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The left ventricle (LV) pumps oxygenated blood from the lungs to the rest of the body through systemic circulation. The efficiency
of such a pumping function is dependent on blood flow within the LV chamber. It is therefore crucial to accurately characterize LV
hemodynamics. Improved understanding of LV hemodynamics is expected to provide important clinical diagnostic and prognostic
information. We review the recent advances in numerical and experimental methods for characterizing LV flows and focus on
analysis of intraventricular flow fields by echocardiographic particle image velocimetry (echo-PIV), due to its potential for broad
and practical utility. Future research directions to advance patient-specific LV simulations include development of methods capable
of resolving heart valves, higher temporal resolution, automated generation of three-dimensional (3D) geometry, and incorporating
actual flow measurements into the numerical solution of the 3D cardiovascular fluid dynamics.

1. Introduction

Thekey function of the heart is tomaintain blood circulation.
This is accomplished through repetitive cycles of systolic
contraction and diastolic relaxation. Systole and diastole
consist, however, of several component phases that impact
intraventricular flow. In a normally functioning heart,
following isovolumic contraction (during which myocardial
tension increases, but both aortic and mitral valves are
closed), the aortic valve opens, and the LV ejects blood into
the aorta. As a result of the helical architecture of its fibers
[1], the LV twists during the systolic cycle, stores part of its
kinetic energy as potential energy that is to be released later
as elastic recoil (untwisting), and supports early diastolic
suction [2]. The diastolic cycle starts with an isovolumic
relaxation phase, during which the aortic valve is already
closed, but the mitral valve is not yet open. Untwisting of
the LV generates a pressure gradient that allows for suction
of blood into the chamber and leads to mitral valve opening
[2]. A filling jet of blood flow rushes into the LV, generating

a diastolic vortex [3]. As the pressure gradient across the
mitral valve equilibrates, the transmitral flow slows down, but
this period of diastasis can hardly be considered as a complete
stagnation of the blood [4, 5]. Left atrial contraction drives
the remainder of LV filling during the latter part of diastole.
An intraventricular flow vortex changes its strength and
location during the course of diastole; however, its duration
has been observed beyond the time point of mitral valve
closure [3]. Studies suggest that kinetic energy stored in the
flow vortex contributes to both timely closure of the mitral
valve and blood flow redirection towards the outflow tract
[6, 7].

Thus, the LV is not a simple positive displacement pump
[8], and although the flow inside the LV is quite complex and
multidirectional, the cycles of systole and diastole essentially
generate a flow continuum controlled by interactions
between the LV wall and blood mass. The shape, size, and
dynamics of the LV and other cardiac chambers, proper
mechanical function of the cardiac valves, ventriculoaortic
coupling [9, 10], negative or positive inotropic drugs [2],
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Figure 1: Echo particle image velocimetry study of normal heart. (a) Epicardial echo scan. Notice the well-defined LV boundary. Anatomic
structures are labeled. After injection of microbubbles, digital transfer, and offline tracking, (b) early and (c) late diastolic inflows and vortex
aremapped by velocity vectors and isovelocity streamlines. Blue, green, and red colors indicate low,mid, and high flow velocities, respectively.

and neurohumoral effects are some of the various factors
that affect heart function and, thus, intraventricular blood
flow. Consequently, understanding fluid dynamics inside
the LV and other cardiac chambers is critical to identify
subtle cardiovascular disorders in their early stages, optimize
treatment of a dysfunctional or failing heart, develop better
ventricular assisting devices or artificial hearts, and further
advance the designs of prosthetic heart valves—to name only
a few examples.

Ventricular flow can be studied using clinical imaging
techniques and image-based computational fluid dynamics
(CFD). Ventricular flow measurements using clinical imag-
ing have been summarized elsewhere [11]. In this review, we
focus on CFD approaches, the image-based data required

for CFD from the experiments, and finally combining flow
obtained from the CFD methods with cardiac ultrasound
flowmeasurements (Figure 1).This review paper is organized
as follows. In Section 2.1, we present numerical methods for
flow simulations based on the motion of the LV boundary.
In Section 2.2, we focus on ultrasound imaging and review
current options for analysis of boundary conditions and
blood flow tracking inside cardiac chambers, with particular
attention to the emerging echo-PIV. In Section 2.3, the
methods for combining the flowfield obtained fromCFD and
experimental measurements are discussed. In Section 3.1, we
critically review the previous work on simulations of the LV,
and we discuss limitations and summarize future research in
Section 3.2.



Computational and Mathematical Methods in Medicine 3

2. Materials and Methods

2.1. Numerical Methods for Simulating LV Flow Based on LV
Wall Motion. Ventricular flow is mainly driven by motion of
the myocardium, a dynamically evolving surface boundary
inside the LV. A major challenge in the numerical simulation
is to satisfy the boundary conditions on the LV surface
that is continuously changing in time. The methods for
handling large deformations/movements of the boundary
can be broadly categorized into two classes: (a) boundary-
conforming techniques; and (b) fixed grid techniques. In
boundary-conforming techniques the grid moves with the
moving boundary, whereas, in fixed grid techniques, the
grid is not moving and effects of the moving boundaries
are transferred onto the closest fixed grid nodes that are
in the vicinity of the moving boundary. The boundary-
conforming techniques can retain good grid resolution
near the moving boundaries. Consequently, they typically
require fewer grid points relative to the fixed grid techniques
to achieve the same level of resolution near the moving
boundaries. Large boundary movements, however, in the
boundary-conforming approaches create highly skewed grids
that reduce the convergence and accuracy of the numerical
scheme [12, 13]. To avoid highly skewed grids, computation-
ally expensive remeshing of the grid may be required [12–15].
In what follows we examine these two classes of methods in
more detail.

2.1.1. Boundary-Conforming Techniques. In boundary-conf-
orming methods the computational grid is fitted to and
moves/deforms with, the moving boundary. The grid move-
ment is taken into account in the formulation of the Navier-
Stokes equation by incorporating the grid velocity terms,
which is referred to as the Arbitrary Lagrangian-Eulerian
(ALE) formulation [16]. A critical condition for accurate
solutions of the ALE equations is to satisfy the geometric
conservation law in discrete form [17–19].Themethod, which
was implemented in the commercial software STAR-CD,
has been applied to simulate blood flow in the LV using
geometrical information obtained from magnetic resonance
imaging (MRI) images [20]. However, due to the low frame
rate of the MRI images (10 frames per cycle) the LV geom-
etry reconstruction was approximate and did not provide a
smooth flow curve. Furthermore, Cheng et al. [21] used the
ADINA commercial software with the ALE formulation to
simulate the filling phase of an LVwith a simplified geometry.
This simulation, due to the simplified geometry and wall
properties, did not yield a realistic LV motion [21].

The ALE method works well for problems with relatively
simple geometries and moderate deformations, such as those
encountered in compliant blood vessels. However, obtain-
ing smooth computational meshes at every time step for
problems with significant structural deformations is difficult,
and frequent remeshing may be the only option [14, 15]. For
instance, Saber et al. [20] created 1100 meshes from an orig-
inal set of ten MRI images using linear interpolation. Such
mesh creation is quite time consuming and computationally
expensive. Due to these inherent difficulties, the ALEmethod

is not the most attractive option for simulating ventricular
flows, and most studies have employed fixed grid techniques.

2.1.2. Fixed Grid Techniques. The fixed grid techniques are of
particular interest in problems involving large deformations
and movements of the boundary. Many fixed grid techniques
have been developed in the past decades, including the
immersed boundary (IB) and immersed interface methods
[22–24], the level set method [25–27], the fictitious domain
method [28, 29], and the cut-cell method [30]. In such
methods the entire fluid computational domain is discretized
with a single, fixed, nonboundary-conforming grid while the
immersed solid domain is typically discretizedwith a separate
set of the Lagrangian nodes, which are tracked individually.
The effect of a moving immersed body on the fluid is
accounted for by adding, either explicitly or implicitly, body
forces to the governing equations of motion on the nodes in
the vicinity of the immersed body [23]. Identifying the fluid
nodes in the vicinity of the solid bodies and calculating body
forces, either implicitly or explicitly, add to the computational
cost of the method relative to the ALEmethod. Furthermore,
the fixed grid methods need relatively high resolution in the
regions where the boundaries aremoving. If themovement of
the boundaries is large, the size of the high resolution region
must also be large, which adds to the computational cost.
Nevertheless, these computational costs are typically smaller
than the cost of remeshing or moving the mesh with the
boundary-conforming methods.

From the different fixed grid methods developed, the
immersed boundary, pioneered by Peskin [31–33], was first
developed to simulate the flow through the heart and the
heart valves. However, the original IB method does not
capture the interface as a sharp edge. It smears the interface
by distributing the body forces over several grid nodes in
the vicinity of the immersed boundary.The fictitious domain
method [28] is another diffused interfacemethod, which uses
a fixed grid and has been applied to heart valve simulations
[34–40]. In this method, which is similar to Peskin’s IB
method, the immersed solid is free to move within the fluid
mesh, but the two domains are coupled together at the
solid/fluid interface through a Lagrange multiplier (or local
body force) [40]. Amajor issuewith diffuse interfacemethods
is that they cannot yield accurate results for the viscous
shear stresses on the solid boundary due to the smearing
of the boundary, and excessive resolution is required to
achieve accurate shear stresses. To solve this issue, a series
of sharp-interface IB methods have been proposed [41–45].
IBmethods and their diffuse or sharp-interface variations are
reviewed in [23]. The sharp-interface IB methods satisfy the
boundary conditions exactly at the position of the immersed
boundary and do not have the smearing effect [41–43].
Therefore, the majority of recent LV [7, 46–50] and heart
valve [45, 51–56] simulations have been carried out using this
method.

2.2. Ultrasound Methods for Cardiac Tissue Motion and Flow
Measurements. Patient-specific data on cardiac tissuemotion
and flow measurements is essential for image-based CFD
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simulations to provide realistic boundary conditions. This is
due to the fact that the accuracy and realism of such CFD
simulations strongly depend on the specifications along the
heart wall boundary, including the location, geometry, and
velocity of the heart wall. Such boundary conditions can
only be provided by the experimental measurements or a
mathematical model of the LV wall. However, mathematical
models of the heart wall are still not sufficiently accurate to be
used for specific patients [57], and so those approaches are not
reviewed. The cardiac flow measurement methods described
here are useful for validating CFD simulations and gaining
confidence in the validity of the simulated flow field.

2.2.1. Cardiac Border Tracking. Determination of boundary
conditions over the duration of the cardiac cycle requires
tracking of the inner (endocardial) border of the muscle
defining the analyzed cardiac cavity, such as the LV. Manual
delineation of the endocardial border is currently involved in
most studies, at least as an initial, user-determined estimate
of the boundary at a given time point. Software tools, such as
Omega Flow (Siemens) [58] to name only one of the various
professional or custom software applications, are available to
complete border tracking throughout the rest of the cardiac
cycle.

2.2.2. Echo-PIV. In vivo visualization of complex spatial
features of intracardiac flow can be achieved using echo-
PIV, a term initially coined by Kim et al. [59, 60]. Echo-PIV
typically utilizes commercially available contrast particles,
such as albumin-shell (Optison) or lipid-shell (Definity)
microbubbles. Based on the authors’ experience, microbub-
bles of air can serve as echo-contrast particles in some exper-
imental settings as well.The particles are tracked by computer
software between individual ultrasound image frames for
sequences of high-frame-rate, brightness- (B-) mode, and 2D
ultrasonographic images [3, 6]. To our knowledge, echo-PIV
utilizing 3D spatial tracking of microbubbles has not been
validated at the time of preparing this paper. Computer track-
ing of microbubble displacement can be accomplished with
processing software designed for optical-PIV [6]; however,
a software program specific to echo-PIV is currently under
development [58].

Echo-PIV is minimally invasive (injection or infusion
of diluted microbubbles), relatively inexpensive, does not
involve ionizing radiation, and offers high temporal resolu-
tion combinedwith suitable 2D spatial resolution, when com-
pared to existing techniques. Information regarding several
commonly used intracardiac flow visualization techniques is
detailed by Sengupta et al. [11]; however, aside from echo-
PIV, only phase encoded MRI is commonly used in CFD
analyses for boundary and flow visualization data. Cardiac
MRI provides good 3D spatial resolution with the ability
to measure a fully 3D velocity field. However, the data
are time-averaged over many cardiac cycles, and, therefore,
real-time flow patterns, particularly turbulent motion and
multidirectional flow, are diminished or lost. Additional
limitations include the high cost of both MRI equipment and
tests and the long data acquisition time (∼20minutes) [11, 60].

The primary constraint of current echo-PIV is the
inability to measure out-of-plane particle motion; thus, only
2D velocity fields can be generated. However, recent advance-
ments in 3D ultrasound equipment or the use of multiplanar
acquisition techniquesmay represent a step towards resolving
this problem [61]. Characteristics of the ultrasound system
available for an echo-PIV analysis will determine both the
temporal and spatial resolutions. Recent experimental studies
have demonstrated that frame rates as high as 500 fps with an
axial resolution of 1.2mm and a lateral resolution of 1.7mm
are achievable and would allow velocity measurements up to
50 cm/s [62]. Additional limitations include distortion due
to the scan conversion process for B-mode images, sector
size width (typically less than 45 degrees) and the possible
underestimation of high velocities in physiological flows
[11, 63].

Extensive validation of echo-PIV has been conducted
both in vitro [59, 60, 62, 64, 65] and in vivo [3, 66]. Results
have demonstrated that echo-PIV measurements are in close
agreement with theoretical and experimental flow analy-
ses, including flow patterns that simulate intraventricular
flow [3, 63]. Furthermore, the usefulness of echo-PIV as a
diagnostic technique has been demonstrated in a clinical
setting. Recently, Faludi et al. [58] demonstrated the ability
of echo-PIV to distinguish intraventricular flow patterns in
healthy and dysfunctional hearts, noting markedly different
flow patterns for patients with implanted mechanical heart
valves. They determined that LV energy dissipation was
significantly increased in patients with the mechanical valves
and theorized that echo-PIV may be used to optimize valve
replacement surgery. Additional advancements in clinical
applications of echo-PIV include the analysis of the diastolic
vortex as an indicator of cardiac health. During the diastolic
(i.e., LV filling) phase of the cardiac cycle, formation of a
3D donut-shaped flow vortex has been linked to natural
optimization of the intraventricular swirling flow [7]. An
example of the intraventricular vortex, visualized in vivo
using echo-PIV, is shown in Figure 1.

Another approach for intracardiac flow vortex analysis,
which does not require the use of PIV, has been introduced
by Gharib and his colleagues [67], who established optimal
fluid dynamic conditions for vortex development through
quantitative analysis of vortex formation time (VFT) and
demonstrated a universal timescale of VFT [68]. They also
documented the role of VFT in optimization of biological
fluid transport [69] and showed the possible utility of VFT
as an index of cardiac health [67]. Using VFT, Kheradvar
et al. [70] studied the relationship between transmitral vortex
formation and abnormal diastolic filling patterns in patients
with diastolic dysfunction and pointed out the importance
of better understanding vortex formation. Reports by others
have documented that cardiac dysfunction, such as moderate
elevation of LV afterload [71, 72] or restrictions of the
LV by pericardial adhesions [73], negatively impacts vortex
formation conditions. One study with VFT also suggested
that patients with Alzheimer’s disease may have impaired
diastolic filling efficiency compared to age-matched control
subjects [74].
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2.3. Combining Experimental Flow Measurements with
Numerical Solutions. As reviewed above, a number of
numerical approaches have been developed and applied to
the modeling of blood flow in the LV. An obvious question
then is why should another method be considered? The
weighted least-squares finite element method (WLSFEM)
has three relatively unique attributes that make the approach
particularly appealing for simulating the complex flows
inside the moving LV, especially in settings where patient-
specific blood flow data are available. First, withmost existing
methods, as the computational mesh is refined, the computa-
tional time increases roughly quadratically with the number
of grid points. The WLSFEM, however, has the potential to
offer optimal scalability, that is, the computational time is
directly proportional to the number of grid points for any
number of points [75–83]. This optimal scalability is due to
the fact that the least-squares approach was designed from
the beginning to work with multilevel or multi-grid linear
solvers such as algebraic multi-grid. As a result, while other
methods may require the same (or even less) computational
time than the WLSFEM on today’s moderately refined grids,
the WLSFEM should require less computational time on
highly refined meshes due to better scalability.

Second, in the WLSFEM, the approximation problem is
written as an optimization problem: the goal is to minimize
the value of a functional for a finite element approximation
space. The value of the functional is a sharp measure of the
error everywhere in the domain [78, 84–90]. The value of
this functional can be used to (1) determine regions in which
the approximate solution does not satisfy the governing
equations of conservation of mass and momentum; (2)
generate new computational grids that have more refinement
in regions that tend to have larger errors; and (3) compare
two approximate solutions and determine the one that better
satisfies the governing equations in the functional norm.

The third advantage of the WLSFEM approach is that
it enables a straightforward and flexible platform for assim-
ilating experimental data into the process of solving the
governing equations [91–93]. As a result, one can obtain an
approximate solution that satisfies the model equations and
also approximately matches patient-specific data. Another
way of stating this advantage is that the WLSFEM approach
allows one to use the governing equations (e.g., the Navier-
Stokes equations or other non-Newtonian model equations)
to interpolate and extrapolate the experimental data into a
full 3D field that fills the entire LV. This full 3D data can
then be used to calculate accurate flow properties that are
not possible to fully calculate with just 2D or 1-dimensional
data.

TheWLSFEMrequires defining new variables and rewrit-
ing the Navier-Stokes equations as a system of first-order
equations. A number of different first-order systems have
been derived by others [78, 85, 89, 90, 94–96], but the focus
here is on a system that provides better mass conservation
[82].The improved mass conservation system is based on the
identity
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1
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where (𝑤/ℎ)‖ ⋅ ‖2
0,Γ

is the weighted 𝐿2-norm along the 2D
boundary surfaces (𝜕Ω

1
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2
). The experimental plane is simply a 2D

cross-section that is typically somewhere near the middle
of the 3D domain, whereas the other boundaries are all
on the surface of the 3D domain. The functions 𝑔

1
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are the given boundary or PIV data that is to be weakly
matched by the numerical approximation of the solution.
For example, 𝑔

1
is set to the surface displacement rate along

no-slip boundaries. The spatial location of the PIV data, 𝑔
2
,

does not need to be the same as the computational mesh
node locations. The data can be located anywhere within the
computational domain.

The boundary functional weights,𝑤, should be chosen so
that the weight value is larger in the regions where the given
data is known more accurately and smaller in the regions
where the data contains more noise. In [92] it was shown that
the boundary functional weight should be chosen by
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where 𝜎 is the standard deviation in the given data, which can
often be provided by the PIV analysis software or estimated
from time series data.

When modeling blood flow in the LV or any fluid-
structure interaction problem, the shape of the fluid domain
is continuously changing. Many numerical strategies exist for
addressing the changing domain shape, including the gener-
ation of a new mesh every time step or grid mapping using
equations such as the Winslow generator [83, 97]. Another
straightforward method is to solve a compressible elasticity
problem over the fluid domain and use the solution from the
elasticity problem to move the nodes of the finite element
mesh. This approach is often referred to as a pseudosolid
domain mapping technique [98, 99].

The use of the WLSFEM for the simulation of flow in the
LV is illustrated in Figure 2 The LV is approximated using
a fully 3D ellipsoid geometry with moving wall and details
of the mathematical model are available in [91]. Velocity
data from echocardiographic PIV can be assimilated into the
simulation, and Figure 2 shows the 3D velocity field for a
single plane early in the filling stage and later during the
ejection stage both with and without assimilated PIV data.
Cursory visual inspection of the velocity field reveals only
small differences between the simulation with and without
the PIV data. This is a good indication that the model is
at least somewhat accurate. If the PIV data had a dramatic
impact on the velocity field, it would indicate that the model
prediction was significantly different from the experimental
data. In this case, however, the model prediction is consistent
with the experimental data. A detailed inspection of the effect
of assimilating the PIV data reveals some small differences.
Specifically, the model prediction with the PIV data included
has a stronger vortex forming near the middle of the domain
during the filling stage and a slightly weaker vortex during the
ejection stage.

The development of any mathematical model requires
that assumptions aremade. In the case of the LVmodel shown
in Figure 2, an assumption was made regarding the shape of
the LV, and valves were not included in the model. It is likely
that theweaker vortex during filling in the simulationwithout
PIV data is a result of modeling without the valves. As the
blood flows through the valve into the LV, drag from the valve
flaps would enhance the formation of a vortex. When the
PIV data are assimilated into the simulation, it is possible to
partially recover the effects of the valve, and the simulation
predicts a stronger vortex. In other words, the assimilation
of PIV data allows the simulation to partially overcome
inaccuracies that are a result of modeling assumptions. This
fact makes data assimilation a very attractive technique,
whenever experimental data are available.

3. Ventricular Fluid Dynamics Simulations
and Related Flow Physics

3.1. State-of-the-Art. The earliest simulation of ventricular
flow dates back to the late 1970s with the pioneering work of
Peskin using the immersed boundary method [31]. The heart
model was extended to 3D by Peskin and McQueen [33] and

With PIVNo PIV 

Left 
ventricular 
inflow jet

Left 
ventricular 
outflow tract

Figure 2: Simulation of a filling flow jet entering the left ventricle
(top panels) and flow vortex in the inflow region along with an
ejection jet in the left ventricular outflow tract (bottom panels) by
using the weighted least-squares finite element method (WLSFEM),
without the assimilation of particle image velocimetry (PIV) data
(left panels) and with assimilated data (right panels). Blue, green,
and red colors indicate low, mid, and high flow velocities, respec-
tively.

to the physiological Reynolds numbers [100]. In Peskin’s heart
model, the cardiac tissue is modeled as a system of elastic
fibers, which add forces to the fluid equations of motion if
stretched or contracted. As stated previously, the forces are
spread over several grid nodes near the boundary (diffuse
interface), which hinders accurate calculations of the shear
stress. Furthermore, the motion of the heart in this model
is not prescribed based on experimental measurements,
and only gross features of the motion are reproduced; that
is, patient-specific simulations are not possible with this
method.

Saber et al. [20] carried out the first patient-specific LV
flow simulations based onMRI images using the commercial
software Star-CD with the ALE formulation. Long et al.
[101] also carried out intraventricular flow simulations based
on MRI images using the commercial software CFX4 with
an ALE formulation and studied the influence of inflow
boundary conditions on the solution [101]. They generated
meshes with about 54,000 grid nodes for 46 time instants
in a cycle from 16 original MRI data [101]. Cheng et al. [21]
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used the commercial software ADINAwith ALE formulation
to simulate the flow in the LV. In Cheng et al. [21] the LV
has a simplified geometry with about 100,000 elements. All
the above simulations, however, could not provide additional
insights into the physics of the ventricular flow due to their
low temporal and spatial resolutions. The purpose of these
early simulations was mostly to show the feasibility of image-
based numerical simulations of the LV and not investigating
the ventricular flow physics.

Domenichini et al. [46] carried out 3D simulations of the
filling phase in a model with symmetric LV geometry using
a sharp-interface immersed boundary method. They found
that the dominant flow feature during the filling phase is a
vortex structure of a single ring connected to the incomplete
wake-induced ring in the boundary layer [46]. In a separate
study, these investigators also showed that the physiological
placement of the mitral valve creates a vortex during the
filling phase that enhances ejection during LV contraction
and that an unnatural asymmetry of the inflow could reduce
the pumping efficiency of the LV by 10% [7]. They further
verified the vortex structure using an experimental model
of the LV and comparing their numerical results against
the flow measurements [47]. Finally, they showed that the
replacement of the natural valve (symmetric inflow toward
the center of the LV) with a prosthetic implant (asymmetric
inflow) can cause the reversal of the vortical motion in the
LV, which can cause higher dissipation of the energy for
pumping [49]. Note that in these studies [7, 46, 47, 49] the LV
geometry was assumed to be symmetric (prolate sphere) with
the prescribed kinematics needed to create a physiological
flow waveform.

Recently, Schenkel et al. [102] used the commercial
software Star-CD with ALE formulation to simulate the
flow in the LV. In Schenkel el al. [102], the LV geometry
for 850 time steps was reconstructed from MRI images (17
frames per cycle) using spline interpolation. Their simu-
lations also show the vortex ring development during the
filling phase. However, the calculated flow field was found to
be quite sensitive to the inflow boundary conditions [102].
Recent simulations of Zhenga et al. [50] have used the
sharp-interface immersed boundary to simulate a simplified,
symmetric LV. They have simulated dysfunctional LV cases
by changing the ejection fraction ratio in their model and
found that such changes affect the vortex dynamics inside
the LV. Le and Sotiropoulos [48] have used a sharp-interface
immersed boundary method to study the flow in an LV
reconstructed from MRI data. They prescribe the motion of
the LV based on a cell-based activation methodology, which
yields physiologic kinematics [48]. Their simulated flow field
shows the development of the mitral vortex ring and the
trailing vortex tubes, which originate from the heart wall,
and their impingement on the wall at the end of the diastolic
phase.

3.2. Current Limitations of Simulations. As can be observed
from the previous section, in all of the LV simulations
published to date, the heart valves are not resolved; that is,
they are replaced with simplified inflow/outflow conditions.

Simulated
aortic valve
bioprosthesis

Left ventricle

Figure 3: Simulation of the left ventricle and a bioprosthetic heart
valve in the aortic position. The 3D vortical structures downstream
of the valve are visualized using isosurfaces of q-criteria, whereas the
flow inside the LV is visualized using velocity vectors.

However, several studies have argued the importance and
sensitivity of the solution to the inflow condition [101, 102].
Furthermore, the direction (angle) of the inflow has been
shown to affect the vortex dynamics inside the heart and
even reverse its direction of motion [49]. The heart valves
not only affect the direction of the mitral jet into the LV
but also can create vortex shedding that affects the vortex
dynamics inside the LV. Development of methods capable of
resolving the effects of heart valves on the vortex dynamics
inside the LV is underway. Specifically, the sharp-interface
immersed boundary method [45] over a single curvilinear
grid has been extended to overset grids [103] (Figure 3).
In overset grids, multiple grids can be arbitrarily overlaid
on each other, and the information at their grid interfaces
are prescribed by suitable interpolation from the solution
of the other grids; for example, in Figure 3 the aorta is
discretized with a curvilinear body-fitted grid, while the LV
domain is discretized with a Cartesian grid. The LV and
heart valves are placed as immersed boundaries onto the
overset grids [103]. The motion of the LV is prescribed while
the motion of the trileaflet valve is calculated through a
fluid-structure interaction coupling [104]. The 3D vortical
structures are visualized in the aorta downstream of the valve
using the isosurfaces of q-criteria (based on definition, q-
criteria identify the 3D vortices where vorticity is higher than
strain rate [105]) and using velocity vectors in the LV in
Figure 3.

In the simulation pictured in Figure 3, the motion of the
LV was prescribed based on a model [48] and not based on
experimental measurements. Many other simulations have
used simple models instead of patient-specific data as well [7,
32, 33, 46–49]. However, the mathematical modeling of heart
motion involves the complex interaction of the electrical
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excitation, muscle activity, LV tissue properties, surround-
ing tissue properties, and the blood inside the heart [57].
The mathematical modeling of the heart motion has yet
to be performed to a degree of sophistication to handle
patient-specific cases, and until that day, they suffer from
low accuracy relative to direct measurements of the heart.
On the other hand, image-based simulations have typically
used MRI data to construct the shape and motion of the LV
[20, 101, 102]. However, the temporal resolution of MRI data
in these simulations was relatively low (9–17 frames/s) [20,
101, 102]. Echocardiography could be a method of choice to
overcome this issue.This imaging technique has considerably
higher temporal resolution compared to MRI. Based on the
authors’ practical experience, depending on the depth and
width of scanning, the current clinical echocardiography
systems can routinely achieve 100–200 frames/s in a sector
B-mode setting.

Another issue that requires attention is automating the
generation of a 3D geometry from experimental data. Usually
a few cross-sections are available from imaging data, which
requires interpolation for the 3D geometry reconstruction
from the 2D slices. Currently, most of this process is done
manually or semiautomatically in computer-aided design
software, which is quite time consuming. Interpolation
strategies are required to reconstruct the geometry in time
instants, when experimental image frames are not available.
Automating this process would save time and minimize or
eliminate subjectivity of the currently required user inter-
action. Finally, the uncertainty in the reconstruction of the
3D geometry from imaging data including cycle-to-cycle
LV motion variability, subject motion during the imaging
process, anduncertainty in the location of the imaging planes,
needs to be quantified to support clinical decision making in
the future.

The simulations to date have used boundary conditions
at the LV wall. However, in many cases, simultaneous flow
measurements in a few 2D planes are also available. Incor-
porating the sparse flow measurements into the 3D simula-
tions to augment boundary data will increase the accuracy
and realism of the simulations, as suggested in Figure 2
earlier, or enable to incorporate physical and physiological
phenomena that are not explicitly included in the math-
ematical model, such as wall roughness (trabeculation) or
valves.

In summary, we propose the following developments to
advance the image-based LV simulations.

(1) Methods capable of simulating the LV with heart
valves resolved.

(2) Higher temporal resolution for experimental and
clinical imaging data.

(3) Automated generation of 3D geometry for CFD anal-
ysis from imaging data and quantifying the uncer-
tainty.

(4) Incorporating actual (even if sparse) flow measure-
ments into the numerical solution of the 3D cardio-
vascular fluid dynamics.
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