939

DTIP_MDHN 0.9609 0.9970

Ion Channel (IC) BLM 0.8814 0.9891

DDR 0.9535 0.9914

DNILMF 0.9499 0.9926

DTIP_MDHN 0.9744 0.9976

GPCR BLM 0.8344 0.9716

DDR 0.8224 0.9841

DNILMF 0.8353 0.9804

DTIP_MDHN 0.9543 0.9957

Nuclear Receptor (NR) BLM 0.5949 0.8489

DDR 0.8302 0.9431

DNILMF 0.7993 0.9727

DTIP_MDHN 0.8626 0.9913

The best results in each column are in bold

Table 4 AUC and AUPR of DTIP_MDHN using 3 kernel matrices under CVP setting

Dataset final kernel matrices AUPR AUC

Enzyme KGD/KGT 0.8540 0.9831

KFD/KFT 0.9480 0.9867

KFJD/KFJT 0.9738 0.9995

Ion Channel (IC) KGD/KGT 0.8735 0.9904

KFD/KFT 0.9482 0.9917

KFJD/KFJT 0.9700 0.9994

GPCR KGD/KGT 0.8660 0.9812

KFD/KFT 0.9480 0.9973

KFJD/KFJT 0.9651 0.9990

Nuclear Receptor (NR) KGD/KGT 0.7483 0.9867

KFD/KFT 0.8086 0.9856

KFJD/KFJT 0.8315 0.9988

The best results in each column are in bold
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setting in MDM [31]. The experimental results on four datasets are shown in Figs. 1

and 2 respectively, where the solid line denotes the case that noise = 0.65, the dashed-

dotted line represents the case that noise = 0.75, dashed line denotes the case that

noise = 0.85, and dotted line represents the case that noise = 0.95.

From Figs. 1 and 2 we can see that DTIP_MDHN obtains the highest scores of AUC

and AUPR on the four datasets when noise = 0.65. The dimension of latent layer (k) in-

dicates the degree of dimensionality reduction in the Auto-Encode (AE). The key infor-

mation will lose from original data if k is too small. The non-critical and redundant

information still exists if the value of k is too large. In general, the choice of value of k

depends on the dimension of different datasets. By analyzing the results in Figs. 1 and

2, we set the value of k according to the number of drugs for different datasets. Table 6

shows the values of k and noise on the benchmark datasets.

To verify the validity of DTIP_MDHN method, we sort the new drug-target inter-

action pairs predicted by DTIP_MDHN in descending order of the prediction scores

and obtain top 5 of the scores for Enzyme, IC, GPCR and NR respectively. If a new

drug-target interaction is validated in the current version of KEGG [32], SuperTarget

[33], DRUGBANK [34], and ChEMBL [35], the “Validated” item is labeled by “yes”;

otherwise it is labeled by “No”. Table 7 shows the top 5 of new drug-target interactions

predicted by DTIP_MDHN on the benchmark datasets.

As shown in Table 7, the top 5 of new drug-target interactions for Enzyme dataset

are validated in current databases. 3 of the top 5 new drug-target interactions for IC

and GPCR datasets are validated in current databases respectively. 2 of the top 5 new

drug-target interactions for NR dataset are validated in current databases. The statistics

for the “Validated” item in Table 10 shows that, the hit rate of prediction for all the

Fig. 1 AUPR scores of DTIP_MDHN for different values of noises and k on the benchmark dataset. The k is
set to the value in range [10, 150] as shown in the x-axis, and noise is set to 0.65, 0.75, 0.85 and 0.95. The
solid line denotes the case that noise = 0.65, the dashed-dotted line represents the case that noise = 0.75,
dashed line denotes the case that noise = 0.85, and dotted line represents the case that noise = 0.95
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four datasets is about 75%. In fact, the NR dataset is the most challenging dataset for

DTIs prediction because it is the sparsest dataset among benchmark datasets [6, 8, 18].

We further analyze the no-validated DTI pairs in NR dataset. From Table 7 we can

see that the top one of predicted items in NR dataset is a DTI pair between D00316

(Etretinate) and hsa6096 (RORβ). The study in [36] indicated that several retinoids bind

to RORβ (hsa6096) to provide a novel pathway for retinoid action. As Etretinate is an

aromatic retinoid, a second- generation retinoid, there is a high probability of inter-

action between Etretinate and RORβ. For the fifth item in NR dataset, D01115 (Eplere-

none) is predicted to interact with a Glucocorticoid receptor (hsa2908). Although the

interaction between D01115 and hsa2908 has not been found in the current version of

KEGG, DRUGBANK, ChEMBL and SuperTarget, an antagonist activity assay confirms

this interaction result in PubChem BioAssay ID: AID 761383 from ChEMBL [37].

The benchmark datasets were generated in 2008. Many new interactions are

appended to the current version of the KEGG [32], SuperTarget [33], DrugBank [34],

and BRENDA [38] nowadays. To enhance the diversity of experimental dataset and in-

spect the performance of our proposed method on the new database, we used the new

dataset1 from KEGG to perform DTIs prediction. Following the category in KEGG, the

Fig. 2 AUC scores of DTIP_MDHN for different values of noises and k on the benchmark dataset. The k is set
to the value in range [10, 150] as shown in the x-axis, and noise is set to 0.65, 0.75, 0.85 and 0.95. The solid
line denotes the case that noise = 0.65, the dashed-dotted line represents the case that noise = 0.75, dashed
line denotes the case that noise = 0.85, and dotted line represents the case that noise = 0.95

Table 6 Values of k and noise on the benchmark datasets

Dataset Number of drugs k noise

Enzyme 445 100 0.65

Ion Channel 210 60 0.65

GPCR 223 60 0.65

Nuclear Receptor 54 20 0.65
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target proteins can be divided into 8 datasets. In addition to the datasets of Enzyme,

IC, GPCR and NR, the 4 new datasets are protein kinase (PK), transporter (TR), cell

surface molecule and ligand (CSM), cytokine and cytokine receptor (CR). After deleting

the redundant and invalid data, we compiled the new datasets with 11,912 known inter-

actions linking 4495 unique drugs and 959 unique targets. We conducted the experi-

ment to evaluate our method DTIP_MDHN and the newest MF-based method DNIL

MF. Some drugs may act on two or more different types of targets. For example, Co-

caine (D00110) can act on SCN9A (hsa6335) which belongs to Ion channels, and can

act on SLC6A2 (hsa6530) which is belongs to Transporters. So, we added a dataset

containing all 8 classes of target proteins on KEGG as input in the experiment. This

dataset is denoted as “ALL”.

Table 8 shows the AUC and AUPR scores for two prediction methods on the new

datasets1 under CVP setting, in which DNILMF used the optimized parameters (num-

Latent = 90, c = 20, thisAlpha = 0.7, λu = 10, λv = 10, K = 2) for Enzyme and “ALL” data-

sets, used the parameters (numLatent = 90, c = 6, thisAlpha = 0.4, λu = 2, λv = 2, K = 2)

for the other datasets, and DTIP_MDHN used the parameters noise = 0.65 and the

value of k in Table 6.

From Table 8, we can see that for the new dataset1 of Enzyme, IC, GPCR, and NR,

the scores of AUC and AUPR computed by DNLMF and DTIP_MDHN are basically

the same as that for the benchmark datasets. For the datasets of protein kinase, trans-

porter, cell surface molecule and ligand, cytokine and cytokine receptor, the scores of

AUPR and AUC are mostly about 0.9 and 0.99 respectively. For the “ALL” dataset, the

Table 7 Top 5 Interactions predicted by DTIP_MDHN on the benchmark datasets

Dataset KEGG
Drug ID

Drug name KEGG
Has ID

Uniport ID Gene name Validated

Enzyme D00542 Halothane has:1571 P05181 CYP2E1 Yes

D00139 Methoxsalen has:1543 P04798 CYP1A1 Yes

D00437 Nifedipine has:1559 P11712 CYP2C9 Yes

D00410 Metyrapone has:1543 P04798 CYP1A1 Yes

D00574 Aminoglutethimide has:1589 P08686 CYP21A2 Yes

Ion Channel D03365 Nicotine has:1137 P43681 CHRNA4 Yes

D00640 Propafenone hydrochloride has:6336 Q9Y5Y9 SCN10A Yes

D02098 Proparacaine hydrochloride has:8645 O95279 KCNK5 No

D02356 Verapamil has:2893 P48058 GRIA4 No

D00552 Benzocaine has:6331 Q14524 SCN5A Yes

GPCR D00683 Albuterol sulfate has:153 P08588 ADRB1 Yes

D02359 Ritodrine has:153 P08588 ADRB1 No

D02147 Albuterol has:153 P08588 ADRB1 Yes

D01386 Ephedrine hydrochloride has:153 P08588 ADRB1 Yes

D00604 Clonidine hydrochloride has:148 P35348 ADRA1A No

Nuclear Receptor D00316 Etretinate has:6096 Q58EY0 RORβ No

D01132 Tazarotene has:6097 P51449 RORγ No

D00182 Norethindrone has:2099 P03372 ESR1 Yes

D00348 Isotretinoin has: 5915 P10826 RARB Yes

D01115 Eplerenone has:2908 P04150 NR3C1 No
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score of AUPR is about 0.97 for DTIP_MDHN, and only about 0.63 for DNILMF. The

“ALL” dataset is much sparser than any single dataset because the “ALL” dataset treats

the interaction information on the above 8 datasets as a whole one. In DNILMF

method, only the local neighborhood information is used to measure the similarity be-

tween drugs and targets. In DTIP_MDHN method, the global association is exploited

to represent the indirect association relationship between drugs and targets, the influ-

ence of link sparsity is reduced, and the prediction accuracy is improved.

To verify the availability of our proposed method in binding affinity prediction, we

evaluated our method DTIP_MDHN and two existing binding affinity prediction

methods Kronecker_rls [9, 20] and SimBoost [22] on the David and Metz datasets, in

terms of AUPR, AUC and concordance index (CI) [21, 39]. Kronecker_rls [9, 20] is a

DTIs prediction method that first be used to predict binding affinity [21]. SimBoost is a

supervised learning model and selects the gradient boosting regression trees to predict

continuous binding affinity.

To measure with AUPR and AUC, the quantitative datasets were binarized by using

relatively stringent cut-off thresholds (Kd < 30 nM and Ki < 28.18 nM) [21]. It means

that if Kd < 30 nM or Ki < 28.18 nM, the affinity value is set to 1, otherwise, the affinity

value is set to 0. To measure with the continuous values of Kd and Ki, the concordance

index (CI) was used as an evaluation metric [21, 39].

For the continuous values of Kd and Ki, we use Pearson Correlation Coefficient

(PCC) instead of the Jaccard index to calculate the association index kernel because

Jaccard kernel matrix works well on binary interaction matrix, while PCC is originally

developed to measure the relationship between two continuous variables [40] and can

be calculated with the function corrcoef() in MATLAB. The values of CI calculated by

Table 8 AUC and AUPR for DNILMF and DTIP_MDHN on new dataset1 under CVP setting

Dataset Method AUPR AUC

Enzymea DNILMF 0.9245 0.9950

DTIP_MDHN 0.9071 0.9911

Ion Channel (IC) DNILMF 0.9921 0.9991

DTIP_MDHN 0.9968 0.9998

GPCR DNILMF 0.9239 0.9935

DTIP_MDHN 0.9615 0.9963

Nuclear Receptor (NR) DNILMF 0.9341 0.9897

DTIP_MDHN 0.9610 0.9910

protein kinase DNILMF 0.8713 0.9875

DTIP_MDHN 0.9408 0.9959

transporter DNILMF 0.8852 0.9907

DTIP_MDHN 0.9523 0.9978

cytokine and cytokine receptor DNILMF 0.8166 0.9827

DTIP_MDHN 0.8630 0.9842

cell surface molecule and ligand DNILMF 0.8557 0.9817

DTIP_MDHN 0.9076 0.9887

ALLa DNILMF 0.7578 0.9813

DTIP_MDHN 0.9743 0.9978
aoptimized parameters (numLatent = 90, c = 20, thisAlpha = 0.7, λu = 10, λv = 10, K = 2) were used in DNILMF
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DTIP_MDHN with PCC kernel are denoted as CI_PCC in the following Tables 9, 10,

11, 12, 13 and 14.

Table 9 shows the scores of AUPR, AUC, and CI for three prediction methods Kro-

necker_rls [21], SimBoost [22], and our method DTIP_MDHN. Tables 10 and 11 shows

the scores of AUPR, AUC, and CI for Kronecker_rls and our method DTIP_MDHN

under CVD and CVT setting, respectively. Because the supervised learning methods do

not distinguish CVP, CVD and CVT setting, the comparison with SimBoost method

was not included in Tables 10 and 11. These results in Tables 9, 10 and 11 were based

on the protein target normalized SW sequence similarity and compound drug 2-

dimensional structural similarity. We used the default parameters noise = 0.65 and k =

60 for AUPR, AUC and CI, and used parameters noise = 0.95 and k = 60 for CI_PCC in

our method DTIP_MDHN.

From Tables 9, 10 and 11, we can see that our method DTIP_MDHN has higher

scores of AUPR and AUC than Kronecker_rls and SimBoost. We can also see that Sim-

Boost has higher score of CI than DTIP_MDHN and Kron_rls on David dataset, and

Kron_rls has higher score of CI than DTIP_MDHN and SimBooston on Metz dataset

under CVP setting in Table 9. Kron_rls has higher score of CI than DTIP_MDHN on

David dataset, but DTIP_MDHN has higher score of CI than Kron_rls on Metz dataset

under CVD and CVT setting in Tables 10 and 11 respectively. For DTIP_MDHN, the

scores of CI_PCC are higher than that of CI on David and Metz datasets under CVP

and CVT setting and on David dataset under CVD setting. This illustrates that PCC

kernel matrix achieves higher accuracy than Jaccard kernel matrix in predicting drug-

target binding affinity.

Next, we evaluate the prediction accuracy of DTIP_MDHN and Kronecker_rls with

different chemical structure and sequence similarity kernels on David dataset in terms

of AUPR, AUC and CI under different CV setting. We denote the two-dimensional

Tanimoto coefficients similarity kernel matrix as 2D, denote three-dimensional Tani-

moto coefficients similarity kernel matrix as 3D, and denote the extended-connectivity

fingerprint ECFP4 similarity kernel matrix as ECFP4 in Tables 12, 13 and 14. The value

of CI calculated by DTIP_MDHN with PCC kernel labeled as CI_PCC. Kronecker_rls

uses the default parameters and DTIP_MDHN uses noise = 0.65 and k = 60 for AUPR,

AUC, and CI, and DTIP_MDHN uses noise = 0.95 and k = 60 for CI_PCC.

From the experimental results shown in Tables 12, 13 and 14, we can see that in

terms of AUPR and AUC, our method DTIP_MDHN outperforms over Kronecker_rls

method for all three similarity kernels under all three CV setting. In terms of CI,

DTIP_MDHN with PCC kernel achieves better prediction accuracy than DTIP_MDHN

Table 9 AUPR, AUC, and CI for three binding affinity prediction methods under CVP setting

Dataset Method AUPR AUC CI CI_PCC

David Kronecker_rls 0.6586 0.9388 0.8740 –

SimBoost 0.7580 0.9560 0.8840 –

DTIP_MDHN 0.7706 0.9671 0.8623 0.8740

Metz Kronecker_rls 0.5720 0.9340 0.9340 –

SimBoost 0.6290 0.9580 0.8510 –

DTIP_MDHN 0.8303 0.9960 0.8702 0.8812

The best results in each column are in bold. CI_PCC is the values of CI calculated by DTIP_MDHN with PCC kernel
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with Jaccard kernel in most cases. This illustrates that PCC is more suitable for con-

tinuous variable correlation comparison by different similarity kernels. DTIP_MDHN

with PCC kernel gains better result than Kronecker_rls with 2-dimensional and 3-

dimensional drug similarity kernels. Kronecker_rls with ECFP4 fingerprint drug similar-

ity kernels gain better result than DTIP_MDHN with PCC kernel.

To inspect our method DTIP_MDHN for large-scale compound-protein interaction

(CPIs) prediction, we evaluated DTIP_MDHN with BLM [7] and a deep learning model

combining GNN and CNN [26] on new database 2. The new database 2 contains CPIs

of Homo sapiens retrieved from STITCH database (Version 5.0) [41]. STITCH database

contains a comprehensive resource for both known and predicted interactions of com-

pounds and proteins. In order to ensure the accuracy of CPIs data, we extracted the

CPIs interactions with combined scores greater than 900 from CPIs of Homo sapiens

interactions. It means the CPIs interactions that we used in our experiment have the

interaction probability greater than 90%. The experimental data contains 13,286 drugs,

5313 targets, and 116,199 interactions. The detailed compound protein interaction in-

formation can be referred to Additional file 1. Table 15 shows the values of AUC and

AUPR for DTIP_MDHN, BLM, and GNN&CNN on STITCH dataset under CVP

setting.

From Table 15, we can see that DTIP_MDHN obtains higher score of AUC than

BLM and GNN&CNN in large-scale CPIs prediction, which indicates that our method

DTIP_MDHN can identify true negatives from the testing data more accurate than

BLM and GNN&CNN methods. On the other hand, we can also see that GNN&CNN

achieves higher score of AUPR than BLM and DTIP_MDHN. This is because

GNN&CNN has high sensitivity with reliable negative samples.

Discussion
In this paper, we propose a novel drug-target interactions (DTIs) prediction method in-

corporating marginalized denoising model on heterogeneous networks with association

index kernel matrix and latent global association. We combine the chemical structure

similarity matrix of drugs, the sequence similarity matrix of targets with the GIP kernel

Table 10 AUPR, AUC, and CI for two binding affinity prediction methods under CVD setting

Dataset Method AUPR AUC CI CI_PCC

David Kronecker_rls 0.2203 0.7055 0.6981 –

DTIP_MDHN 0.6896 0.8892 0.5489 0.8014

Metz Kronecker_rls 0.4301 0.8596 0.7244 –

DTIP_MDHN 0.7648 0.9947 0.8563 0.8043

The best results in each column are in bold. CI_PCC is the values of CI calculated by DTIP_MDHN with PCC kernel

Table 11 AUPR, AUC, and CI for two binding affinity prediction methods under CVT setting

Dataset Method AUPR AUC CI CI_PCC

David Kronecker_rls 0.5012 0.8912 0.8037 –

DTIP_MDHN 0.7919 0.9701 0.7875 0.8293

Metz Kronecker_rls 0.2729 0.8355 0.6292 –

DTIP_MDHN 0.7473 0.9541 0.7803 0.8045

The best results in each column are in bold. CI_PCC is the values of CI calculated by DTIP_MDHN with PCC kernel
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matrix and the association index kernel matrix to construct final kernel matrix. We use

the association index kernel matrix to enhance the relevance between drugs and targets

by calculating the sharing association between drugs and targets. In the building model

step, we build a heterogeneous network with drug kernel matrix, target kernel matrix,

and existing drug-target interaction network to construct global links for drugs, targets

and known drug-target interactions, and further extract latent global associations from

the heterogeneous network. The latent global associations between drugs and targets

are important to reduce the data sparsity.

The experimental results on benchmark dataset show that our proposed prediction

method outperforms the existing binary classification predicting methods and MF-

based predicting methods in term of AUC and AUPR. Specifically, for the sparser data-

sets such as GPCR and NR, the prediction accuracy of our method is increased of 10%

~ 20% than other comparative methods. To compare the effects of different final kernel

matrices on the DTIs prediction results, we evaluated our constructed final kernel

matrices with other two final kernel matrices in GIP [9] and DNILMF [19]. The experi-

mental results indicate that our constructed final kernel matrices of drugs and targets

indeed leads to more accurate predictions than the final kernel matrices in GIP [9] and

DNILMF [19]. To evaluate our proposed prediction model with supervised learning

models SVM, RF, and Matrix Factorization (MF) model DNILMF, we extracted our

constructed final kernel matrices KFJD/KFJT as the features of drug-target pairs, drug-

target interaction matrix Y as the classification labels. The experimental results show

that our proposed prediction model achieves higher predictions accuracy than SVM,

RF, and DNILMF in DTIs prediction. We also evaluated the key parameters noise and k

within a certain value range to optimize the prediction accuracy. The results show that

DTIP_MDHN obtains higher predictions accuracy on the four datasets when noise =

0.65, and the optimized value of k vary with the number of drugs for different datasets.

Table 12 AUPR, AUC, and CI for different kernels under CVP setting

Kernel Method AUPR AUC CI CI_PCC

2D Kronecker_rls 0.6586 0.9388 0.8740 –

DTIP_MDHN 0.7706 0.9471 0.8623 0.8740

3D Kronecker_rls 0.6642 0.9419 0.8778 –

DTIP_MDHN 0.7712 0.9474 0.8821 0.8919

ECFP4 Kronecker_rls 0.6654 0.9444 0.8793 –

DTIP_MDHN 0.7654 0.9457 0.8856 0.9020

The best results in each column are in bold. CI_PCC is the values of CI calculated by DTIP_MDHN with PCC kernel

Table 13 AUPR, AUC, and CI for different kernels under CVD setting

Kernel Method AUPR AUC CI CI_PCC

2D Kronecker_rls 0.2203 0.7055 0.6981 –

DTIP_MDHN 0.6896 0.8892 0.5489 0.8014

3D Kronecker_rls 0.3308 0.7700 0.7441 –

DTIP_MDHN 0.7044 0.8970 0.5547 0.7470

ECFP4 Kronecker_rls 0.3117 0.7487 0.7504 –

DTIP_MDHN 0.7138 0.9028 0.6990 0.7350

The best results in each column are in bold. CI_PCC is the values of CI calculated by DTIP_MDHN with PCC kernel
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To enhance the diversity of experiment data and inspect the performance of our pro-

posed method on the new database, we evaluated our method DTIP_MDHN and the

method DNLMF for the 8 classes of target proteins extracted from the current KEGG

BRITE database. The experimental results also show that the scores of AUC and AUPR

of DTIP_MDHN are higher than that of DNLMF on the compiled new DTIs database.

The experimental results on Davis and Metz datasets show that our method also can

improve the accuracy for predicting drug-target binding affinity. For the continuous

values of Kd and Ki, we evaluated our method with two association index method, Pear-

son Correlation Coefficient (PCC) and Jaccard index, respectively. The experimental re-

sults show that PCC is more suitable to measure the relationship between two

continuous variables, while Jaccard kernel matrix works well on binary interaction

matrix.

To inspect our method DTIP_MDHN for large-scale compound-protein interaction

(CPIs) prediction, we evaluated DTIP_MDHN with BLM [7] and a deep learning model

combining GNN and CNN [26] on our new dataset 2. The experimental dataset con-

tains 13,286 drugs, 5313 targets, and 116,199 interactions. This dataset is much sparser

than the benchmark dataset and new dataset 1. The experimental results indicate that

our method DTIP_MDHN can identify true negatives from the sparse dataset more ac-

curately than other comparative methods.

Conclusion
The performance improvement in our method depends on the association index kernel

matrix and latent global association. The association index kernel matrix calculates the

sharing relationship between drugs and targets. The latent global association addresses

the false positive issue caused by network link sparsity. Our method can provide a use-

ful approach to recommend new drug candidates and reposition existing drugs.

The features of a drug-target pair can be characterized more accurately by the bio-

logic physicochemical properties. One future research direction is to use the key bio-

logic physicochemical properties with feature selection method to improve similarity

Table 14 AUPR, AUC, and CI for different kernels under CVT setting

Kernel Method AUPR AUC CI CI_PCC

2D Kronecker_rls 0.5010 0.8912 0.8037 –

DTIP_MDHN 0.7919 0.9701 0.7875 0.8293

3D Kronecker_rls 0.5494 0.9045 0.8192 –

DTIP_MDHN 0.7903 0.9708 0.7854 0.8344

ECFP4 Kronecker_rls 0.6024 0.9201 0.8408 –

DTIP_MDHN 0.7942 0.9700 0.8313 0.8354

The best results in each column are in bold. CI_PCC is the values of CI calculated by DTIP_MDHN with PCC kernel

Table 15 AUC and AUPR on STITCH dataset under CVP setting

Method AUPR AUC

BLM 0.4856 0.9078

DTIP_MDHN 0.8125 0.9850

GNN&CNN 0.8367 0.9460

The best results in each column are in bold
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measurement in pharmacology, and extend our method to predict potential interaction

relationship in other biologic interaction networks that play a part in pharmacology.

Meanwhile, with application of deep learning in the field of drug discovery [23–27], it

is also another future research direction for predicting drug-target interactions using

deep learning framework on multiple information including biologic physicochemical

properties.

Methods
Problem description

Given a set of drugs D = {d1,d2, …,dn} and a set of target proteins T = {t1,t2, …,tm}, a

drug similarity matrix SD ∈ℝn × n, a target similarity matrix ST ∈ℝm ×m, and a matrix of

known interactions Y ∈ℝn ×m between drugs and targets are defined, where n is the

number of drugs, m is the number of target proteins, and each item Yij ∈{0, 1}, i = 1,2,

…,n, and j = 1,2, …,m. If drug di has a known interaction with target tj, the value of Yij

is 1, otherwise is 0, i = 1,2, …,n, and j = 1,2, …,m. The goal of drug-target interactions

(DTIs) prediction is to recommend new drug- target pairs using above three matrices

and other source of information.

The prediction of old drug repositioning is to predict the interaction probability of

drug and target when drug and target are known but drug has no known interaction

with target. The prediction of new drug/target discovery is to predict the interaction

probability of drug and target when drug is newly developed and target is a known pro-

tein or a protein target is newly identified and drug is a known compound.

We illustrated the prediction scenarios on old drug repositioning, new drug/target

discovery in Fig. 3. There are 5 drugs (i.e., D1 - D5) and 4 targets (i.e., T1 - T4) in Fig.

3. For the D1-T1 interaction pair in a circle, D1 is a known drug, T1 is a known target,

and the prediction result on D1-T1 pair is the old drug repositioning in Fig. 3a; D1 is a

new drug, T1 is a known target, and the prediction result on D1-T1 pair is the new

drug discovery in Fig. 3b; D1 is a known drug, T1 is a new target, and the prediction

result on D1-T1 pair is the new target discovery in Fig. 3c [19].

Datasets

The benchmark datasets were originally provided by Yamanishi et al. [6]. The datasets

are publicly available at http://web.kuicr.kyoto-u.ac.jp/supp/yoshi/drugtarget/. Protein

sequences of targets were obtained from the KEGG GENES database [32]. The target

similarity matrix is composed of the sequence similarity score between proteins, and it

is computed by a normalized version of Smith-Waterman score [42]. Chemical com-

pounds were obtained from the KEGG DRUG and COMPOUND databases [32]. The

drug similarity matrix is composed of the chemical structure similarity score between

drugs, and it is computed by the SIMCOMP tool [43]. The drug-target interaction

matrix is composed of the known drug-target interaction pairs retrieved from databases

of KEGG BRITE [32], SuperTarget [33], DrugBank [34], and BRENDA [38]. The bench-

mark datasets contain four datasets. The first one is enzymes containing 445 drugs and

664 targets. The second one is ion channels (IC) containing 210 drugs and 204 targets.

The third one is G-protein coupled receptors (GPCR) containing 223 drugs and 95
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targets. And the last one is nuclear receptors (NR) containing 54 drugs and 26 targets.

Table 16 lists the statistics for the benchmark datasets [6].

In the past decade, an exponential growth of chemical biology data available in the

public databases, such as KEGG [32], SuperTarget [33], Drugbank [34], ChEMBL [35],

and STITCH [41]. To enhance the diversity of experimental datasets and inspect our

proposed predicting method for the latest database, we extracted two new DTIs data-

sets from KEGG and STITCH respectively.

For new dataset 1, we obtained the classification information of drugs based on the

“target-based classification of drugs” in the KEGG BRITE database,2 including 8 data-

sets which are enzymes, ion channels (IC), G protein-coupled receptors (GPCR), nu-

clear receptors (NR), Cytokines and receptors (CR), Cell surface molecules and ligands

(CSM), Protein kinases (PK), and Transporters (TR). The chemical structure similarity

matrix of drugs is computed by the SIMCOMP2 tool.3 Protein sequence similarity

matrix of targets is composed of the scores derived from KEGG SSDB Paralog database.

After deleting the redundant and invalid data of drugs, targets, and drug-target inter-

action pairs, we obtained a total of 8 new datasets containing 11,912 known interac-

tions, 4495 unique drugs, and 959 unique targets. The statistics for new dataset 1 are

listed in Table 17. The detailed drug target interaction information can be referred to

Additional file 2.

As shown in Table 17, the amounts of drugs and targets in enzymes, ion channels

(IC), G protein-coupled receptors (GPCR), and nuclear receptors (NR) are significantly

different from that of the corresponding datasets in benchmark datasets. These datasets

are important supplement to benchmark datasets in the experimental verification.

To inspect our proposed method for predicting large-scale compound-protein inter-

actions (CPIs), we retrieved CPIs of Homo sapiens from STITCH database (Version

5.0) [41] as new dataset 2.4 The compound similarity matrix is derived from the scores

of chemical_chemical links in STITCH database.5 Similarly, the protein sequence simi-

larity matrix is obtained as new dataset 1. After deleting the redundant and invalid data

Fig. 3 Illustration of the prediction scenarios on old drug repositioning and new drug/target discovery.
There are 5 drugs (i.e., D1 - D5) and 4 targets (i.e., T1 - T4). For the D1-T1 interaction pair in a circle, D1 is a
known drug, T1 is a known target, and the prediction result on D1-T1 pair is the old drug repositioning in
(a); D1 is a new drug, T1 is a known target, and the prediction result on D1-T1 pair is the new drug
discovery in (b); D1 is a known drug, T1 is a new target, and the prediction result on D1-T1 pair is the new
target discovery in (c)

2https://www.kegg.jp/kegg-bin/get_htext?br08310.keg
3https://www.genome.jp/tools/simcomp2/
4http://stitch.embl.de/download/protein_chemical.links.v5.0/9606.protein_chemical.links.v5.0.tsv.gz
5http://stitch.embl.de/download/chemical_chemical.links.v5.0.tsv.gz
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of drugs, targets, and drug-target interaction pairs, we obtained 5,979,099 interactions

between 15,324 unique proteins in Homo sapiens and 224,203 unique compounds.

To validate our proposed method for predicting drug-target binding affinity, we

selected two kinase datasets from the studies by Davis et al. [44] and Metz et al.

[45] respectively. These two datasets are available at http://staff.cs.utu.fi/~aatapa/

data/DrugTarget/. In Davis dataset [44], the target similarity matrix is computed by

a normalized version of Smith-Waterman score [42]. There are 3 drug similarity

matrices in Davis dataset, two-dimensional and three-dimensional Tanimoto coeffi-

cients similarity matrices, and the extended-connectivity fingerprint ECFP4 [46]

similarity matrix. The drug-target interaction affinity matrix used kinase disassoci-

ation constant (Kd). There are 68 drugs, 442 targets, and 1527 interactions in Davis

dataset.

In Metz dataset [45], the target similarity matrix is computed by a normalized version

of Smith-Waterman score [42]. The drug similarity matrix is a two-dimensional Tani-

moto coefficients similarity matrix. The drug-target interaction affinity matrix used kin-

ase inhibition constant (Ki). There are 1421 drugs, 156 targets, and 3200 interactions in

Metz dataset.

The statistics for these two kinase datasets are listed in Table 18.

Method

We propose a new method to learn drug kernel matrix and target kernel matrix.

We integrate drug kernel matrix, target kernel matrix, and drug-target interaction

network to build a heterogeneous network. We apply the marginalized denoising

model on heterogeneous network to improve the accuracy of drug-target inter-

action prediction. Our proposed prediction method consists of the following four

steps:

Step 1: Calculate drug kernel matrix KFJD by combining drug similarity matrix SD,

Gaussian interaction profile kernel matrix for drugs KGD, and association index kernel

matrix for drugs KJD, where KGD and KJD are constructed from drug-target inter-

action network Y.

Step 2: Calculate target kernel matrix KFJT by combining target similarity

matrix ST, Gaussian interaction profile kernel matrix for targets KGT, and

association index kernel matrix for targets KJT, where KGT and KJT are

constructed from Y′ which is the transpose of drug-target interaction

network Y.

Table 16 Statistics for the benchmark datasets [6]

Dataset Number of
drugs

Number of
targets

Number of drug-target
Interactions

Average degree of
drugs

Average degree of
targets

Enzymes 445 664 2926 6.57 4.40

IC 210 204 1476 7.02 7.23

GPCR 223 95 635 2.84 6.68

NR 54 26 90 1.66 3.46
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Step 3: Construct a heterogeneous network M by drug kernel matrix KFJD, target

kernel matrix KFJT, and drug-target interaction network Y.

Step 4: Create a marginalized denoising model (MDM) on the constructed

heterogeneous network M with local and global associations between nodes (targets

and drugs) to predict latent drug-target interaction pairs.

The procedure of our proposed prediction method is shown in Fig. 4.

Constructing final kernel matrix

The final kernel matrix combines different kernels with drug similarity matrix and tar-

get similarity matrix for potential DTIs prediction. Based on kernel fusion [18, 19], we

calculate drug kernel matrix by combining drug similarity matrix with GIP kernel

matrix and Jaccard kernel matrix, and calculate target kernel matrix by combining tar-

get protein similarity matrix with GIP kernel matrix and Jaccard kernel matrix.

The final drug kernel matrix KFJD and final target kernel matrix KFJT are calculated

according to the following steps.

Firstly, GIP kernel matrix for drugs KGD and GIP kernel matrix for targets KGT are

calculated respectively [9]:

KGDdi; d j ¼ exp − γd ydi
− yd j

��� ���2
� �

; 1≤ i; j≤n

KGTti; t j ¼ exp − γt yti − yt j

��� ���2
� �

; 1≤ i; j≤m
ð1Þ

where ydi and yd j
are interaction profiles of drugs di and dj respectively, which are rep-

resented by binary vectors encoding presence or absence of interaction with every tar-

get in interaction matrix Y. Similarly, yti and yt j are interaction profiles of targets ti

and tj respectively, which are represented by binary vectors encoding presence or

Table 17 Statistics for the new dataset 1

Dataset Number of
drugs

Number of
targets

Number of drug-target
Interactions

Average degree of
drugs

Average degree of
targets

Enzymes 1178 370 2705 2.30 7.31

IC 462 127 3629 7.85 28.57

GPCR 1582 128 3472 2.19 27.13

NR 422 19 558 1.32 29.37

CR 199 101 283 1.42 2.80

CSM 102 78 234 2.29 3.00

PK 280 95 625 2.23 6.58

TR 270 41 406 1.50 9.9

Table 18 Statistics for the kinase datasets

Dataset Number of
drugs

Number of
targets

Number of drug-target
Interactions

Average degree of
drugs

Average degree of
targets

David 68 442 1527 22.46 3.45

Ketz 1421 156 3200 2.25 20.51
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Fig. 4 (See legend on next page.)
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absence of interaction with every drug in interaction matrix Y. Parameters γd and γt are

used to control kernel bandwidth and are defined as follows [9]:

γd ¼ 1=
1
nd

Xnd

i¼1
ydi
�� ��2� �

γt ¼ 1=
1
nt

Xnt

j¼1
yt j

��� ���2
� � ð2Þ

Secondly, Jaccard profile kernel matrix for drugs and Jaccard profile kernel matrix for

targets are calculated respectively.

Jaccard index [47] is commonly used in association index. Compared with cosine,

Pearson correlation coefficient, and other association index, Jaccard index is more suit-

able for binary data with high sparsity, and Jaccard index is used to measure the degree

of sharing association between two nodes in biological interaction network [40]. Hence,

we use Jaccard index to construct an association index kernel matrix between drugs

and an association index kernel matrix between targets in DTIs network respectively.

Next, we discuss how to calculate Jaccard kernel matrix for drug KJD and Jaccard ker-

nel matrix for target KJT.

The value of Jaccard index kernel for drugs di and dj in DTIs network, KJDdi;d j , is

calculated as follows [40]:

KJDdi;d j ¼
D11

D01 þ D10 þ D11
; 1≤ i; j≤n ð3Þ

where D01, D10, and D11 are three parameters to measure the sharing relationship be-

tween di and dj. D01 is total number of targets when the value of Y(di, tk) is 0 and the

value of Y (dj, tk) is 1, D10 denotes total number of targets when the value of Y(di, tk) is

1 and the value of Y(dj, tk) is 0, D11 represents total number of targets when the value

of Y(di, tk) is 1 and the value of Y(dj, tk) also is 1, where Y is the target-drug interaction

matrix, and tk is a target contained in Y, i, j = 1,2,…,n, and k = 1,2,…,m.

Similarly, the value of Jaccard index kernel for targets ti and tj in DTIs network,

KJTti;t j , is computed as follows [40]:

KJTti;t j ¼
T 11

T 01 þ T 10 þ T11
; 1≤ i; j≤m ð4Þ

where T01, T10, and T11 are three parameters to measure the sharing relationship be-

tween ti and tj. T01 is total number of drugs when the value of Y(dk, ti) is 0 and the

value of Y(dk, tj) is 1, T10 denotes total number of drugs when the value of Y(dk, ti) is 1

and the value of Y(dk, tj) is 0, T11 represents total number of drugs when the value of

(See figure on previous page.)
Fig. 4 Procedure of our proposed predicting method. Drug kernel matrix KFJD was calculated by
combining drug similarity matrix SD, GIP kernel matrix for drugs KGD, and association index kernel matrix
for drugs KJD, where KGD and KJD are constructed from drug-target interaction network Y (seen in step 1).
target kernel matrix KFJT was calculated by combining target similarity matrix ST, GIP kernel matrix for
targets KGT, and association index kernel matrix for targets KJT, where KGT and KJT are constructed from Y′
which is the transpose of Y (seen in step 2). Next, a heterogeneous network M was constructed by drug
kernel matrix KFJD, target kernel matrix KFJT, and drug-target interaction network Y (seen in step 3). Finally,
a marginalized denoising model (MDM) was created on the heterogeneous network M with local and
global associations between nodes (targets and drugs) to predict latent drug-target interaction pairs (seen
in step 4)
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Y(dk, ti) is 1 and the value of Y(dk, tj) also is 1, where Y is the target-drug interaction

matrix, and dk is a drug contained in Y, i, j = 1,2,…,m, and k = 1,2,…,n.

Thirdly, based on the nonlinear kernel fusion technique [17, 18], the final drug kernel

matrix KFJD is calculated according to three matrices SD, KGD and KJD, and the final

target kernel matrix KFJT is calculated according to three matrices ST, KGT and KJT.

The calculation for KFJD is described as follows.

The three kernel matrices SD, KGD, and KJD are first normalized according to

Hao’s method [18]. The normalized matrices are denoted by PD1, PD2, and PD3

respectively [18]:

PD1 di; d j
� � ¼

SD di; d j
� �

2
P

k≠iSD di; dkð Þ ; j≠i
1=2 ; j ¼ i

8<
: ; 1≤ i; j≤n

PD2 di; d j
� � ¼

KGD di; d j
� �

2
P

k≠iKGD di; dkð Þ ; j≠i
1=2 ; j ¼ i

8<
: ; 1≤ i; j≤n

PD3 di; d j
� � ¼

KJD di; d j
� �

2
P

k≠iKJD di; dkð Þ ; j≠i
1=2 ; j ¼ i

8<
: ; 1≤ i; j≤n

ð5Þ

Then, we apply the k nearest neighbors (kNN) algorithm to compute local similarity

matrices LD1, LD2, and LD3 for PD1, PD2, and PD3 respectively [18]:

LD1 di; d j
� � ¼

PD1 di; d j
� �

P
dk∈Ni

PD1 di; dkð Þ ; d j∈Ni

0 ; d j∉Ni

8<
: ; 1≤ i; j≤n

LD2 di; d j
� � ¼

PD2 di; d j
� �

P
dk∈Ni

PD2 di; dkð Þ ; d j∈Ni

0 ; d j∉Ni

8<
: ; 1≤ i; j≤n

LD3 di; d j
� � ¼

PD3 di; d j
� �

P
dk∈Ni

PD3 di; dkð Þ ; d j∈Ni

0 ; d j∉Ni

8<
: ; 1≤ i; j≤n

ð6Þ

where Ni denotes the k nearest neighbors of drug di, i = 1,2,…,n. In formula (6), the

similarity between any two non-nearest neighbors is set to zero to reduce the influence

on prediction results from the non-nearest drug-target interaction pairs.

The key step of fusion operation is an iterative calculation [18]:

PD1
tþ1 ¼ LD1� PD2

t þ PD3
t

� �
2

� LD1
0

PD2
tþ1 ¼ LD2� PD1

t þ PD3
t

� �
2

� LD2
0

PD3
tþ1 ¼ LD3� PD1

t þ PD2
t

� �
2

� LD3
0

ð7Þ

where PD1
tþ1 , PD

2
tþ1, and PD3

tþ1 are the results of PD1, PD2, and PD3 after t iterations

respectively, and LD1′, LD2′, and LD3′ are the transposes of LD1, LD2, and LD3

respectively.

During each iteration, the values of PD1
tþ1 , PD

2
tþ1 , and PD3

tþ1 are further updated by

PD1
tþ1 ¼ ðPD1

tþ1 þ PD1
tþ1

0 Þ=2þ I , PD2
tþ1 ¼ ðPD2

tþ1 þ PD2
tþ1

0 Þ=2þ I , and PD3
tþ1 ¼ ð

PD3
tþ1 þ PD3

tþ1

0 Þ=2þ I respectively, where I is an identity matrix.
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After t iterations, the final drug kernel matrix KFJD can be obtained by [17]:

KFJD ¼ PD1
t þ PD2

t þ PD3
t

� �
=3 ð8Þ

Similarly, the final target kernel matrix KFJT can be obtained as follows:

KFJT ¼ PT 1
t þ PT2

t þ PT3
t

� �
=3 ð9Þ

More detailed description about the kernel fusion can be seen in [18, 19, 48].

Marginalized denoising model

Our method treats DTIs prediction problem as network link prediction problem. We

use Marginalized denoising model (MDM) [31] on heterogeneous network composed

of the final drug and target kernel matrices and the known drug-target interaction

matrix to predict potential DTIs. Marginalized denoising model [31] is inspired by the

idea of marginalized denoising auto- encoders [49].

Auto-Encoder (AE) is a type of artificial neural networks, which is used to learn effi-

cient data coding in an unsupervised manner [50, 51]. The AE encodes original input

dataset x with weight w into latent representation h and decodes h into output y, where

h = f(x) and y = g(h). The AE is trained to minimize reconstruction error Lðx; gð f ðxÞÞÞ
to guarantee that output y closely matches original data x. The AE is widely used to ex-

tract features and reduce dimensionality. The AE can also be used to learn new

features.

Denoising Auto-Encoder (DAE) [52] transforms original input dataset x into partially

corrupted input ~x and trains ~x to recover undistorted original input x. To train an

auto-encoder to denoised data, a preliminary stochastic mapping x→~x is performed to

corrupt the data, and ~x with weight w is used as an input for normal auto-encoder. The

loss function of DAE is represented by Lðx; gð f ð~xÞÞÞ instead of Lðx; gð f ðxÞÞÞ. The cor-

rupted input ~x can be constructed by randomly setting original input x to zero with

given probability p, where 0 < p < 1. The original noises in original input dataset x are

removed during the corrupting process. To a certain extent, the training data are close

to the testing data after the training data are denoised, and the robustness of weight w

is enforced after training.

Marginalized denoising auto-encoder (mDA) [49] is a variant of DAE. The mDA is

used to solve the problem with high computational cost of the DAE. “Marginalized”

means that the loss function Lðx; gð f ð~xÞÞÞ is approximated by the expected value E

kLðx; gð f ð~xÞÞÞk
pð~xjxÞ of loss function with conditional distribution pð~xjxÞ based on the

weak law of large number [53].

Our prediction method

The latent drug-target interactions are impacted by the existing drug-target interaction

pairs in the drug- target interaction network. The probability of predicting drug-target

interactions may also be influenced by the matrix of similarities between drugs and the

matrix of similarities between targets [19].

We treat the drug-target interactions (DTIs) prediction problem as network link pre-

diction problem. To improve the prediction accuracy, we propose a DTIs prediction

method using marginalized denoising model on heterogeneous network. The
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heterogeneous network can be represented by matrix M ¼ KFJT Y 0

Y KFJD

� 	
of size

(m+ n) × (m+ n), where KFJT ∈ℝm ×m is the target kernel matrix, KFJD ∈ℝn × n is the

drug kernel matrix, Y ∈ℝn ×m is the drug-target interaction network, Y′ is the transpose

of Y, m is the number of targets, and n is the number of drugs.

To generate the training data, we inject random noise to original input matrix M to

construct the corrupted matrix ~M. The set of corrupted matrices ~M ¼ f ~M1; ~M2;…; ~Mc

g is the training data. Then, we train the mapping function hð ~MÞ such that the final

output M* closely matches the original matrix M. That is to minimize the loss function

Lðhð ~MÞÞ:

L h ~M
� �� � ¼ X

~M∈ ~M
M − h ~M

� ��� ��2
F

ð10Þ

M� ¼ h ~M
� � ¼ Xmþn

l¼1
Lil ~Mlj þ

Xmþn

l¼1

Xmþn

k¼1
~MilGlk ~Mjk þ bi; 1≤ i; j≤mþ n ð11Þ

where the mapping function hð ~MÞ consists of the latent local and global associa-

tions between any two drug or target nodes in M, k:k2F denotes the Frobenius

norm of matrix, ~M s in corrupted matrices set ~M are constructed by randomly

setting the value of elements in M to zero with given probability p, where 0 < p <

1, bi is a bias value, L is local association weighted matrix,
Pmþn

l¼1 Lil ~Mlj is latent

local interaction between nodes i and j via node l, G is global association

weighted matrix and
Pmþn

l¼1

Pmþn
k¼1

~MilGlk ~Mjk is latent global association between

nodes i and j via nodes l and k, 1 ≤ i, j ≤m + n.

We illustrate an example of latent global association in Fig. 5. The solid line

shows the existing association, and the dashed line shows latent global

association.

As shown in Fig. 5a, if drug di is highly similar to drug dl, dl has an interaction

with target tk, and tk is highly similar to target tj, then di has an interaction with

tj with high probability. We can also see from Fig. 5b that, if both drugs di and

dk have an interaction with target tl, and dk has an interaction with target tj, then

di has an interaction with tj with high probability. The latent global association

represents the weighted value of indirect drug-target interaction. The iterative

training with latent local and global associations will obtain a more precise drug-

target interaction prediction result M*.

To prevent loss function LðhÞ from overfitting and enhance the learning perform-

ance, we construct a new objective function LðL;G; bÞ by Tikhonov regularization

terms:

L L;G; bð Þ ¼
X

~M∈ ~M
M − L ~M − ~MG ~M

T
− b�1nð ÞT

��� ���2
F
þ λ1

2
Lk k2F

� �þ λ2
2

Gk k2F
� � ð12Þ

where L and G represent latent local and global association weighted matrices respect-

ively, b is a bias vector, 1n denotes an all-one column vector of size n, and λ1 and λ2
are the regularization coefficients. Tikhonov regularization is used to ensure the

smoothness of fitting curves of L and G [54].
In the denoising auto-encoder, the more the training data used, the more accurate

the prediction results are. Ideally, we use infinite training data to compute weight
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matrices L and G. However, when the size of set ~M is increased, the computation cost

becomes more expensive. According to the weak law of large number [53], when the

size of set ~M becomes very large, we can rewrite the sum part of formula (12) into the

expectation form as follows:

L L;G; bð Þ ¼ Ep ~MjMð Þ M − L ~M − ~MG ~M
T
− b1Tn

��� ���2
F

� 	
þ λ1

2
Lk k2F

� �þ λ2
2

Gk k2F
� � ð13Þ

where pð ~MjMÞ is a conditional distribution, and the expectation is with respect to the

random variable ~M.

To apply formula (13) in large data matrix, low rank approximation is used [31]. For-

mula (13) is rewritten with respect to L = UUT and G= VVT as follows:

L U ;V ; bð Þ ¼ 0:5�tr MTM
� �

− tr UT� ~MMT�U þ VT� ~MT
MT ~M�V þMTb1Tn


 �

þ 0:5�tr UT�UUT ~M ~M
T�U þ VT� ~MT ~MVVT ~M

T ~M�V þ bT�b1Tn
� �

þ tr UT� ~MVVT ~M
T ~M

T�U þ UT�b1Tn ~M
T�U þ VT� ~MT

b1Tn
~M�V

� �

þ 0:5�tr UT�λ1I�U
� �þ 0:5�tr VT�λ2I�V

� �
ð14Þ

where U, V ∈ℝ(m + n) × k, k is the dimension of latent variables U and V, tr(*) represents

the trace of matrices, and I is the identity matrix.

To minimize the norm function LðU ;V ; bÞ , the partial gradient of formula (14) is

calculated with respect to U, V and b as follows:

∂L
∂U

¼ E UUT ~M ~M
T þ ~M ~M

T
UUT þ ~MVVT ~M

T ~M
T þ ~M ~MVVT ~M

T þ b1Tn
~M

T þ ~MbT −M ~M
T
− ~MMT

� �� 	
U þ λ1U ð15Þ

∂L
∂ V

¼ E ~M
T

UUT ~M þ ~M
T
UUT þ ~MVVT ~M

T þ ~MVVT ~M
T þ b1Tn þ bT −M −MT

� �
~M

� 	
V þ λ2V ð16Þ

Fig. 5 Illustration of latent global association. The solid line shows the existing association, and the dashed
line shows latent global association. As shown in (a), if drug di is highly similar to drug dl, dl has an
interaction with target tk, and tk is highly similar to target tj, then di has an interaction with tj with high
probability. As shown in (b), if both drugs di and dk have an interaction with target tl, and dk has an
interaction with target tj, then di has an interaction with tj with high probability
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∂L
∂b

¼ E UUT ~M þ ~MVVT ~M
T þ b1Tn −M

� �
1n

� 	
ð17Þ

Given q as the residual probability for ~M, q = 1-p, we label a constant matrix contain-

ing no ~M as C, and calculate the gradients for different terms of ~M. For a term contain-

ing only one ~M , E½C ~M� ¼ CE½ ~M� ¼ qCM . For a term containing two ~Ms, we need to

analyze the cases that the two ~M s are the same or not, e.g., if the two ~M s are the

same, E½ ~MT
C ~M� ¼ q2MTC M , otherwise E½ ~MT

C ~M� ¼ qð1 − qÞ diagðMT� diagðCÞÞ .
The term containing two ~M s, E½ ~MT

C ~M�, is given in formula (18) [31]:

E ~M
T
C ~M

h i
¼ q2MTC M þ q 1 − qð Þ diag MT� diag Cð Þ� � ð18Þ

For the term containing three or more ~M s, we need to analyze the cases that all the
~M s are the same or any two ~M s are the same or all the ~M s are different. The term

containing three ~M s, E½ ~MC ~M
T ~M

T �, is given as follows [31]:

E ~MC ~M
T ~M

T
h i

¼ q3MC MTMT þ q2 1 − qð Þ diag M� diag Cð Þð ÞMT þM�C� diag diag Mð Þð Þ þ diag Mð Þ�sumðC°M; 2Þ� �

þq 1 − 2qð Þ 1 − qð Þ diagð diag Mð Þ° diag Cð Þð Þ
ð19Þ

where the function diag(*) outputs the diagonal elements of a matrix, the operator ° de-

notes the Hadamard product (element-wise product), and the function sum(∗, 2) out-

puts the sum by rows of a matrix.

We use the L-BFGS (Limited-memory BFGS) [55] to optimize the objective

functions with respect to latent variables U, V, and b. The L-BFGS [55] is an

optimization algorithm in the family of quasi-Newton methods. The Newton’s

method is an iterative optimization using Taylor’s second-order expansion. The

Newton’s method finds extrema for loss function by computing Hessian matrix.

It is too expensive to compute Hessian matrix for every iteration. The L-BFGS al-

gorithm optimizes the calculation of Newton’s method and simplifies the calcula-

tion of Hessian matrix. L-BFGS has the feature of fast convergence and no

storage of Hessian matrix.

Finally, we calculate the final matrix M∗ = UU′M +MVV′M′ + b, and compute

the evaluation metrics AUC (area under curve of receiver operating

characteristic) and AUPR (area under precision-recall curve) by comparing M

with M*.

Based on the above steps, we propose a drug-target interaction prediction algo-

rithm using marginalized denoising model on heterogeneous network called

DTIP_MDHN, in which its input files SDFile, STFile and YFile are derived from

http://web.kuicr.kyoto-u.ac.jp/supp/yoshi/ drugtarget/, noise is the noise value,

and k is the dimension of latent layer. Algorithm DTIP_MDHN is described in

algorithm 1.
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Our method DTIP_MDHN can obtain more accurate prediction than other existing

methods because it introduces Jaccard index kernel matrix to measure the sharing

interaction relationship between drugs and targets, and uses both local and global

associations to reduce the sparsity of DTIs network.
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drugs, 5313 targets, and 116,199 interactions. In this file, compounds are derived from PubChem with the prefix
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