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SUMMARY

Climbing fibers (CFs) are thought to contribute to cerebellar plasticity and learning by triggering a 

large influx of dendritic calcium in the postsynaptic Purkinje cell (PC) to signal the occurrence of 

an unexpected sensory event. However, CFs fire about once per second whether or not an event 

occurs, raising the question of how sensory-driven signals might be distinguished from a 

background of ongoing spontaneous activity. Here, we report that in PC dendrites of awake mice, 

CF-triggered calcium signals are enhanced when the trigger is a sensory event. In addition, we 

show that a large fraction of the total enhancement in each PC dendrite can be accounted for by an 

additional boost of calcium provided by sensory activation of a non-CF input. We suggest that 

sensory stimulation may modulate dendritic voltage and calcium concentration in PCs to increase 

the strength of plasticity signals during cerebellar learning.

INTRODUCTION

Calcium is the trigger for cellular mechanisms of plasticity in many neurons throughout the 

brain and as such, it is thought to play a central role during learning and memory formation 

(Sjöström and Nelson, 2002; Zucker, 1999). For Purkinje cells (PCs) of the cerebellar 

cortex, the job of generating the calcium signals necessary for plasticity and learning is often 

attributed to the powerful climbing fiber (CF) input (De Zeeuw et al., 1998; Ito, 2013; 

Raymond et al., 1996; Simpson et al., 1996; Thach et al., 1992). This is because in many 

learning tasks, CFs seem to play the role of “teachers” by firing a burst of action potentials 

to signal that an unexpected sensory event has occurred (Gilbert and Thach, 1977; Kitazawa 

et al., 1998; Medina and Lisberger, 2008; Rasmussen et al., 2008; Raymond and Lisberger, 
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1998; Soetedjo et al., 2008). In turn, the CF burst produces a strong depolarization of the 

postsynaptic PC and causes a calcium-based dendritic spike that serves as the trigger for a 

variety of plasticity mechanisms (Kitamura and Kano, 2013; Schmolesky et al., 2002). In 

this report, we use calcium imaging of PC dendrites in awake mice to resolve a long-

standing question about the way CF inputs encode information and generate plasticity 

signals in the cerebellum.

It was pointed out 40 years ago that from the perspective of an individual PC, CF signals are 

potentially ambiguous (Gilbert, 1975). In the adult cerebellum, each PC receives input from 

a single CF (Ito, 1984), and every CF fires bursts of action potentials spontaneously at a rate 

of about once per second in vivo (Ito, 1984). Furthermore, early investigators demonstrated 

that because CF bursts are “all or nothing” (Crill, 1970), they evoke the same electrical 

response in the soma of the postsynaptic PC (i.e., a complex spike [CS]) regardless of 

whether the CF input fired spontaneously or in response to a sensory event (Eccles et al., 

1966). These classic electrophysiology studies led to the current view of cerebellar learning, 

according to which all individual CF bursts are equivalent, and therefore to obtain 

information about sensory-driven instructive signals, one must collect responses to CF inputs 

over many learning trials or many PCs (Gibson et al., 2004; Houk et al., 1996; Mauk and 

Donegan, 1997; Ozden et al., 2009; Schultz et al., 2009).

Our experiments challenge the classical view that spontaneous and sensory-driven CF inputs 

are equivalent. This view does not take into account the fact that the somatic and dendritic 

compartments of the PC are functionally separate and process CF signals independently 

during synaptic activation (Davie et al., 2008; Llinás and Sugimori, 1980). Therefore, we 

designed our experiments to test whether spontaneous and sensory-driven CF inputs are 

different from each other, not by recording the electrical CS response near the PC soma as in 

previous work (Eccles et al., 1966), but by measuring CF-triggered calcium spikes and 

visualizing dendritic plasticity signals directly.

RESULTS

We used two-photon microscopy to image spontaneous and sensory-driven calcium spikes 

triggered by activation of the CF input to individual PC dendrites. Awake mice were head-

fixed on top of a cylindrical treadmill while we delivered periocular airpuffs via a needle 

pointed toward the eye (Figure 1A). We imaged 13 locations in five mice and found CF-

triggered calcium spikes in response to the periocular airpuff in a total of 76 PCs distributed 

broadly within three separate zones of the cerebellar cortex (Figure 1B): the vermis of lobule 

VI and the paravermis of lobules IV/V and VI.

As in earlier imaging studies (Ozden et al., 2008; Sullivan et al., 2005), PC dendrites 

appeared as elongated structures separated from each other by 5–10 μm (Figures 1C and 1D, 

top). We used two different fluorescent calcium indicators with complementary advantages: 

OGB-1/AM (Figure 1C), a fast-responding synthetic indicator that can be bulk loaded and is 

taken up by a variety of cell types in the cerebellar cortex (Sullivan et al., 2005), and 

GCaMP6f (Figure 1D), a genetically encoded calcium indicator with slower kinetics that 

allows cell-type-specific expression (Figures 1E and 1F; see Experimental Procedures). With 
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GCaMP6f, we observed labeled PCs at an average density of 13.6 ± 1.4 cells per 104 μm2 

cortical surface area, an estimated 76% of all PCs (percentages were calculated in 

comparison with cell densities reported in Sturrock, 1989). In comparison, other cell types 

were sparser and dimmer: 7% of molecular layer interneurons (MLIs) were visible at an 

average of 0.4 times the brightness of PC dendrites, and 1% of granule cells (GCs) were 

visible at 0.06 times the brightness of PC dendrites. Thus, under our expression conditions, 

nearly all of the GCaMP6f signal in the ML neuropil arose from PC dendrites, even before 

regions of interest (ROIs) were identified.

Calcium spikes in individual PC dendrites were apparent as a rapidly rising transient 

increase in the fluorescence signal (Figures 1C and 1D, bottom). We have shown previously 

that these dendritic calcium spikes are generated when the CF input fires and generates a CS 

in the PC (Ozden et al., 2008). Our imaging tools and template-and-threshold algorithm can 

detect approximately 95% of all CSs with a <8% false-positive rate (Ozden et al., 2008). In 

PC dendrites, calcium spikes occurred at the expected spontaneous rate of once per second 

(Figures 1C and 1D, blue dots; rate = 0.90 ± 0.25 Hz, mean ± SD), and also in response to 

periocular airpuff stimulation (Figures 1C and 1D, red dots; response probability = 0.58 

± 0.24, mean ± SD). We termed these events spontaneous and evoked calcium spikes, 

respectively.

Sensory-Driven Enhancement of Calcium Spikes in a Representative Dendrite

Figure 2 shows data for an example PC dendrite in a GCaMP6f experiment. The average 

evoked calcium spike (Figure 2A, red; 27 spikes) was larger in amplitude than the average 

spontaneous calcium spike (Figure 2A, blue; 65 spikes; difference between evoked and 

spontaneous spikes shown in black). Note that all fluorescence traces have been normalized 

so that the peak of the average signal for spontaneous calcium spikes in the PC is “1” (see 

Experimental Procedures). As an index of the size of the calcium spike, we computed the 

integral of each normalized fluorescence signal in the 100 ms window following its peak 

(Figure 2A; “integral”). We will refer to this quantity as the ΔF/F-integral. In the example 

shown, the ΔF/F-integral of the calcium spike was on average 50% larger for evoked versus 

spontaneous events (Figure 2B; red versus blue, Kolmogorov-Smirnov test, p < 0.001).

Next, we used receiver operating characteristic (ROC) analysis to quantify the degree to 

which the ΔF/F-integral of the calcium spike was sufficient to distinguish sensory-evoked 

signals from spontaneous ones (see Experimental Procedures). We constructed an ROC 

curve (Figure 2C) by sliding the value of a discriminability criterion along the horizontal 

axis of Figure 2B. For each value of the criterion, we plotted a point in the ROC curve with 

coordinates FPR and TPR, where FPR is the false-positive rate (i.e., the fraction of calcium 

spikes in the spontaneous distribution whose ΔF/F-integral is bigger than the criterion), and 

TPR is the true-positive rate (i.e., the fraction of calcium spikes in the evoked distribution 

whose ΔF/F-integral is bigger than the criterion). The area under the ROC curve provides a 

standard measure of % correct in a two-alternative discrimination task (Green and Swets, 

1966). In the example dendrite, the area under the ROC curve was 76% (Figure 2C, gray 

shaded area), indicating that for each randomly drawn pair of calcium spikes (one from the 

evoked distribution and one from the spontaneous distribution; Figure 2B), the spike with 
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the larger ΔF/F-integral would be sensory evoked in 76% of cases. In comparison, identical 

spontaneous and evoked distributions would give an ROC area of 50% (Figure 2C, dotted 

diagonal).

Population Analysis

Evoked calcium spikes were bigger than spontaneous calcium spikes in nearly all of the PC 

dendrites we examined, both in experiments using OGB-1/AM (Figures 3A–3C; n = 33/35 

dendrites) and in experiments using GCaMP6f (Figures 3D–3F; n = 40/41 dendrites). This 

enhancement was apparent in the population difference trace (Figures 3A and 3D), which 

was obtained by averaging the difference between evoked and spontaneous traces across all 

dendrites. Note that the fluorescence signal of each individual dendrite was first normalized 

separately as before, and as a result, the difference traces shown in Figures 3A and 3D are 

relative to the average size of spontaneous calcium spikes. The ΔF/F-integral for evoked 

spikes was on average 32% ± 20% larger than that for spontaneous spikes in OGB-1/AM 

experiments (Figure 3B, red circle; mean ± SD), and 41% ± 24% larger in GCaMP6f 

experiments (Figure 3E, red circle; mean ± SD). This sensory-driven enhancement was 

statistically significant (two-sample Kolmogorov-Smirnov test, p < 0.05) for 69% of 

OGB-1/AM-labeled dendrites and 73% of GCaMP6f-expressing dendrites (Figures 3B and 

3E; black circles). ROC analysis (Figures 3C and 3F) showed that sensory-evoked and 

spontaneous calcium spikes could be discriminated above chance level in most dendrites 

(median % correct is 81% in Figure 3C and 73% in Figure 3F). The small mismatch between 

the two calcium indicators is consistent with the known nonlinearity of GCaMP6f (Chen et 

al., 2013), which would tend to differentially amplify calcium spikes depending on the 

baseline level and cause greater variability in ΔF/F values.

Sensory-Driven Calcium Signals in Trials without CF-Triggered Calcium Spikes

In addition to the CF input, PC dendrites receive input from GCs and MLIs (Ito, 1984), both 

of which are capable of modulating the amplitude of the CF-triggered calcium spike 

(Callaway et al., 1995; Kitamura and Häusser, 2011; Wang et al., 2000). To assess the role of 

non-CF inputs, we examined the same population of dendrites as shown in Figure 3, but this 

time we analyzed the fluorescence signal in trials without a detectable sensory-driven 

calcium spike. The average fluorescence signal in these trials revealed a small but clear rise 

of dendritic calcium in response to the periocular airpuff stimulus, for both OGB-1/AM 

(Figure 4A, left, green trace) and GCaMP6f (Figure 4A, right, green trace) experiments. For 

direct comparison with traces in previous figures, we normalized the fluorescence signals in 

Figure 4A exactly as before (i.e., “1” represents the average peak of the spontaneously 

evoked calcium spikes, computed for each dendrite separately). These signals were not 

detected as calcium spikes by our template-matching-and-threshold algorithm because they 

were much smaller (Figures 4A and S1) and much slower (rise time: 154 ± 48 versus 10 ± 3 

ms for calcium spikes; mean ± SD, two-sample Kolmogorov-Smirnov test, p < 0.0001).

We refer to the fluorescence signal in Figure 4A as the non-CF calcium signal because it was 

measured in trials without a detectable calcium spike. We have previously shown that our 

algorithm for identifying calcium spikes detects nearly all CSs correctly (Experimental 

Procedures; Ozden et al., 2008), which means that the lack of a detectable calcium spike in 
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any given trial can be taken as a reliable indicator that the periocular airpuff failed to activate 

the CF input. In PCs that were responsive to periocular airpuffs, approximately 40% of all 

trials did not show a sensory-driven calcium spike, consistent with the low probability of a 

CF response to peripheral stimulation reported in previous studies (Eccles et al., 1972; 

Gilbert and Thach, 1977; Kitazawa et al., 1998; Medina and Lisberger, 2008; Ozden et al., 

2012; Soetedjo et al., 2008). Nonetheless, spike detection is not perfect and some CF events 

were probably missed. To reduce the number of missed CF events, we lowered the threshold 

for detecting calcium spikes by as much as 50% (Figure S2). Under this condition, we still 

observed a sensory-driven non-CF signal (Figure S2C), which indicates that the non-CF 

signal is unlikely to arise from small CF-triggered calcium spikes that our algorithm might 

have failed to detect.

A potential source of the non-CF calcium signal in a PC dendrite is neighboring CF inputs to 

nearby PCs, which could contribute either by providing a source of diffuse fluorescence 

signal or by spillover-mediated effects (Coddington et al., 2013; Mathews et al., 2012). To 

test for these potential contributions, we examined the non-CF signals of individual PC 

dendrites in trials in which the periocular airpuff failed to evoke calcium spikes in the two 

nearest dendrites. Relative to the size of spontaneous calcium spikes, the average ΔF/F-

integral of the non-CF signal was 28% ± 17% in trials with calcium spikes in adjacent 

dendrites, and 27% ± 22% in trials without such spikes (mean ± SD; two-sample 

Kolmogorov-Smirnov test, p = 0.7). Thus, our results demonstrate that sensory events are 

capable of triggering a measurable rise of calcium in the PC dendrite in the absence of any 

CF activation in the immediately adjacent neuropil, suggesting that spillover effects do not 

make a major contribution. However, a contribution from more distant CFs cannot be 

entirely ruled out (Coddington et al., 2013).

The average non-CF signal (Figure 4A, green) was similar in magnitude and time course to 

the difference signal shown in Figures 3A and 3D (replotted for comparison in Figure 4A, 

dashed lines). This suggests that the non-CF signal and the sensory-driven enhancement of 

the calcium spike might share a common origin. We evaluated this possibility further in a 

subset of dendrites with significant enhancement and enough trials with and without 

sensory-driven calcium spikes (13 dendrites for OGB-1/AM and 11 for GCaMP6f 

experiments). In many of these dendrites, the average ΔF/F-integral of the non-CF signal 

(Figure 4B, green; error bars, SEM) was comparable to the average ΔF/F-integral of the 

difference signal (Figure 4B, black). Indeed, the two signals were significantly different 

from each other in only one of the 24 dendrites (Figure 4B, asterisk). On average, we found 

that the non-CF signal could account for 76% of the total sensory-driven enhancement of the 

calcium spike (Figure 4B), consistent with the hypothesis that the majority of enhancement 

in CF trials arose from non-CF sources.

DISCUSSION

We have demonstrated that calcium spikes in individual PC dendrites are significantly larger 

when the CF input fires in response to an instructive stimulus than when it fires 

spontaneously. As revealed by our ROC analysis, this sensory-driven enhancement of the 

calcium spike could potentially be used to tag the occurrence of unexpected sensory events, 
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thus allowing an individual PC to distinguish instructive signals from ongoing background 

activity.

The mechanisms underlying the sensory-driven enhancement of the dendritic calcium spike 

are currently unknown. One possibility is that sensory stimuli, like periocular airpuffs, drive 

this enhancement by directly amplifying signals along the CF pathway itself. For example, 

recent work has shown that certain types of vestibular/visual stimulation can increase the 

number of action potentials within a single (~10 ms) CF burst (Maruta et al., 2007), which is 

known to enhance the PC dendritic depolarization, result in more calcium entry and 

determine the direction of cerebellar learning (Mathy et al., 2009; Rasmussen et al., 2013). 

Similarly, delivery of an unexpected periocular airpuff may recruit arousal centers such as 

the locus coeruleus, which could potentiate CF signals by releasing noradrenaline in the 

cerebellar cortex (Moises et al., 1981). However, in cerebellar slices, the direct application 

of noradrenaline decreases the probability of release at the CF synapse and reduces the 

amplitude of CF-triggered calcium spikes (Carey and Regehr, 2009).

Our findings suggest an additional mechanism for enhancing dendritic calcium signals that 

is based on sensory-driven activation of a non-CF input, possibly via the mossy fiber (MF) 

pathway to the cerebellar cortex. This hypothesis is consistent with previous work showing 

that the amplitude of the CF-triggered calcium spike depends on the membrane potential of 

the PC dendrite (Kitamura and Häusser, 2011), and can be regulated by two types of MF-

driven inputs to the PC: inhibitory inputs from MLIs (Callaway et al., 1995) and excitatory 

inputs from the parallel fibers (PFs) of GCs (Wang et al., 2000). Additional evidence 

supporting a contribution of the MF pathway comes from extracellular recording studies that 

demonstrated that cutaneous stimulation of the limb can activate PF, MLI, and CF inputs 

converging on the same PC (Apps and Garwicz, 2005; Eccles et al., 1972; Ekerot and 

Jörntell, 2003).

It is of note that in previous electrophysiological studies, MF and CF convergence usually 

resulted in sensory-driven suppression of somatic PC spiking at the time of the CF input 

(Eccles et al., 1972; Ekerot and Jörntell, 2003), whereas we only found reliable enhancement 

of CF-triggered dendritic calcium spikes. Our unexpected finding may reflect inherent 

differences in how synaptic inputs are processed to independently generate electrical signals 

in the PC soma and calcium signals in the dendrites (Davie et al., 2008; Denk et al., 1995; 

Llinás and Sugimori, 1980; Wang et al., 2000), and could be explained if spiking were 

influenced by factors that occur downstream of dendritic integration, such as somatic 

inhibition. Another difference is that we used periocular airpuff stimuli, which are rare and 

unexpected sensory events, whereas previous studies used cutaneous stimulation of hindlimb 

or toes, which is frequently experienced during self-generated movements and presumably 

results in depressed PF synapses and potentiated MLI inputs (Ekerot and Jörntell, 2003). 

Indeed, CFs appear to be particularly sensitive to this type of contextual modulation because 

they respond much more reliably to peripheral stimulation when it is unexpected than when 

it can be anticipated (Apps, 1999; Ozden et al., 2012).

Our findings have important implications for theories of cerebellar learning. In the prevailing 

view, instructive signals are encoded at the level of an individual PC as all-or-nothing 
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calcium spikes that are triggered once for every CF firing event, whether spontaneous or in 

response to an unexpected sensory event (Houk et al., 1996; Kitamura and Häusser, 2011; 

Najafi and Medina, 2013). Our results challenge this view in two ways. First, we have shown 

that the amplitudes of sensory-driven and spontaneous calcium spikes are significantly 

different from each other. Second, we found that sensory stimulation causes a small rise of 

dendritic calcium in the PC dendrite even when its CF input does not fire, consistent with the 

idea that instructive signals may be relayed to the cerebellar cortex via multiple pathways, 

including both the MF and CF pathways (Raymond et al., 1996).

In the cerebellum, short- and long-term synaptic modifications of PC inputs are tightly 

regulated by the precise amplitude and duration of the dendritic calcium signal (Gao et al., 

2012). For example, PF-PC plasticity is steeply dependent on calcium concentration (Tanaka 

et al., 2007), and small variations in dendritic calcium are sufficient to differentially drive 

either long-term potentiation or long-term depression (Coesmans et al., 2004). Our 

observations reflect both differences in PC dendritic depolarization and in the ensuing 

amount of calcium entry in response to single sensory events in contrast to spontaneous 

conditions. Thus, the type of sensory-driven enhancement of the calcium spike reported here 

may help modulate the efficacy of the CF input to serve as an instructive signal and drive 

plasticity and learning.

EXPERIMENTAL PROCEDURES

Animal Preparation

The experimental procedures were approved by the Princeton University Institutional 

Animal Care and Use Committee and performed in accordance with the animal welfare 

guidelines of the National Institutes of Health. C57BL/6J mice 8–14 weeks old were 

anesthetized with isoflurane and a small craniotomy was made over the cerebellum. A 

coverslip with a premolded Kwik-Sil plug was placed on the exposed brain and held in place 

by a two-piece headplate. On the following day, the animals were anesthetized with 

isoflurane and a calcium indicator or viral construct was injected into the cerebellar cortex 

(two to three injections, ~300 nl, 150–200 μg below the dura surface). The injections 

contained either the calcium indicator Oregon Green BAPTA-1/AM (OGB-1/AM) or a 

combination of AAV2/1.CMV.PI.Cre.rBG and AAV2/1.CAG. Flex.GCaMP6f.WPRE.SV40 

(Penn Vector Core, University of Pennsylvania). Hyperosmotic D-mannitol (15% in PBS) 

was given i.p. ~15 min before virus injection to reduce toxicity associated with AAV 

injections and GCaMP6f overexpression.

Two-Photon Imaging

Imaging was performed immediately after the animals recovered from anesthesia for 

OGB-1/AM injections, or after 7–10 days for AAV injections. Mice were head-fixed on top 

of a cylindrical treadmill while airpuff stimuli (30 ms, 20–50 psi) were delivered through a 

blunted hypodermic needle pointed at the ipsilateral eye (~4 s intertrial interval, ~35 trials/

experiment). Fluorescence signals were acquired with a custom-built two-photon 

microscope that collected data as movies of 32 × 128 pixels (64 ms/frame). Dendritic 

calcium spikes were detected with a three-step process as described previously (Ozden et al., 
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2012): (1) Pixels corresponding to individual dendrites were determined with an algorithm 

that uses the independent spatial components estimated by PCA/ICA. (2) The fluorescence 

trace (ΔF/F) of a PC dendrite was computed as (F − Fb)/Fb, where F is the mean 

fluorescence intensity of the pixels contributing to a dendrite in each frame, and Fb is the 

baseline defined as the lowest 8th percentile of all fluorescence values within a 1 s window 

surrounding each frame. (3) Calcium spikes were detected by examining the fluorescence 

trace for each dendrite frame by frame, using a template-matching algorithm and setting a 

threshold. Essentially, this algorithm identifies transient increases in fluorescence with the 

characteristic temporal profile of CF-triggered calcium spikes and a peak amplitude larger 

than a threshold value.

GCaMP6f Cell Specificity

In order to quantify the cellular origin of the signal recorded in the ML, we estimated the 

expression density of PCs, MLIs, and GCs. In vivo, within GCaMP6f-expressing zones, we 

counted visible structures up to the maximum optical penetration depth of 260 μm and 

compared them with published total density values (Sturrock, 1989). We found 13.6 ± 0.8 

stained PCs per 104 μm2 (76% of all estimated PCs; mean ± SEM, n = 3), 6.0 ± 1.3 dimly 

stained MLIs per 106 μm3 (7% of all estimated MLIs; mean ± SEM, n = 5), and no GCs with 

brightness > 2.5% of the average PC brightness (n = 5). MLI and GC visibility in vivo is 

dependent on the animal’s behavioral state (Ozden et al., 2012); therefore, we repeated our 

measurements in fixed brain slices (n = 3), which are optically more uniform and in which 

calcium concentrations are expected to be uniformly high. We found that 75% of PCs were 

visible, 7% of MLIs were visible at 40% the brightness of PCs, and 1.1% of GCs were 

visible at 6% the brightness of PCs. In summary, the relative fraction of PC:MLI:GC 

expression was 1:0.09:0.01 with a relative brightness of 1:0.4:0.01, indicating that more than 

95% of the signal in the ML arises from PC dendrites. In the selected ROIs, which include 

PC dendrites only, we expect a much higher value.

Analysis of Calcium Signals

All ΔF/F traces, except for those shown in Figures 1C and 1D, were normalized for each 

dendrite separately such that the peak value of the average spontaneous calcium spike was 

one. To limit the analysis to single CF inputs, we removed segments of the fluorescence 

trace containing more than one calcium spike separated from each other by <100 ms 

(doublets or multiples). Trials with a single calcium spike in a 50–150 ms interval after the 

periocular airpuff were used for the analysis of evoked calcium spikes. Trials without any 

calcium spikes in this interval were used for the analysis of the non-CF signal. The size of 

each individual calcium spike was computed by taking the integral of the normalized ΔF/F 

signal in a 100 ms window starting at the peak (ΔF/F-integral). The size of the non-CF 

signal was measured similarly, by taking the integral of the normalized ΔF/F signal in a 100 

ms window starting at a point selected randomly within 50–150 ms of the periocular airpuff. 

See also Figure S1.

ROC Analysis

The TPR and FPR were computed under the assumption that the amplitude of evoked 

calcium spikes is larger than the amplitude of spontaneous spikes. TPR was calculated as the 
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fraction of evoked spikes that would have been correctly identified because their amplitude 

was bigger than the criterion, and FPR was calculated as the fraction of spontaneous spikes 

that would have been incorrectly identified because their amplitude was bigger than the 

criterion.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Imaging Calcium Spikes in PC Dendrites of Awake Mice
(A) Two-photon microscopy of cerebellar cortex in awake mice, head-fixed on a cylindrical 

treadmill. Airpuff stimuli were delivered to the ipsilateral eye.

(B) Imaged locations in cerebellar cortex (yellow circles). Dashed line indicates the midline.

(C) Top: field of view showing PC dendrites in an example OGB-1/AM experiment. Bottom: 

an example fluorescence trace representing spontaneous (blue dots) and sensory-evoked (red 

dots) calcium spikes in response to periocular airpuff stimuli (triangles).

(D) Same as (C), for an example GCaMP6f experiment.

(E and F) Expression of GCaMP6f (green) in PCs (PCL, Purkinje cell layer) located in the 

area marked by a rectangle in the inset of (E). Notice the absence of staining in the GC layer 

(GCL) and MLIs (white arrows in F). C, caudal; D, dorsal; IC, inferior colliculus; L, lateral; 

M, medial; R, rostral; V, ventral. IV-V, VI, VII, simplex, and crusI/II are different lobules.
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Figure 2. Sensory-Driven Enhancement of Calcium Spikes in a Representative Dendrite
(A) Average of spontaneous (blue) and sensory-evoked (red) calcium spikes (± SEM). The 

difference trace (black) is the difference between evoked and spontaneous traces. All traces 

are normalized to the peak of the spontaneous trace.

(B) Histograms of the size of spontaneous (blue) and evoked (red) calcium spikes computed 

by taking the ΔF/F integral in the window shown in (A) (“integral”). Bin width = 20 ΔF/F × 

ms.

(C) ROC curve (black solid line) and the corresponding area under the curve (shaded gray) 

computed from the histograms shown in (B). The dotted diagonal is the ROC curve if the 

two histograms were completely overlapping.
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Figure 3. Sensory-Driven Enhancement of Calcium Spikes
(A–C) OGB-1/AM experiments.

(D–F) GCaMP6f experiments.

(A and D) Difference between evoked and spontaneous CF-triggered fluorescence signals 

averaged across all dendrites (± SEM). All traces are normalized to the peak of the 

spontaneous trace of each dendrite separately.

(B and E) Average size of evoked and spontaneous calcium spikes in dendrites with a 

significant sensory-driven enhancement (black: mean ± SEM), and without (gray: mean ± 

SEM). Average ± SD of all dendrites is shown in red.

(C and F) ROC analysis showing % correct discrimination of sensory-evoked and 

spontaneous calcium spikes, for individual dendrites (black and gray as in B and E), and 

averaged across population (red: circle is median and lines are interquartile range). Dotted 

line indicates the chance discrimination level.
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Figure 4. Sensory Stimulation Triggers Non-CF Calcium Signals in PC Dendrites
(A) Average fluorescence signal (± SEM) in response to sensory stimulation when there was 

no CF-triggered calcium spike (green, non-CF). Difference traces in Figures 3A and 3D are 

superimposed (dashed). Left: OGB-1/AM; right: GCaMP6f experiments. All traces are 

normalized to the peak of the spontaneous trace of each dendrite separately.

(B) Average size of non-CF (green; error bars, SEM) and difference (black) calcium signals 

shown for each dendrite separately after normalizing to the average size of its spontaneous 

spike. Dendrites are sorted by the difference of the two signals. “Mean” indicates the 

average across all dendrites. Asterisk indicates significantly different non-CF and difference 

signals.

See also Figure S2.
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