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Hyperspectral fluorescence imaging is gaining popularity for it enables multiplexing of spatio-

temporal dynamics across scales for molecules, cells and tissues with multiple fluorescent

labels. This is made possible by adding the dimension of wavelength to the dataset. The

resulting datasets are high in information density and often require lengthy analyses to

separate the overlapping fluorescent spectra. Understanding and visualizing these large

multi-dimensional datasets during acquisition and pre-processing can be challenging. Here

we present Spectrally Encoded Enhanced Representations (SEER), an approach for improved

and computationally efficient simultaneous color visualization of multiple spectral compo-

nents of hyperspectral fluorescence images. Exploiting the mathematical properties of the

phasor method, we transform the wavelength space into information-rich color maps for RGB

display visualization. We present multiple biological fluorescent samples and highlight SEER’s

enhancement of specific and subtle spectral differences, providing a fast, intuitive and

mathematical way to interpret hyperspectral images during collection, pre-processing and

analysis.
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F luorescence hyperspectral imaging (fHSI) has become
increasingly popular in recent years for the simultaneous
imaging of multiple endogenous and exogenous labels in

biological samples1–5. Among the advantages of using multiple
fluorophores is the capability to simultaneously follow differently
labeled molecules, cells or tissues space- and time-wise. This is
especially important in the field of biology where tissues, proteins
and their functions within organisms are deeply intertwined, and
there remain numerous unanswered questions regarding the
relationship between individual components6. fHSI empowers
scientists with a more complete insight into biological systems
with multiplexed information deriving from observation of the
full spectrum for each point in the image7.

Standard optical multi-channel fluorescence imaging differ-
entiates fluorescent protein reporters through band-pass emission
filters, selectively collecting signals based on wavelength. Spectral
overlap between labels limits the number of fluorescent reporters
that can be acquired and background signals are difficult to
separate. fHSI overcomes these limitations, enabling separation of
fluorescent proteins with overlapping spectra from the endo-
genous fluorescent contribution, expanding to a fluorescent pal-
ette that counts dozens of different labels with corresponding
separate spectra7–9.

The drawback of acquiring this vast multidimensional spectral
information is an increase in complexity and computational time
for the analysis, showing meaningful results only after lengthy
calculations. To optimize experimental time, it is advantageous to
perform an informed visualization of the spectral data during
acquisition, especially for lengthy time-lapse recordings, and prior
to performing analysis. Such preprocessing visualization allows
scientists to evaluate image collection parameters within the
experimental pipeline as well as to choose the most appropriate
processing method. However, the challenge is to rapidly visualize
subtle spectral differences with a set of three colors, compatible
with displays and human eyes, while minimizing loss of infor-
mation. As the most common color model for displays is RGB,
where red, green, and blue are combined to reproduce a broad
array of colors, hyper- or multispectral datasets are typically
reduced to three channels to be visualized. Thus, spectral infor-
mation compression becomes the critical step for proper display
of image information.

Dimensional reduction strategies are commonly used to
represent multidimensional fHSI data10. One strategy is to con-
struct fixed spectral envelopes from the first three components
produced by principal component analysis (PCA) or independent
component analysis (ICA), converting a hyperspectral image to a
three-band visualization10–14. The main advantage of spectrally
weighted envelopes is that it can preserve the human-eye per-
ception of the hyperspectral images. Each spectrum is displayed
with the most similar hue and saturation for tri-stimulus displays
in order for the human eye to easily recognize details in the
image15. Another popular visualization technique is pixel-based
image fusion, which preserves the spectral pairwise distances for
the fused image in comparison to the input data16. It selects the
weights by evaluating the saliency of the measured pixel with
respect to its relative spatial neighborhood distance. These
weights can be further optimized by implementing widely applied
mathematical techniques, such as Bayesian inference17, by using a
filters-bank18 for feature extraction19 or by noise smoothing20.

A drawback to approaches such as Singular Value Decom-
position to compute PCA bases and coefficients or generating the
best fusion weights is that it can take numerous iterations for
convergence21. Considering that fHSI datasets easily exceed
GigaBytes range and many cross the TeraBytes threshold6, such
calculations will be both computationally and time demanding.
Furthermore, most visualization approaches have focused more

on interpreting spectra as RGB colors and not on exploiting the
full characterization that can be extracted from the spectral data.
Our approach is based on the belief that preserving most spectral
information and enhancing the distinction of spectral properties
between relevant pixels, will provide an ideal platform for
understanding biological systems. The challenge is to develop
tools that allow efficient visualization of multidimensional data-
sets without the need for computationally demanding dimen-
sionality reduction, such as ICA, prior to analysis.

In this work, we build maps based on Phasors (Phase Vectors).
The Phasor approach to fluorescence microscopy has multiple
advantages deriving from its properties for fluorescent
signals22–25. After transforming the spectrum at each pixel into its
Fourier components, the resulting complex value is represented as
a two-dimensional histogram where the axes represent the real
and imaginary components. Such histogram has the advantage of
providing a representative display of the statistics and distribu-
tions of pixels in the image from a spectral perspective, simpli-
fying identification of independent fluorophores. Pixels in the
image with similar spectra generate a cluster on the phasor plot.
While this representation is cumulative across the entire image,
each single point on the phasor plot is easily remapped to the
original fluorescent image26–29.

Exploiting the advantages of the phasor approach, Hyper-
Spectral Phasors (HySP) has enabled analysis of 5D hyperspectral
time-lapse data semi-automatically as similarly colored regions
cluster on the phasor plot. These clusters have been characterized
and exploited for simplifying interpretation and spatially lossless
denoising of data, improving both collection and analysis in low-
signal conditions29. Phasor analysis generally explores the 2d
histogram of spectral fingerprints by means of geometrical
selectors22,23,25,27,28,30, which is an effective strategy but requires
user involvement. While capable of imaging multiple labels and
separating different spectral contributions as clusters, this
approach is inherently limited in the number of labels that can be
analyzed and displayed simultaneously. Prior works directly uti-
lize phase and modulation for quantifying, categorizing, and
representing features within Fluorescence Lifetime and Image
Correlation Spectroscopy data31–33. Our method differs from
previous implementations22,23,25,27,28,30, as it focuses instead on
providing a mathematically constructed, holistic preprocessing
visualization of large hyperspectral data.

The solution we propose extracts from both the whole
denoised phasor plot and image to reconstruct a one shot view of
the data and its intrinsic spectral information. Spectrally Encoded
Enhanced Representations (SEER) is a dimensionality reduction-
based approach, achieved by utilizing phasors, and automatically
creating spectrally representative color maps. The results of SEER
show an enhanced visualization of spectral properties, repre-
senting distinct fluorophores with distinguishable pseudo-colors
and mathematically highlighted differences between intrinsic
signals during live imaging. SEER has the potential of optimizing
the experimental pipeline, from data collection during acquisition
to data analysis, greatly improving image quality and data size.

Results
Spectrally Encoded Enhanced Representations (SEER). The
execution of SEER has a simple foundation. Each spectrum is
assigned a pseudo-color, based on its real and imaginary Fourier
components, by means of a reference color map.

This concept is illustrated in detail in Fig. 1 using an example
of Zebrabow34 embryo dataset, where cells within the sample
express different ratios of cyan, yellow, and red fluorescent
proteins, resulting in a wide-ranging pallet of discrete spectral
differences. The data are acquired as a hyperspectral volume (x, y,
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z, λ) (Fig. 1a), providing a spectrum for each voxel. The spectra
obtained from multiple regions of interest are complex, showing
both significant overlap and the expected difference in ratios
(Fig. 1b). Discriminating the very similar spectra within the
original acquisition space is challenging using standard multi-
spectral dataset visualization approaches (Fig. 1c).

SEER was designed to create usable spectral contrast within the
image by accomplishing five main steps. First, the Sine and
Cosine Fourier transforms of the spectral dataset at one harmonic
(usually 1st or 2nd owing to Riemann surfaces) provide the
components for a 2D phasor plot (Fig. 1d). The phasor
transformation compresses and normalizes the image informa-
tion, reducing a multidimensional dataset into a 2D-histogram
representation and normalizing it to the unit circle.

Second, the histogram representation of the phasor plot
provides insight on the spectral population distribution and
improvement of the signal through summation of spectra in the
histogram bins. Pixels with very similar spectral features, for
example expressing only a single fluorophore, will fall within the
same bin in the phasor plot histogram. Because of the linear
property of the phasor transform, if an image pixel contains a
mixture of two fluorophores, its position on the phasor plot will
lie proportionally along the line connecting the phasor coordi-
nates of those two components. This step highlights importance
of geometry and distribution of bins in the phasor representation.

Third, spatially lossless spectral denoising, previously pre-
sented29, is performed 1–2 times in phasor space to reduce
spectral error. In short, median filters are applied on both the Sine

and Cosine transformed images, reducing the spectral scatter
error on the phasor plot, while maintaining the coordinates of the
spectra in the original image (Fig. 1e). Filters affect only the
phasor space, producing an improvement of the signal.

Fourth, we designed multiple SEER maps exploiting the
geometry of phasors. For each bin, we assign RGB colors based
on the phasor position in combination with a reference map
(Fig. 1f). Subtle spectral variations can be further enhanced with
multiple contrast modalities, focusing the map on the most
frequent spectrum, the statistical center of mass of the
distribution or scaling the colors to the extremes of the phasor
distribution (Fig. 1g).

Finally, colors in the original dataset are remapped based on
SEER results (Fig. 1h). This permits a dataset in which spectra are
visually indistinguishable (Fig. 1a–c) to be rendered so that even
these subtle spectral differences become readily discernible
(Fig. 1i). SEER rapidly produces three channel color images
(Supplementary Fig. 1) that approximate the visualization
resulting from a more complete spectral unmixing analysis
(Supplementary Fig. 2).

Standard reference maps. Biological samples can include a
multitude of fluorescent spectral components, deriving from
fluorescent labels as well as intrinsic signals, each with different
characteristics and properties. Identifying and rendering these
subtle spectral differences is the challenge. We found that no one
rendering is sufficient for all cases, and thus created four
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Fig. 1 Spectrally Encoded Enhanced Representations (SEER) conceptual representation. a A multispectral fluorescent dataset is acquired using a
confocal instrument in spectral mode (32 channels). Here we show a Tg(ubi:Zebrabow)34 dataset where cells contain a stochastic combination of cyan,
yellow, and red fluorescent proteins. b Average spectra within six regions of interest (colored boxes in a) show the level of overlap resulting in the sample.
c Standard multispectral visualization approaches have limited contrast for spectrally similar fluorescence. d Spectra for each voxel within the dataset are
represented as a two-dimensional histogram of their Sine and Cosine Fourier coefficients S and G, known as the phasor plot. e Spatially lossless spectral
denoising is performed in phasor space to improve signal29. f SEER provides a choice of several color reference maps that encode positions on the phasor
into predetermined color palettes. The reference map used here (magenta selection) is designed to enhance smaller spectral differences in the dataset.
g Multiple contrast modalities allow for improved visualization of data based on the phasor spectra distribution, focusing the reference map on the most
frequent spectrum, on the statistical spectral center of mass of the data (magenta selection), or scaling the map to the distribution. h Color is assigned to
the image utilizing the chosen SEER reference map and contrast modality. i Nearly indistinguishable spectra are depicted with improved contrast, while
more separated spectra are still rendered distinctly.
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specialized color map references to enhance color contrast in
samples with different spectral characteristics. To simplify the
testing of the color map references, we designed a Simulated
Hyperspectral Test Chart (SHTC), in which defined areas contain
the spectra we obtained from CFP, YFP, and RFP zebrafish
embryos. Each section of the test chart offers different image
contrast, obtained by shifting the CFP and RFP spectra maxima
position with respect to the YFP spectrum (Supplementary Fig. 3,
see Methods). We render the SHTC in grayscale image and with
SEER for comparison (Fig. 2a). These representations can be
rapidly shown separately to determine which has the highest
information content.

A reference map is defined as an organization of the palette
where each spectrum is associated with a color based on its phasor
position. The color distribution in each of the reference maps is a
function of the coordinates of the phasor plot. In the angular map
(Fig. 2b), hue is calculated as a function of angle, enhancing
diversity in colors when spectra have different center wavelengths
(phases) on the phasor plot. For the radial map (Fig. 2c), we assign
colors with respect to different radii, highlighting spectral
amplitude and magnitude. The radial position is, in general,
related to the intensity integral of the spectrum, which in turn can
depend on the shape of the spectrum, with the null-intensity
localizing at the origin of the plot (Supplementary Fig. 4). In our
simulation (Fig. 2c), the colors obtained with this map mainly
represent differences in shape, however, in a scenario with large

dynamic range of intensities, colors will mainly reflect changes in
intensity, becoming affected, at low signal-to-noise, by the
uncorrelated background (Supplementary Fig. 5). In the gradient
ascent and descent models (Fig. 2d, e), the color groups differ
according to angle as seen in the angular map with an added
variation of the color intensity strength in association with
changes in the radius. Gradient maps enhance similar properties
as the angular map. However, the gradient ascent (Fig. 2d) map
puts a greater focus on distinguishing the higher intensity spectra
while de-emphasizing low intensity spectra; whereas, the gradient
descent (Fig. 2e) map does the opposite, highlighting the spectral
differences in signals with low intensity. The complementary
attributes of these four maps permits renderings that distinguish a
wide range of spectral properties in relation to the phasor
positions. It is important to note that the idea of Angular and
Radial maps have been previously utilized in a variety of
applications and approaches32,33 and are usually introduced as
Phase and Modulation, respectively. Here, we have recreated and
provided these maps for our hyperspectral fluorescence data as
simpler alternatives to our more adaptable maps.

The standard reference maps simplify comparisons between
multiple fluorescently labeled specimens as the palette represen-
tation is unchanged across samples. These references are centered
at the origin of the phasor plot, hence their color distributions
remain constant, associating a predetermined color to each
phasor coordinate. Fluorophores positions are constant on the
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decrease in the signal-to-noise generally results in shifts towards the origin on the phasor plot. As a result, this map highlights spectral amplitude and
magnitude, and is mostly insensitive to wavelength changes for the same spectrum. d The gradient ascent map enhances spectral differences, especially
within the higher intensity regions in the specimen. This combination is achieved by adding a brightness component to the color palette. Darker hues are
localized in the center of the map, where lower image intensities are plotted. e The gradient descent map improves the rendering of subtle differences in
wavelength. Colorbars for b, c, d, e represent the main wavelength associated to one color in nanometers. f The tensor map provides insights in statistical
changes of spectral populations in the image. This visualization acts as a spectral edge detection on the image and can simplify identification of spectrally
different and infrequent areas of the sample such as the center of the SHTC. Colorbar represents the normalized relative gradient of counts.
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phasor plot29, unless their spectra are altered by experimental
conditions. The ability of the standard reference maps to capture
either different ratios of labels or changes in a label, such as a
calcium indicator, offers the dual advantage of providing a rapid,
mathematically improved overview and simplifying the compar-
ison between multiple samples.

Tensor map. The SEER approach provides a straightforward
means to assess statistical observations within spectral images. In
addition to the four standard reference maps, we designed a
tensor map that recolors each image pixel based on the gradient
of counts relative to its surrounding spectra (Fig. 2f). Considering
that the phasor plot representation is a two-dimensional histo-
gram of real and imaginary Fourier components, then the mag-
nitude of each histogram bin is the number of occurrences of a
particular spectrum. The tensor map is calculated as a gradient of
counts between adjacent bins, and each resulting value is asso-
ciated a color based on a color map (here we use a jet color map).

The image is recolored according to changes in spectral
occurrences, enhancing the spectral statistical fluctuations for
each phasor cluster. The change in frequency of appearance can
provide insights in the dynamics of the population of spectra
inside dataset. A visible result is a type of spectral edge detection
that works in the wavelength dimension, facilitating detection of
chromatic changes in the sample. Alternatively, tensor map can
aid in identifying regions which contain less frequent spectral
signatures relative to the rest of the sample. An example of such a
case is shown in the upper left quadrant of the simulation (Fig. 2f)
where the center part of each quadrant has different spectrum
and appears with lower frequency compared with its
surroundings.

Modes (scale and morph). We have implemented two different
methods to improve our ability to enhance spectral properties:
scaled mode and morphed mode.

Scaled mode provides an adaptive map with increased color
contrast by normalizing the standard reference map extreme
values to the maximum and minimum phasor coordinates of
the current dataset, effectively creating the smallest bounding
unit circle that contains all phasor points (Fig. 3b). This
approach maximizes the number of hues represented in
the rendering by resizing the color map based on the spectral
range within the image. Scaled mode increases the difference in
hue and the contrast of the final false-color rendering. These
characteristics set the scaled mode apart from the standard
reference maps (Fig. 3a), which constantly cover the full phasor
plot area and eases comparisons between datasets. Scaled mode
sacrifices this uniformity, but offers spectral contrast stretching
that improves contrast depending on the values represented
in individual image datasets. The boundaries of the scaled
mode can be set to a constant value across different samples to
facilitate comparison.

Morph mode exploits the dataset population properties
captured in the image’s phasor representation to enhance
contrast. From the phasor histogram, either the most frequent
spectral signature or the center of mass (in terms of histogram
counts) are used as the new center reference point of the SEER
maps. We call this new calculated center the apex of the SEER.
The result is an adaptive palette that changes depending on the
dataset. In this representation mode, the edges of the reference
map are held anchored to the phasor plot circular boundary,
while the center point is shifted, and the interior colors are
linearly warped (Fig. 3c, d). By shifting the apex, contrast is
enhanced for datasets with off-centered phasor clusters. A full list
of the combination of standard reference maps and modes is

reported (Supplementary Figs. 6, 7) for different levels of spectral
overlap in the simulations and for different harmonics. The
supplement presents results for SHTC with very similar spectra
(Supplementary Fig. 3), using second harmonic in the transform
(see Methods), and for an image with frequently encountered
level of overlap (Supplementary Figs. 8 and 9) using first
harmonic. In both scenarios, SEER improves visualization of
multispectral datasets (Supplementary Figs. 6, 7, 9, 10) compared
with standard approaches (Supplementary Figs. 3 and 8). A
detailed description of the choice of harmonic for visualization is
presented in Supplementary Note 1. Implementation of 1x to 5x
spectral denoising filters29 further enhances visualization (Sup-
plementary Figs. 11, 12).

Color maps enhance different spectral gradients. To demon-
strate the utility of SEER and its modes, we present four example
visualizations of images taken from unlabeled mouse tissues and
fluorescently tagged zebrafish.

In live samples, a number of intrinsic molecules are known to
emit fluorescence, including NADH, riboflavin, retinoids, and
folic acid36. The contribution of these generally low signal-to-
noise intrinsic signals to the overall fluorescence is generally
called autofluorescence7. Hyperspectral imaging and HySP29 can
be employed to diminish the contribution of autofluorescence to
the image. The improved sensitivity of the phasor, however,
enables autofluorescence to become a signal of interest and allows
for exploration of its multiple endogenous molecules contribu-
tions. SEER is applied here for visualizing multispectral
autofluorescent data of an explant of freshly isolated trachea
from a wild-type C57Bl mouse. The tracheal epithelium is
characterized by a very low cellular turnover, and therefore the
overall metabolic activity is attributable to the cellular function of
the specific cell type. Club and ciliated cells are localized in the
apical side of the epithelium and are the most metabolically active
as they secrete cytokines and chemically and physically remove
inhaled toxins and particles from the tracheal lumen. Contrarily,
basal cells which represent the adult stem cells in the upper
airways, are quiescent and metabolically inactive37,38. Because of
this dichotomy in activity, the tracheal epithelium at homeostasis
constituted the ideal cellular system for testing SEER and
validating with FLIM imaging. The slight bend on the trachea,
caused by the cartilage rings, allowed us to visualize the
mesenchymal collagen layer, the basal and apical epithelial cells
and tracheal lumen in a single focal plane.

The explant was imaged with 2-photon laser scanning
microscopy in multispectral mode. We compare the state of the
art true-color image (Fig. 4a, see Methods), and SEER images
(Fig. 4b, c). The gradient descent morphed map (Fig. 4b)
enhances the visualization of metabolic activities within the
tracheal specimen, showing different metabolic states when
moving from the tracheal airway apical surface toward the more
basal cells and the underlying collagen fibers (Fig. 4b). The
visualization improvement is maintained against different
implementations of RGB visualization (Supplementary Fig. 13)
and at different depths in volumetric datasets (Supplementary
Fig. 28). The tensor map increases the contrast of cell boundaries
(Fig. 4c). Changes in autofluorescence inside live samples are
associated to variations in the ratio of NAD+/NADH, which in
turn is related to the ratio of free to protein bound NADH39.
Despite very similar fluorescence emission spectra, these two
forms of NADH are characterized by different decay times (0.4 ns
free and 1.0–3.4 ns bound)35,40–44. FLIM provides a sensitive
measurement for the redox states of NADH and glycolytic/
oxidative phosphorylation. Metabolic imaging by FLIM is well
established and has been applied for characterizing disease
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cells. Colorbar represents the normalized relative gradient of counts. d Average spectra for the cells in dashed boxes (1 and 2 in panel c) show a blue
spectral shift in the direction of the apical layer. e Fluorescence Lifetime Image Microscopy (FLIM) of the sample, acquired using a frequency domain
detector validates the interpretation from panel (b), Gradient descent map, where cells in the apical layer exhibit a more oxidative phosphorylation
phenotype (longer lifetime in red) compared with cells in the basal layer (shorter lifetime in yellow) with a more glycolytic phenotype. The selections
correspond to areas selected in phasor FLIM analysis (e, top left inset, red and yellow selections) based on the relative phasor coordinates of NAD
+/NADH lifetimes35.
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progression in multiple animal models, in single cells and in
human as well as to distinguish stem cells differentiation and
embryo development41–48. Previous work has shown that both
Hyperspectral Imaging and FLIM correlate with metabolic
changes in cells from retinal organoids49. Here, the dashed
squares highlight cells with distinct spectral representation
through SEER, a difference which the FLIM image (Fig. 4d,
Supplementary Fig. 14) confirms.

The improvement of SEER in visualizing intrinsic signals is
clear when compared with standard approaches. Microscopic
imaging of fluorophores in the cyan to orange emission range in
tissues is challenging due to intrinsic fluorescence. A common
problem is bleed-through of autofluorescent signals into the
emission wavelength of the label of interest. Bleed-through is the
result of two fluorophores overlapping in emission and excitation
profiles, so that photons from one fluorophore fall into the
detection range of the other. While bleed-through artifacts can be
partially reduced with a stringent choice of the emission filters,
this requires narrow collection channels, which reject any
ambiguous wavelength and greatly decreases collection efficiency.
This strategy generally proves difficult when applied to broad-
spectra autofluorescence. mKusabira-Orange 2 (mKO2) is a
fluorescent protein whose emission spectrum significantly over-
laps with autofluorescence in zebrafish. In a fli1:mKO2 zebrafish,
where all of the vascular and endothelial cells are labeled, the
fluorescent protein, mKO2, and autofluorescence signals due to
pigments and yolk are difficult to distinguish (Fig. 5a, boxes).
Grayscale renderings (Supplementary Fig. 15) provide informa-
tion on the relative intensity of the multiple fluorophores in the
sample but are not sufficient for specifically detecting the spatial
distribution of the mKO2 signal. True-color representation
(Fig. 5a, Supplementary Fig. 16) is limited in visualizing these
spectral differences. SEER’s angular map (Fig. 5b) provides a
striking contrast between the subtly different spectral components
inside this 4D (x, y, z, λ) dataset. The angular reference map
enhances changes in phase on the phasor plot which nicely dis-
criminates shifts in the center wavelength of the spectra inside the
sample (Supplementary Movie 1). Autofluorescence from pig-
ment cells is considerably different from the fli1:mKO2 fluores-
cence (Fig. 5c–h). For example, the dorsal area contains a
combination of mKO2 and pigment cells (Fig. 5e–f) not clearly
distinct in the standard approaches. The angular map permits
SEER to discriminate subtle spectral differences. Distinct colors
represent the autofluorescence from yolk and from pigment cells
(Fig. 5g, h), enriching the overall information provided by this
single-fluorescently labeled specimen and enhancing the visuali-
zation of mKO2 fluorescently labeled pan-endothelial cells.

Imaging and visualization of biological samples with multiple
fluorescent labels are hampered by the overlapping emission
spectra of fluorophores and autofluorescent molecules in the
sample, complicating the visualization of the sample. A triple-
labeled zebrafish embryo with Gt(desm-Citrine)ct122a/+;Tg(kdrl:
eGFP), H2B-Cerulean labeling, respectively, muscle, vasculature
and nuclei, with contributions from pigments autofluorescence is
rendered with standard approaches and SEER in 1D and 3D
(Fig. 6). TrueColor representation (Fig. 6a, Supplementary Fig. 17)
provides limited information on the inner details of the sample.
Vasculature (eGFP) and nuclei (Cerulean) are highlighted with
shades of cyan whereas autofluorescence and muscle (Citrine) are
in shades of green (Fig. 6a) making both pairs difficult to
distinguish. The intrinsic richness of colors in the sample is an
ideal test for the gradient descent and radial maps.

The angular map separates spectra based mainly on their
central (peak) wavelength, which correspond to phase differences

in the phasor plot. The gradient descent map separates
spectra with a bias on subtle spectral differences closer to the
center of the phasor plot. Here we applied the mass morph and
max morph modes to further enhance the distinction of spectra
(Fig. 6b, c). With the mass morph mode, the muscle outline and
contrast of the nuclei are improved by increasing the spatial
separation of the fluorophores and suppressing the presence of
autofluorescence from skin pigment cells (Fig. 6e). With the max
morph mode (Fig. 6c), pixels with spectra closer to skin
autofluorescence are visibly separated from muscle, nuclei and
vasculature.

The enhancements of SEER are also visible in volumetric
visualizations. The angular and gradient maps are applied to the
triple-labeled 4D (x, y, z, λ) dataset and visualized as maximum
intensity projections (Fig. 6d–f). The spatial localization of
fluorophores is enhanced in the mass morphed angular map,
while the max morphed gradient descent map provides a better
separation of the autofluorescence of skin pigment cells
(Supplementary Movie 2). These differences are also maintained
in different visualization modalities (Supplementary Fig. 18).

SEER helps to discern the difference between fluorophores
even with multiple contributions from bleed though between
labels and from autofluorescence. Particularly, morphed maps
demonstrate a high sensitivity in the presence of subtle spectral
differences. The triple-labeled example (Fig. 6) shows advantage
of the morphed map, as it places the apex of the SEER map at the
center of mass of the phasor histogram and compensates for the
different excitation efficiencies of the fluorescent proteins at
458 nm.

Spectral differences visualized in combinatorial approaches.
Zebrabow34 is the result of a powerful genetic cell labeling
technique based on stochastic and combinatorial expression of
different relative amounts of a few genetically encoded, spectrally
distinct fluorescent proteins34,50,51. The Zebrabow (Brainbow)
strategy combines the three primary colors red, green and blue, in
different ratios, to obtain a large range of colors in the visual
palette, similar to modern displays52. Unique colors arise from
the combination of different ratios of RFP, CFP, and YFP,
achieved by a stochastic Cre-mediated recombination50.

This technique has been applied multiple applications, from
axon and lineage tracing51–55 to cell tracking during develop-
ment56,57, in which a specific label can be used as a cellular
identifier to track descendants of individual cells over time
and space.

The challenge is acquiring and analyzing the subtle differences
in hues among these hundreds of colors. Multispectral imaging
provides the added dimension required for an improved
acquisition; however, this modality is hampered by both
instrumental limitations and spectral noise. Furthermore, current
image analysis and visualization methods interpret the red,
yellow, and cyan fluorescence as an RGB additive combination
and visualize it as a color picture, similar to the human eye
perception of color. This approach is not well poised for
distinguishing similar, yet spectrally unique, recombination ratios
due to our difficulty in reliably identifying subtly different colors.

SEER overcomes this limitation by improving the analysis’
sensitivity using our phasor-based interpretation of colors.
Recombinations of labels belong to separate areas of the phasor
plot, simplifying the distinction of subtle differences. The
standard reference maps and modes associate a color easily
distinguishable by eye, enhancing the subtle spectral recombina-
tion. SEER simplifies the determination of differences between
cells for combinatorial strategies, opening a novel window of
analysis for brainbow samples.
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We imaged an Tg(ubi:Zebrabow) sample and visualized its
multiple genetic recombinations using SEER. The results (Fig. 7,
Supplementary Fig. 19) highlight the difficulty of visualizing these
datasets with standard approaches as well as how the compressive
maps simplify the distinction of both spectrally close and more
separated recombinations.

Discussion
Standard approaches for the visualization of hyperspectral data-
sets trade computational expense for improved visualization. In
this work, we show that the phasor approach can define a new
compromise between computational speed and rendering per-
formance. The wavelength encoding can be achieved by proper
conversion and representation by the spectral phasor plot of the
Fourier transform real and imaginary components. The phasor
representation offers effortless interpretation of spectral infor-
mation. Originally developed for fluorescence lifetime analysis22

and subsequently brought to spectral applications26,28,29, here the
phasor approach has been applied to enhance the visualization of
multi- and hyperspectral imaging. Because of the refined spectral
discrimination achieved by these phasor-based tools, we call this
approach Spectrally Enhanced Encoded Representations (SEER).

SEER offers a computationally efficient and robust method that
converts spectral (x, y, λ) information into a visual representation,
enhancing the differences between labels. This approach makes
more complete use of the spectral information. Prior analyses
employed the principal components or specific spectral bands of the
wavelength dimension. Similarly, previous phasor analyses inter-
preted the phasor using selected regions of interest. Our work
explores the phasor plot as a whole and represents that complete
information set as a color image, while maintaining efficiency and
minimizing user interaction. The function can be achieved quickly
and efficiently even with large data sizes, circumventing the typical
computational expense of hyperspectral processing. Our tests show
SEER can process a 3.7 GB dataset with 1.26 × 108 spectra in 6.6 s
and a 43.88GB dataset with 1.47 × 109 spectra in 87.3 s, including
denoising of data. Comparing with the python module, scikit-
learn’s implementation of fast independent component analysis
(fastICA), SEER provides up to a 67-fold speed increase (Supple-
mentary Fig. 1) and lower virtual memory usage.

Processing speed comparison between SEER and fastICA for the
multispectral fluorescent data shown in Figs. 4–7 is presented in
Supplementary Table 2. SEER’s computation time ranged between
0.44 (for Fig. 4) and 6.27 s (for Fig. 5) where the corresponding
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Fig. 5 Visualization of a single fluorescence label against multiple autofluorescences. Tg(fli1:mKO2) (pan-endothelial fluorescent protein label) zebrafish
was imaged with intrinsic signal arising from the yolk and xanthophores (pigment cells). Live imaging was performed using a multispectral confocal (32
channels) fluorescence microscope with 488 nm excitation. The endothelial mKO2 signal is difficult to distinguish from intrinsic signals in a (a) maximum
intensity projection TrueColor 32 channels Image display (Bitplane Imaris, Switzerland). The SEER angular map highlights changes in spectral phase,
rendering them with different colors (reference map, bottom right of each panel). b Here we apply the angular map with scaled mode on the full volume.
Previously indistinguishable spectral differences (boxes 1, 2, 3 in panel a) are now easy to visually separate. Colorbar represents the main wavelength
associated to one color in nanometers. c–h Zoomed-in views of regions 1–3 (from a) visualized in TrueColor (c, e, g) and with SEER (d, f, h) highlight the
differentiation of the pan-endothelial label (yellow) distinctly from pigment cells (magenta). The improved sensitivity of SEER further distinguishes different
sources of autofluorescence arising from yolk (blue and cyan) and pigments.
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timing for fastICA was 3.45 and 256.86 s, respectively, with a speed
up in the range of 7.9–41-folds (Supplementary Fig. 20), in accor-
dance with the trend shown in Supplementary Fig. 1. These results
were obtained using Python, an interpreted language. Imple-
mentation of SEER with a compiled language could potentially
increase speed by one order of magnitude. The spectral maps

presented here reduce the dimensionality of these large datasets and
assign colors to a final image, providing an overview of the data
prior to a full-scale analysis.

A simulation comparison with other common visualization
approaches such as Gaussian kernel and peak wavelength selec-
tion (Supplementary Fig. 21, see Methods) shows an increased
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spectral separation accuracy (see Methods) for SEER to associate
distinct colors to closely overlapping spectra under different noise
conditions (Supplementary Fig. 22). The spectral separation
accuracy improvement was 1.4–2.6-fold for highly overlapping
spectra, 0–8.9 nm spectra maxima distance, and 1.5–2.7-fold for
overlapping spectra with maxima separated by 17.8–35.6 nm
(Supplementary Figs. 23, 24, see Methods). Additional discussion
is available in the Supplementary Peer Review file.

Quantification of RGB images by colorfulness, contrast and
sharpness show that SEER generally performs better than stan-
dard visualization approaches (Supplementary Fig. 25, see
Methods). SEER’s average enhancement was 2–19% for color-
fulness, 11–27% for sharpness and 2–8% for contrast (Supple-
mentary Table 3) for the datasets of Figs. 4–7. We then performed
a measure of the Color Quality Enhancement (CQE)58, a metric
of the human visual perception of color image quality (Supple-
mentary Table 4). The CQE score of SEER was higher than the
standard, with improvement of 11–26% for Fig. 4, 7–98% for
Fig. 5, 14–25% for Fig. 6, and 12–15% for Fig. 7 (Supplementary
Fig. 25, Supplementary Note 3, see Methods).

Flexibility is a further advantage of our method. The users can
apply several different standard reference maps to determine which
is more appropriate for their data and enhance the most important
image features. The modes provide a supplementary enhancement
by adapting the References to each dataset, in terms of size and
distribution of spectra in the dataset. Scaling maximizes contrast by
enclosing the phasor distribution, it maintains linearity of the col-
ormap. Max and center of mass modes shift the apex of the dis-
tribution to a new center, specifically the most frequent spectrum in
the dataset or the weighted color-frequency center of mass of the
entire dataset. These modes adapt and improve the specific visua-
lization properties for each map to the dataset currently being
analyzed. As a result, each map offers increased sensitivity to

specific properties of the data, amplifying, for example, minor
spectral differences or focusing on major wavelength components.
The adaptivity of the SEER modes can prove advantageous for
visually correcting the effect of photobleaching in samples, by
changing the apex of the map dynamically with the change of
intensities (Supplementary Fig. 26, Supplementary Movie 3).

SEER can be applied to fluorescence, as performed here, or to
standard reflectance hyper- and multispectral imaging. These
phasor remapping tools can be used for applications in fluores-
cence lifetime or combined approaches of spectral and lifetime
imaging. With multispectral fluorescence, this approach is pro-
mising for real-time imaging of multiple fluorophores, as it offers
a tool for monitoring and segmenting fluorophores during
acquisition. Live-imaging visualization is another application for
SEER. The gradient descent map, for example, in combination
with denoising strategies29 can minimize photobleaching and
-toxicity, by enabling the use of lower excitation power. SEER
overcomes the challenges in visualization and analysis deriving
from low signal-to-noise images, such as intrinsic signal auto-
fluorescence imaging. Among other complications, such image
data can result in a concentrated cluster proximal to the phasor
center coordinates. The gradient descent map overcomes this
limitation and provides bright and distinguishable colors that
enhance subtle details within the dim image.

It is worth noticing that the method is generally indifferent to
the dimension being compressed. While in this work we explore
the wavelength dimension, SEER can be utilized, in principle,
with any n-dimensional dataset where n is larger than two. For
instance, it can be used to compress and compare the dimension
of lifetime, space or time for multiple datasets. Some limitations
that should be considered are that SEER pseudo-color repre-
sentation sacrifices the true color of the image, creating incon-
sistencies with the human eyes’ expectation of the original image

Fig. 6 Triple label fluorescence visualization. Zebrafish embryo Tg(kdrl:eGFP); Gt(desmin-Citrine);Tg(ubiq:H2B-Cerulean) labeling, respectively, vasculature,
muscle, and nuclei. Live imaging with a multispectral confocal microscope (32-channels) using 458 nm excitation. Single plane slices of the tiled volume
are rendered with TrueColor and SEER maps. a TrueColor image display (Zen, Zeiss, Germany). b Angular map in center of mass morph mode improves
contrast by distinguishable colors. The resulting visualization enhances the spatial localization of fluorophores in the sample. c Gradient descent map in
max morph mode centers the color palette on the most frequent spectrum in the sample, highlighting the spectral changes relative to it. In this sample, the
presence of skin pigment cells (green) is enhanced. 3D visualization of SEER maintains these enhancement properties. Colorbars represent the main
wavelength associated to one color in nanometers. Here we show (d, e, f) TrueColor 32 channels Maximum Intensity Projections (MIP) of different
sections of the specimen rendered in TrueColor, angular map center of mass mode and gradient descent max mode. The selected views highlight SEER’s
performance in the d overview of somites, e zoom-in of somite boundary, and f lateral view of vascular system.
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Fig. 7 Visualization of combinatorial expression on Zebrabow samples.Maximum intensity projection renderings of Tg(ubi:Zebrabow) muscle34 acquired
live in multispectral confocal mode with 458 nm excitation. a The elicited signal (e.g., white arrows) is difficult to interpret in the TrueColor Image display
(Zen Software, Zeiss, Germany). b Discerning spectral differences is increasingly simpler with gradient descent map scaled to intensities, while
compromising on the brightness of the image. c Gradient descent and d gradient ascent RGB masks in scale mode show the color values assigned to each
pixel and greatly improve the visual separation of recombined CFP, YFP, and RFP labels. Colorbars represent the main wavelength associated to one color in
nanometers.
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and does not distinguish identical signals arising from different
biophysical events (Supplementary Note 2). SEER is currently
intended as a preprocessing visualization tool and, currently, is
not utilized for quantitative analysis. Combining SEER with novel
color-image compatible segmentation algorithms59,60 might
expand the quantitative capabilities of the method.

New multidimensional, multi-modal instruments will more
quickly generate much larger datasets. SEER offers the capability
of processing this explosion of data, enabling the interest of the
scientific community in multiplexed imaging.

Methods
Simulated hyperspectral test chart. To account for the Poisson noise and detector
noise contributed by optical microscopy, we generated a simulated hyperspectral test
chart starting from real imaging data with a size of x: 300 pixels, y: 300 pixels, and
lambda: 32 channels. S1, S2, and S3 spectra were acquired, respectively, from zebrafish
embryos labeled only with CFP, YFP, and RFP, where the spectrum in Fig. 1a is
identical to the center cell of the test chart Fig. 1d. In each cell three spectra are
represented after shifting the maxima by d1 or d2 nanometers with respect to S2.
Each cell has its corresponding spectra of S1, S2, and S3 (Supplementary Fig. 3).

Standard RGB visualizations. The TrueColor RGB image (Supplementary Figs. 3,
8, 21) is obtained through compression of the hyperspectral cube into the RGB 3
channels color space by generating a Gaussian radial basis function kernel61 K for
each RGB channel. This kernel K acts as a similarity factor and is defined as:

Ki xi; x
0ð Þ ¼ e

�jxi�x0 j2
2σ2 ð1Þ

where x′ is the center wavelength of R or B or G. For example, when x′= 650 nm,
the associated RGB color space is (R:1, G:0, B:0). Both x and K are defined as 32 × 1
vectors, representing, respectively, the 32-channel spectrum of one single pixel and
the normalized weight of each R, G, and B channel. i is the channel index of both
vectors. Ki represents how similar channel i is to each R/G/B channel, and σ is the
deviation parameter.

We compute RGB color space c by a dot product of the weight vector K and λ at
corresponding channel R/G/B:

c ¼
Xi¼32

i¼1

λi ´Ki ð2Þ

where λ is a vector of the wavelengths captured by the spectral detector in an
LSM780 inverted confocal microscope with lambda module (Zeiss, Jena, Germany)
and λi is the center wavelength of channel i. Gaussian kernel was set at 650, 510,
470 nm for RGB, respectively, as default (Supplementary
Figs. 3s, 8, 13e, 16e, 17e, 19j).

The same Gaussian kernel was also changed adaptively to the dataset to provide
a spectral contrast stretching on the visualization and focus the visualization on the
most utilized channels. The average spectrum for the entire dataset is calculated
and normalized. The intersect at 10% (Supplementary Figs. 13f, 16f, 17f, 19f), 20%
(Supplementary Figs. 13g, 16g, 17g, 19g), and 30% (Supplementary Figs. 13h, 16h,
17h, and 19h). of the intensity is obtained and used as a center for the blue and red
channels. The green channel is centered halfway between red and blue.
Representations of these adaptations are reported in Supplementary Fig. 21g, h, i.

The TrueColor 32 Channels image (Figs. 1c, 5a, c, e, g, 6a–d, e, f, Supplementary
Figs. 13c, 16c, 17c, and 19c) was rendered as a 32 channels Maximum Intensity
Projection using Bitplane Imaris (Oxford Instruments, Abingdon, UK). Each
channel has a known wavelength center (32 bins, from 410.5 to 694.9 nm with
8.9 nm bandwidth). Each wavelength was associated with a color according to
classical wavelength-to-RGB conversions62 as reported in Supplementary Fig. 21f.
The intensity for all channels was contrast-adjusted (Imaris Display Adjustment
Settings) based on the channel with the largest information. A meaningful range for
rendering was identified as the top 90% in intensity of the normalized average
spectrum for the dataset (Supplementary Figs. 13b, 16j, 17j, 19b). Channels outside
of this range were excluded for rendering. Furthermore, for 1 photon excitation,
channels associated to wavelength lower than the laser excitation (for example,
channels 1–5 for laser 458 nm) were excluded from rendering.

Peak Wavelength representation (Supplementary Figs. 13d, 16d, 17d, 19d, 21,
and 23) reconstructs an RGB image utilizing, for each pixel, the color associated to
the wavelength at which maximum intensity is measured. Wavelength-to-RGB
conversion was performed using a python function (http://bioimaging.usc.edu/
software.html#HySP) adapted from Dan Bruton’s work62. A graphical
representation is reported in Supplementary Fig. 21f.

Spectral separation accuracy calculation. We utilize the Simulated Hyperspectral
Test Chart to produce different levels of spectral overlap and signal-to-noise ratio
(SNR). We utilize multiple RGB visualization approaches for producing compressed
RGB images (Supplementary Figs. 21, 22). Each panel of the simulation is constructed
by three different spectra, organized as three concentric squares Q1, Q2, Q3

(Supplementary Fig. 3). The maximal contrast visualization is expected to have three
well separated colors, in this case red, green, and blue. For quantifying this difference,
we consider each (R, G, B) vector, with colors normalized [0, 1], in each pixel as a set
of Euclidean coordinates (x, y, z) and for each pixel calculate the Euclidean distance:

l12 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXB
i¼R

pQ1 � pQ2
� �2

i

vuut ð3Þ

where l12 is the color distance between square Q1 and Q2. pQ1 and pQ2 are the (R, G, B)
vectors in the pixels considered, i is the color coordinate R, G, or B. The color
distances l13 and l23 between squares Q1Q3 and Q2Q3, respectively, are calculated
similarly. The accuracy of spectral separation (Supplementary Fig. 23) is calculated as:

Sp:sep:acc ¼ l12 þ l13 þ l23ð Þ
lred�green þ lred�blue þ lgreen�blue

ð4Þ

where the denominator is the maximum color distance which can be achieved in
this simulation, where Q1, Q2, and Q3 are, respectively, pure red, green, and blue,
therefore:

lred�green þ lred�blue þ lgreen�blue ¼ 3
ffiffiffi
2

p ð5Þ

Compressive spectral algorithm and map reference design: phasor calcula-
tions. For each pixel in an image, we acquire the sequence of intensities at different
wavelengths I(λ). Each spectrum I(λ) is discrete Fourier transformed into a com-
plex number gx,y,z,t+ isx,y,z,t. Here i is the imaginary unit, while (x, y, z, t) denotes
the spatio-temporal coordinates of a pixel in a 5D dataset.

The transforms used for real and imaginary components are

gx;y;z;t kð Þjk¼2¼
PλN

λ0
I λð Þ � cos 2πkλ

N

� � � ΔλPλN
λ0

I λð Þ � Δλ
ð5Þ

sx;y;z;t kð Þjk¼2¼
PλN

λ0
I λð Þ � sin 2πkλ

N

� � � ΔλPλN
λ0

I λð Þ � Δλ
ð6Þ

Where λ0 and λN are the initial and final wavelengths, respectively, N is the number
of spectral channels, Δλ is the wavelength bandwidth of a single channel. k is the
harmonic. In this work, we utilized harmonic k= 2. The effects of different
harmonic numbers on the SEER visualization are reported in (Supplementary
Note 1).

Standard map reference. Association of a color to each phasor coordinate (g, s) is
performed in two steps. First, the reference system is converted from Cartesian to
polar coordinates (r, θ).

r; θð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 þ s2

p
;
s
g

� �
ð7Þ

These polar coordinate values are then transformed to the hue, saturation, value
(HSV) color model utilizing specific settings for each map, as listed below. Finally,
any color generated outside of the r= 1 boundary is set to black.

Gradient descent:

hue ¼ θ

saturation ¼ 1

value ¼ 1� 0:85 � r
Gradient ascent:

hue ¼ 0

saturation ¼ 1

value ¼ r

Radius:
Each r value from 0 to 1 is associated to a level in the jet colormap from the

matplotlib package
Angle:

hue ¼ 0

saturation ¼ 1

value ¼ 1

Tensor map. Visualization of statistics on the phasor plot is performed by means
of the mathematical gradient. The gradient is obtained in a two-step process.
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First, we compute the two-dimensional derivative of the phasor plot histogram
counts by utilizing an approximation of the second order accurate central
difference.

Each bin F(g, s) has a central difference: ∂F∂g ,
∂F
∂s , with respect to the differences in

g (horizontal) and s (vertical) directions with unitary spacing h. The approximation
becomes

∂F
∂s

¼ F sþ 1
2 h; g

� �� F s� 1
2 h; g

� �
h

¼
F sþ h;gð Þþ F s;gð Þ

2 � F s;gð Þþ F s� h;gð Þ
2

h

¼ F sþ h; gð Þ � F s� h; gð Þ
2h

ð8Þ

Similarly

∂F
∂g

¼ F s; g þ hð Þ � F s; g � hð Þ
2h

ð9Þ
Second, we calculate the square root of the sum of squared differences D(s,g) as

D g; sð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∂F
∂g

� �2

þ ∂F
∂s

� �2
s

ð10Þ

obtaining the magnitude of the derivative density counts. With this gradient
histogram, we then connect the phasor coordinates with same D(s, g) gradients
with one contour. All gradients are then normalized to (0,1). Finally, pixels in the
hyperspectral image corresponding to the same contour in phasor space will be
rendered the same color. In the reference map, red represents highly dense
gradients, usually at the center of a phasor cluster. Blue, instead, represents the
sparse gradient that appears at the edge circumference of the phasor distributions.

Scale mode. In this mode, the original square standard reference maps are
transformed to a new boundary box adapted to each dataset’s spectral distribution.

The process of transformation follows these steps. We first determine the
boundary box (width ω, height h) based on the cluster appearance on the phasor
plot. We then determine the largest ellipsoid that fits in the boundary box. Finally,
we warp the unit circle of the original map to the calculated ellipsoid.

Using polar coordinates, we represent each point P of the standard reference
map with phasor coordinates (gi, si) as

P gi; sið Þ ¼ P ri � cosθi; ri � sinθið Þ ð11Þ
The ellipsoid has semi-major axes

a ¼ ω

2
ð12Þ

and semi-minor axes

b ¼ h
2

ð13Þ
Therefore, the ellipse equation becomes

gi
ω=2

� �2

þ si
h=2

� �2

¼ rad2 ð14Þ

Where rad is a ratio used to scale each radius ri in the reference map to a
proportionally corresponding distance in the boundary box-adapted ellipse, which
in polar coordinates becomes

rad2 ¼ r2i �
cos θi

ω
2

� �2

þ sin θi
h
2

 !2 !
ð15Þ

Each point P(gi, si) of the standard reference map is geometrically scaled to a
new coordinate (go, so) inside the ellipsoid using forward mapping, obtaining the
equation

ro; θoð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2i þ s2i

q
=rad; tan�1 gi

si

� �
ð16Þ

This transform is applied to all standard reference maps to generate the
respective scaled versions.

Morph mode. We linearly morph each point P(gi, si) to a new point P'(go, so) by
utilizing a shifted-cone approach. Each standard map reference is first projected on
to a 3D conical surface centered on the phasor plot origin and with unitary height
(Supplementary Fig. 27a-c, Supplementary Movie 4). Each point P on the standard
map is given a z value linearly, starting from the edge of the phasor universal circle.
The original standard map (Supplementary Fig. 27c) can, thus, be interpreted as a
top view of a right cone with z= 0 at the phasor unit circle and z= 1 at the origin
(Supplementary Fig. 27a).

We then shift the apex A of the cone to the computed weighted average or
maxima of the original 2d histogram, producing an oblique cone (Supplementary
Fig. 27b) centered in A′.

In this oblique cone, any horizontal cutting plane is always a circle with center
O′. Its projection O⊥′ is on the line joining the origin O and projection of the new

center A⊥′ (Supplementary Fig. 27b–d). As a result, all of the points in each circle
are shifted towards the new center A⊥′ on the phasor plot. We first transform the
coordinates (gi, si) of each point P to the morphed map coordinates (so, go), and
then obtain the corresponding (ro, θo) necessary for calculating Hue, Saturation,
and Value.

In particular, a cutting plane with center O′ has a radius of r′ (Supplementary
Fig. 27). This cross section projects on a circle centered in O0

? with the same radius.
Using geometrical calculations, we obtain:

OO0
? ¼ α � OA0

?; ð17Þ
where α is a scale parameter. By taking the approximation,

ΔO0OO0
? � ΔA0OA0

?; ð18Þ
we can obtain

OO0 ¼ α � OA0: ð19Þ
Furthermore, given a point N′ on the circumference centered in O′, Eq. (14)

also implies that:

O0N 0 ¼ 1� αð Þ � ON 0
?; ð20Þ

which is equivalent to

r0 ¼ 1� αð Þ � R: ð21Þ
where R is the radius of the phasor plot unit circle.

With this approach, provided a new center A⊥′ with a specific α, we obtain a
collection of scaled circles with centers on line OA⊥′. In boundary cases, when α=
0, the scaled circle is the origin, while α= 1 is the unit circle. Given any cutting
plane O′, the radius of this cross section always satisfies this identity:

r02 ¼ gi � α � gA?0ð Þ2þ si � α � sA?0ð Þ2¼ 1� αð Þ2�R2 ð22Þ
The coordinates of a point P′′(go, so) for a new morphed map centered in A⊥′

are:

go; soð Þ ¼ gi � α � gA?0 ; si � α � sA?0ð Þ ð23Þ
Finally, we compute

ro; θoð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2o þ s2o

q
; tan�1 so

go

� �
ð24Þ

and then assign colors based on the newly calculated hue, saturation, and value to
generate the morph mode references.

Color image quality calculations: colorfulness. Due to the inherent lack of
ground truth in experimental fluorescence microscopy images, we utilized an
established model for calculating the color quality of an image without a refer-
ence63. The colorfulness is one of three parameters, together with sharpness and
contrast, utilized by Panetta et al.58 to quantify the overall quality of a color image.
Two opponent color spaces are defined as:

α ¼ R � G ð25Þ

β ¼ 0:5 R þ Gð Þ � B ð26Þ
where R, G, and B are the red, green, and blue channels, respectively, α and β are
red-green and yellow-blue spaces. The colorfulness utilized here is defined as:

Colorfulness ¼ 0:02 log
σ2α
μα
�� ��0:2

 !
log

σ2β

μβ

��� ���0:2
0
B@

1
CA ð27Þ

With σ2α , σ
2
β , μα, μβ, respectively, as the variances and mean values of the α and β

spaces58.

Sharpness. We utilize EME64, a Weber based measure of enhancement. EME is
defined as follows:

EMEsharp ¼ 2
k1k2

Xk1
l¼1

Xk2
l¼1

log
Imax;k;l

Imin;k;l

 !
ð28Þ

Where k1, k2 are the blocks used to divide the image and Imax,k,l and Imin,k,l are the
maximum and minimum intensities in the blocks. EME has been shown to cor-
relate with a human observation of sharpness in color images58 when associated
with a weight λc for each color component.

Sharpness ¼
X3
c¼1

λcEMEsharp ð29Þ

Where the weights for different color components used in this article are
λR= 0.299, λG= 0.587, λB= 0.114 in accordance with NTSC standard and values
reported in literature58.
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Contrast. We utilize Michelson-Law measure of enhancement AME65, an effective
evaluation tool for contrast in grayscale images, designed to provide larger metric
value for larger contrast images. AME is defined as:

AMEcontrast ¼
1

k1k2

Xk1
l¼1

Xk2
l¼1

log
Imax;k;l þ Imin;k;l

Imax;k;l � Imin;k;l

 ! !�0:5

ð30Þ

where k1, k2 are the blocks used to divide the image, and Imax,k,l and Imin,k,l are the
maximum and minimum intensities in the blocks. The value of contrast for color
images was then calculated as:

Contrast ¼
X3
c¼1

λcAMEcontrast ð31Þ

With the same weights λc utilized for sharpness.

Color Quality Enhancement. We utilize Color Quality Enhancement (CQE), a
polling method to combine colorfulness, sharpness, and contrast into a value that
has both strong correlation and linear correspondence with human visual per-
ception of quality in color images58. CQE is calculated as:

CQE ¼ c1colorfulness þ c2sharpnessþ c3contrast ð31Þ
Where the linear combination coefficients for CQE measure were set to
evaluate contrast change according to values reported in literature58, c1= 0.4358,
c2= 0.1722, and c3= 0.3920.

Mouse lines. Mice imaging was approved by the Institutional Animal Care and
Use Committee (IACUC) of the Children’s Hospital of Los Angeles (permit
number: 38616) and of the University of Southern California (permit number:
20685). Experimental research on vertebrates complied with institutional, national
and international ethical guidelines. Animals were kept on a 13:11 h light:dark
cycle. Animals were breathing double filtered air, temperature in the room was kept
at 68–73 F, and cage bedding was changed weekly. All these factors contributed to
minimize intra- and inter-experiment variability. Adult 8-week-old C57Bl mice
were euthanized with euthasol. Tracheas were quickly harvested from the mouse,
washed in PBS, and cut longitudinally alongside the muscolaris mucosae in order
to expose the lumen. A 3 mm × 3mm piece of the trachea was excised and arranged
onto a microscope slide for imaging.

Zebrafish lines. Lines were raised and maintained following standard literature
practice66 and in accordance with the Guide for the Care and Use of Laboratory
Animals provided by the University of Southern California. Fish samples were part
of a protocol approved by the IACUC (permit number: 12007 USC).

Transgenic FlipTrap Gt(desm-Citrine) ct122a/+ line is the result of previously
reported screen67, Tg(kdrl:eGFP)s843 line68 was provided by the Stainier lab (Max
Planck Institute for Heart and Lung Research). The Tg(ubi:Zebrabow) line was a
kind gift from Alex Schier34. Controllable recombination of fluorophores was
obtained by crossing homozygous Tg(ubi:Zebrabow) adults with a Tg(hsp70l:
Cerulean-P2A-CreERT2) line. Embryos were raised in Egg Water (60 μg ml−1 of
Instant Ocean and 75 μg ml−1 of CaSO4 in Milli-Q water) at 28.5 °C with addition
of 0.003% (w v−1) 1-phenyl-2-thiourea (PTU) around 18 hpf to reduce pigment
formation69.

Zebrafish samples with triple fluorescence were obtained by crossing Gt(desm-
Citrine)ct122a/+ with Tg(kdrl:eGFP) fish followed by injection of 100 pg per
embryo of mRNA encoding H2B-Cerulean at one-cell stage29. Samples of Gt(desm-
Citrine)ct122a/+;Tg(kdrl:eGFP); H2B-Cerulean were imaged with 458 nm laser to
excite Cerulean, Citrine and eGFP and narrow 458–561 nm dichroic for separating
excitation and fluorescence emission.

Plasmid constructions: pDestTol2pA2-hsp70l:Cerulean-P2A-CreERT2 (for
generating Tg(hsp70l:Cerulean-P2A-CreERT2) line). The coding sequences for
Cerulean, CreERT2, and woodchuck hepatitis virus posttranscriptional regulatory
element (WPRE) were amplified from the vector for Tg(bactin2:cerulean-cre)67,
using primers #1 and #2 (complete list of primers is reported in Supplementary
Table 5), pCAG-ERT2CreERT2 (Addgene #13777) using primers #3 and #4, and
the vector for Tg(PGK1:H2B-chFP)70 using primers #5 and #6, respectively. Then
Cerulean and CreERT2 sequences were fused using a synthetic linker encoding
P2A peptide71. The resultant Cerulean-P2A-CreERT2 and WPRE sequences were
cloned into pDONR221 and pDONR P2R-P3 (Thermo Fisher Scientific), respec-
tively. Subsequent MultiSite Gateway reaction was performed using Tol2kit vectors
according to developer’s manuals72. p5E-hsp70l (Tol2kit #222), pDONR221-Cer-
ulean-P2A-CreER, and pDONR P2R-P3-WPRE were assembled into pDest-
Tol2pA2 (Tol2kit #394)73,74.

pDestTol2pA2-fli1:mKO2 (for generating Tg(fli1:mKO2) line). The coding
sequence for mKO2 was amplified from mKO2-N1 (addgene #54625) using pri-
mers #7 and #8, and cloned into pDONR221. Then p5Efli1ep (addgene #31160),
pDONR221-mKO2, and pDONR P2R-P3-WPRE were assembled into pDest-
Tol2pA2 as described above.

Microinjection and screening of transgenic zebrafish lines. 2.3 nL of a solution
containing 20 pg nL−1 plasmid DNA and 20 pg nL−1 tol2 mRNA was injected into
the one-cell stage embryo obtained through crossing AB with Casper zebrafish75.
The injected F0 embryos were raised and crossed to casper zebrafish for screening.
The F1 embryos for prospective Tg(hsp70l:Cerulean-P2A-CreERT2) line and Tg(fli1:
mKO2) were screened for ubiquitous Cerulean expression after heat shock for
30 min at 37 °C, and mKO2 expression restricted in vasculatures, respectively.
Positive individual F1 adults were subsequently outcrossed to casper zebrafish, and
their offspring with casper phenotype were then used for experiments when 50%
transgene transmission was observed in the subsequent generation, indicating
single transgene insertions.

Sample preparation and multispectral image acquisition and instrumentation.
Images were acquired on a Zeiss LSM780 inverted confocal microscope equipped
with QUASAR detector (Carl Zeiss, Jena, Germany). A typical dataset comprised
32 spectral channels, covering the wavelengths from 410.5 nm to 694.9 nm with
8.9 nm bandwidth, generating an x,y,λ image cube. Detailed acquisition parameters
are reported in Supplementary Table 1.

Zebrafish samples for in vivo imaging were prepared by placing 5–6 embryos at
24–72 hpf into 1% agarose (cat. 16500-100, Invitrogen) molds created in an
imaging dish with no. 1.5 coverglass bottom, (cat. D5040P, WillCo Wells) using a
custom-designed negative plastic mold45. Stability of the embryos was ensured by
adding ~2 ml of 1% UltraPure low-melting-point agarose (cat. 16520-050,
Invitrogen) solution prepared in 30% Danieau (17.4 mM NaCl, 210 μM KCl,
120 μM MgSO4·7H2O, 180 μM Ca(NO3)2, 1.5 mM HEPES buffer in water, pH 7.6)
with 0.003% PTU and 0.01% tricaine. This solution was subsequently added on top
of the mounted embryos. Upon agarose solidification at room temperature (1–2
min), the imaging dish was topped with 30% Danieau solution and 0.01% tricaine
at 28.5 °C. Imaging on the inverted confocal microscope was performed by
positioning the imaging dish on the microscope stage. For Tg(ubi:Zebrabow)
samples, to initiate expression of CreERT2, embryos were heat-shocked at 15 h post
fertilization at 37 °C in 50 ml falcon tubes within a water bath before being
returned to a 28.6 °C incubator. To initiate recombination of the zebrabow
transgene, 5 μM 4-OHT (Sigma; H7904) was added to culture media 24 h post
fertilization. Samples of Tg(ubi:Zebrabow) were imaged using 458 nm laser to excite
CFP, YFP, and RFP in combination with a narrow 458 nm dichroic.

Mouse tracheal samples were collected from wild-type C57Bl mice and
mounted on a coverslip with sufficient Phosphate Buffered Saline to avoid
dehydration of the sample. Imaging was performed in 2-photon mode exciting at
740 nm with a 690+ nm dichroic.

Non-de-scanned (NDD) multiphoton fluorescence lifetime imaging (FLIM)
and analysis. Fluorescence lifetime imaging microscopy (FLIM) data were
acquired with a two-photon microscope (Zeiss LSM-780 inverted, Zeiss, Jena,
Germany) equipped with a Ti:Sapphire laser system (Coherent Chameleon Ultra II,
Coherent, Santa Clara, California) and an ISS A320 FastFLIM76 (ISS, Urbana-
Champaign, Illinois). The objective used was a 2-p optimized 40 × 1.1 NA water
immersion objective (Korr C-Apochromat, Zeiss, Jena, Germany). Images with size
of 256 × 256 pixels were collected with pixel dwell time of 12.6 μs pixel−1. A
dichroic filter (690+ nm) was used to separate the excitation light from fluores-
cence emission. Detection of fluorescence comprised a combination of a
hybrid photomultiplier (R10467U-40, Hamamatsu, Hamamatsu City, Japan) and a
460/80 nm band-pass filter. Acquisition was performed using VistaVision software
(ISS, Urbana-Champaign, Illinois). The excitation wavelength used was 740 nm
with an average power of about 7 mW on the sample. Calibration of lifetimes for
the frequency domain system was performed by measuring the known lifetime of
the Coumarin 6 with a single exponential of 2.55 ns. FLIM data were collected until
100 counts in the brightest pixel of the image were acquired.

Data was processed using the SimFCS software developed at the Gratton Lab
(Laboratory of Fluorescence Dynamics (LFD), University of California Irvine,
www.lfd.uci.edu). FLIM analysis of intrinsic fluorophores was performed as
previously described and reported in detail23,35,43. Phasor coordinates (g,s) were
obtained through Fourier transformations. Cluster identification was utilized to
associate specific regions in the phasor to pixels in the FLIM dataset according to
published protocols35.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
All the relevant data are available from the corresponding author upon reasonable
request. Datasets for Figs. 1–7 and simulations are available for download at http://
bioimaging.usc.edu/software.html#sampledatasets in the samples section.

Code availability
All the relevant code is available from the corresponding author upon reasonable request.
Software and instructions can be downloaded from http://bioimaging.usc.edu/software.
html#HySP.
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