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&ere is a long history of interest in modeling Poisson regression in different fields of study. &e focus of this work is on handling
the issues that occur after modeling the count data. For the prediction and analysis of count data, it is valuable to study the factors
that influence the performance of the model and the decision based on the analysis of that model. In regression analysis,
multicollinearity and influential observations separately and jointly affect the model estimation and inferences. In this article, we
focused on multicollinearity and influential observations simultaneously. To evaluate the reliability and quality of regression
estimates and to overcome the problems in model fitting, we proposed new diagnostic methods based on Sherman–Morrison
Woodbury (SMW) theorem to detect the influential observations using approximate deletion formulas for the Poisson regression
model with the Liu estimator. AMonte Carlo method is done for the assessment of the proposed diagnostic methods. Real data are
also considered for the evaluation of the proposed methods. Results show the superiority of the proposed diagnostic methods in
detecting unusual observations in the presence of multicollinearity compared to the traditional maximum likelihood
estimation method.

1. Introduction

Nowadays, there are several distributions available in the
literature that can be used to remove noise and then predict
data. Similarly, there is a persistent record of concern in
modeling count data which has several applications in
biosciences and other disciplines [1–4]. &e focus of this
effort is on dealing with the issues that occur after modeling
the count data. For the prediction and analysis of count data,
it is valuable to study the factors that influence the per-
formance of the model and the decision based on the
analysis of that model. Considering the suitable statistical
modeling, when the dependent variable is count data, one of
the most used statistical models is the Poisson regression

model (PRM). For accurate statistical inferences, the stan-
dard ordinary least square (OLS) regression sets some im-
portant assumptions related to the model’s errors [5].
Generally, numerous problems may arise when a count
variable model is estimated using the OLS method, because
of the level of noise. For the analysis of count data, PRM
provides the most relevant results. According to McCullagh
and Nelder [6], the PRM belongs to the family of GLM. &e
maximum likelihood ML estimation method is used to
estimate the PRM estimates instead of the OLS method.

In the PRM, when the explanatory variables are linearly
correlated, then the ML method is very sensitive [7]. Some
biased estimators were introduced in the literature to handle
the multicollinearity, i.e., Stein, ridge, Lasso, regularization,

Hindawi
Computational Intelligence and Neuroscience
Volume 2021, Article ID 4407328, 12 pages
https://doi.org/10.1155/2021/4407328

mailto:abdisalam.hassan@amoud.edu.so
https://orcid.org/0000-0003-2338-1603
https://orcid.org/0000-0002-7431-5756
https://orcid.org/0000-0002-6698-4933
https://orcid.org/0000-0003-4139-7334
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/4407328


and Liu estimators; see [1, 3] and [8–10] for more details.&e
most popular one is the ridge estimator, but it has some
limitations, i.e., selecting the ridge parameter, where the
ridge rule is based on two normal distributions. It is a
shrinkage rule because it depends on the slope. In contrast,
Lasso is based on the slope and the intercept. &e best choice
is to adopt a Liu estimator to avoid the hindrances of the
ridge estimator. &e Liu estimator is an ace in this regard as
it avoids the disadvantages of the ridge estimator [10], where
the main advantage of the ridge is easy to use, and it can be
written in the explicate and the objective formulas. In the
literature, various studies are available for the PRM to
overcome the presence of collinearity [7, 11–16].

To evaluate the reliability and quality of regression es-
timates and to overcome the problems in model fitting,
diagnostic techniques have been developed. Although re-
gression diagnostics have been developed methodologically
and theoretically for linear regression models together with
multicollinearity (see [17–24]), some studies about the in-
fluence diagnostics in the GLM with uncorrelated explan-
atory variables are available in the literature. Pregibon [25]
proposed the influence diagnostics for logistic regression
using the one-step methods. For further discussion on in-
fluential diagnostics about GLM, see [26–32].

Influence diagnostics in the GLM with correlated ex-
planatory variables is very limited. Özkale et al. [33] pro-
posed the first study on influence diagnostics for logistic
ridge regression. Amin et al. [34] worked on the influence
diagnostics for the gamma ridge regression model. Khan
et al. [35] assessed the performance of influence diagnostics
in the PRM with a ridge estimator. Recently, Khan et al. [36]
examined the superiority of influence diagnostics in the
PRMwith two-parameter estimator and, further, Amin et al.
[37] discussed the influence diagnostics for the inverse
Gaussian ridge regression model.

&e available literature showed that no study in the GLM
is available for influence diagnostics with the Liu estimator.
&ough, the Poisson Liu regression (PLR) diagnostics have
got no thoughtful attention up till now. &us, our present
work is an effort to fill this gap. So, in the present work, we
proposed diagnostic methods for the PRM under the Liu
estimator, which prove to be the competed method.

&e remaining of the study is organized as follows: we
focused on the formulation of influence diagnostic measures
for the PRM under the Liu estimator (LE). Next, in Sections
4 and 5, we conducted a Monte Carlo study using two, four,
and six independent variables to examine the level of de-
tection percentage of newly developed diagnostic measures
and, finally, we proved the efficacy of proposed measures
with the help of real world application.

1.1. Model Specification and Estimator. Suppose the model
can be written as

y � Xβ + ε, (1)

where y � yi: i � 1, 2, . . . , n􏼈 􏼉 are the observation,
X � xij: i � 1, 2, . . . , n, j � 1, 2, . . . , p􏽮 􏽯 is a matrix,
β � βi: i � 1, 2, . . . , p􏼈 􏼉 are the unknown parameters, and

ε ∼ Nn(0, Iσ2) with εi and εj(i≠ j) being independent. We
assume the observation is the result of the integration form
(Xβ) and try to solve this problem by finding differentiation
matrix. &e PRM is applicable for real data, especially when
the response variable yi often comes in the form of count
data that are known. Let yi follow a Poisson distribution
with μi, as its parameter. &e probability mass function for
PRM is used to describe the relationship when yi, the re-
sponse variable occurs as count data.

f yi; μi( 􏼁 �
e

− μiμyi

i

yi!
μi > 0, y � 0, 1, 2, . . . . (2)

&e PRM belongs to the GLM with log link function as

ln(􏽢μ) � b0 + b1x1 + b2x2 + · · · + bpxp, (3)

where b0 is the intercept and b1, b2, . . . , bp are the set of
coefficients. &e estimated mean function is defined by
􏽢μi � exp(xi

′β).
Here xi is the ith row of independent variable Xn×p and

βp×1 of coefficients, where p represents the number of ex-
planatory variables.

Assume that all yi are independent; then, the joint log-
likelihood is defined as

l μ; yi( 􏼁 � 􏽘

n

i�1
yi ln exp xi

′β( 􏼁( 􏼁 − exp xi
′β( 􏼁 − ln 􏽙

n

i�1
yi!

⎛⎝ ⎞⎠⎛⎝ ⎞⎠,

(4)

For finding the best value of β, we have to solve the
following relation:

zl μ; yi( 􏼁

zβ
� 0. (5)

Since the systems of equations are nonlinear, so the MLE
with iterative reweighted least-squared (IRLS) algorithm is
used to estimate the regression coefficients as explicit
formulas:

􏽢βML � X′ 􏽢WX􏼐 􏼑
− 1

X′ 􏽢W􏽢z, (6)

where 􏽢W � diag(􏽢μ1, 􏽢μ2, . . . , 􏽢μn) and 􏽢zi � log(􏽢μi)+

(yi − 􏽢μi/􏽢μi).
In the presence of multicollinearity, the X′ 􏽢WX matrix

becomes ill conditioned, and because of this problem, it gets
complicated to draw effective inferences. To overcome these
effects of multicollinearity, we use the generalization of Liu
[6] to define PLRE.

􏽢βd � X′ 􏽢WX + I􏼐 􏼑
− 1

X′ 􏽢WX + dI􏼐 􏼑􏽢βML, (7)

where 0≤d≤ 1. Here, the important step is selecting
shrinkage parameter d as the optimal value of d which affects
the performance of PLRE. Furthermore, if d � 1, then
􏽢βML � 􏽢βd. Recently, Qasim et al. [38] recommended the
optimum Liu parameter for the Liu estimator in the PRM as

􏽢d1 � max 0, min mj􏼐 􏼑􏼐 􏼑, j � 1, 2, . . . , p,

􏽢d2 � max 0, min hj􏼐 􏼑􏼐 􏼑,
(8)
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where mj � (􏽢α2j − 1/max(1/􏽢λj) + 􏽢α2j) and
hj � (􏽢α2j − 1/max(1/􏽢λj) + 􏽢α2max) and where α2j is the jth the
element of cβ and the columns of orthogonal matrix c

represent the eigenvectors of Xt 􏽢WX matrix, such that
Xt 􏽢WX � ctΛc, where Λ � diag(λ1, . . . , λp).

2. The PRM Diagnostics

2.1. Hat Matrix, Leverage, and Residuals for the PRM.
Hat matrix H is a common measure used to compute le-
verages. According to Davison and Tsai [39], the hat matrix
H in the PRM is

H � 􏽢W
1/2

X X′ 􏽢WX􏼐 􏼑
− 1

X′ 􏽢W
1/2

. (9)

&e diagonal elements of H are interpreted as leverages,
i.e., hii � diag(H). For the computation of regression

diagnostic measures, residuals play the most important role
(Belsley et al. [18]). Let χi symbolize the Pearson residual, so
for the case of PRM, we defined it as

χi �
yi − exp xi

′􏽢βML􏼐 􏼑
����������
exp xi
′􏽢βML􏼐 􏼑

􏽱 , (10)

Similarly, we find the standardized Pearson residual as

χi
′ �

χi�������
1 − hii( 􏼁

􏽱 .
(11)

Another useful residual that proves to be of great help for
detecting unusual observations is termed as the deviance
residual. &e ith deviance residual for the PRM is defined by

di � sign yi − exp xi
′􏽢βML􏼐 􏼑􏼐 􏼑

�������������������������������������

2 yilog
yi

exp xi
′􏽢βML􏼐 􏼑

⎛⎝ ⎞⎠ − yi − exp xi
′􏽢βML􏼐 􏼑􏼐 􏼑⎡⎢⎢⎣ ⎤⎥⎥⎦

􏽶
􏽴

, (12)

where the sign is the sign function [31].

2.2. Influence Diagnostic Methods. Pregibon [25] was the
first to work on logistic regression diagnostics tool and
proposed the influence diagnostic measures using one-step
approximations. &e proposed influence diagnostics take
account of Cook’s distance, change in deviance, and change
in Pearson χ2. For PRM Cook’s distance, Ci is suggested as

Ci �
􏽢βML − 􏽢βML(i)􏼐 􏼑′X′ 􏽢WX 􏽢βML − 􏽢βML(i)􏼐 􏼑

(p + 1)
. (13)

&e ith Ci measures the overall change in the fitted model
when the ith observation is deleted from the model. &e one-
step approximation for the expression (􏽢βML − 􏽢βML(i)) is
defined as

Δ􏽢βMLi � 􏽢βML − 􏽢βML(i)􏼐 􏼑 �
X′ 􏽢WX􏼐 􏼑

− 1
xi

􏽢W
1/2
ii χi

1 − hii( 􏼁
, (14)

where 􏽢Wii are the ith diagonal elements of weight matrix
after the removal of ith observation. Furthermore, (13) can
also be approximated as

Ci �
χ′2i

(p + 1)

hii

1 − hii( 􏼁
. (15)

Hardin and Hilbe [40] suggested the cut point for
detecting the unusual observations in GLM as (4/(n − 1));
this process is used to specify the window in GLM.

Pregibon [25] suggested change in Pearson χ2 as another
influence diagnostic measure to detect the influential ob-
servations. Applying one-step approximation, we defined
Δχ2i as

Δχ2i � χ2(i) − χ20 �
χ2i

1 − hii

, (16)

where χ20 is used to represent the squared Pearson residuals
of the complete data set and χ2i signifies the squared Pearson
residuals of the data set without the ith observation, re-
spectively. &is statistic is employed to study the effect of ith

observation on the goodness of fit of the model and the
estimates. On similar grounds, Pregibon [25] suggested that
another statistic for measuring the impact of ith observation
on the goodness of fit of a model is the change in deviance
statistic. &e one-step linear approximation for change in
deviance statistic is defined as

Δd2
i � d

2
(i) − d

2
0 � d

2
i +

χ2i hii

1 − hii

, (17)

where for complete data set d0 is used to represent the
squared deviance residuals and the squared deviance re-
sidual d(i) are found after the removal of ith observation,
respectively. We suggested a simplified form of equation (17)
by replacing χ2i by d2

i as

Δd2
i �

d
2
i

1 − hii

. (18)

&e cut-off value for change in deviance statistic is 3.84
to detect the unusual observations [25].

&e difference of fits (DFFITS) suggested by Belsley
et al. [18] is another common influence measure. After
deleting the ith observation, DFFITS assesses the change in
fit of model. For GLM, it is given as

DFFITSi �
􏽢μi − 􏽢μi(i)��

hii

􏽰 , (19)
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where 􏽢μi is used to represent the predicted regressand of
complete data set and 􏽢μi(i) represents the predicted
regressand after deleting the ith case. Furthermore, it can also
be written as

DFFITSi �

���
Wii

􏽰
xi
′ 􏽢βML − 􏽢βML(i)􏼐 􏼑

��
hii

􏽰 . (20)

By using the SMW theorem, (20) is retransformed as

DFFITSi � ti

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

�����
hii

1 − hii

􏽳

, (21)

where ti � χi
′

�������������������

(n − p − 1/n − p − χ′2i )

􏽱

is termed as the
jackknife Pearson residual and DFFITSi > 2

��������
(p + 1)/n

􏽰

shows that the ith observation as influential. &e second
matrix will be introduced in the next section.

3. InfluenceMeasures inPoissonLiuRegression
Model (PLRM)

3.1. Hat Matrix, Leverages, and Residual in PLRM. Hat
matrix Hd for the PLRM is defined as

Hd � X 􏽢W
1/2

X′ 􏽢WX + I􏼐 􏼑
− 1

X′ 􏽢WX + dI􏼐 􏼑 X′ 􏽢WX􏼐 􏼑
− 1

W
1/2

X′.

(22)

&e leverages are the Liu hat diagonals that proved
helpful in detecting influential cases with some modifica-
tions. As for d> 0, hdi < hi for i � 1, 2, . . . , n and as d in-
creases, hdi decreases monotonically.

Using the Liu estimator, the Pearson residuals for PLRM
are defined as

χdi �
yi − exp xi

′􏽢βd􏼐 􏼑
���������
exp xi
′􏽢βd􏼐 􏼑

􏽱 . (23)

&e standardized form of Pearson residuals with mul-
ticollinear independent variables is given as

χdi
′ �

χdi��������
1 − hdii( 􏼁

􏽱 .
(24)

3.2. Influence Diagnostics for PLRM. &e approximate case
deletion formulas using SMW theorem [41] are found for the
identification of influential observations.

Theorem 1. After the deletion of ith row from 􏽢βd, we write
􏽢βd(i) as

􏽢βd(i) � X(i)
′ 􏽢WX(i) + I􏽨 􏽩

− 1
X(i)
′ 􏽢WX(i) + dI􏽨 􏽩􏽢βML(i), (25)

where X(i) represents the X matrix without the ith row. Using
the SMW theorem, we approximated 􏽢βd(i).

Proof. Letting K �
��
􏽢W

􏽰
X, v �

��
􏽢W

􏽰
z, and s � y − 􏽢μ, then

􏽢βML and 􏽢βd stated by (6) and (7) become

􏽢βML � K′K( 􏼁
− 1

K′v,

􏽢βd � K′K + I( 􏼁
− 1

K′K + d􏽢βML􏼐 􏼑.
(26)

Let 􏽢βML(i) and 􏽢βd(i) represent the ML and PLRE of β after
deleting the ith observation, respectively. &us, we have

􏽢βML(i) � K(i)
′K(i)􏼐 􏼑

− 1
X(i)
′s(i),

􏽢βd(i) � K(i)
′K(i) + I􏼐 􏼑

− 1
K(i)
′K(i) + d􏽢βML(i)􏼐 􏼑.

(27)

With the help of SMV theorem, 􏽢βML(i) can be improved
as

􏽢βML(i) � K′K( 􏼁
− 1

+
K′K( 􏼁

− 1
ki
′ki K′K( 􏼁

− 1

1 − mi

⎡⎣ ⎤⎦ X′s − xisi( 􏼁,

(28)

where ki
′ �

���
􏽢Wii

􏽱

xi
′ is the ith row vector of the K matrix and

mi � ki(K′K)− 1ki
′ solves the first part of R.H.S of (27)

K(i)
′K(i) + I􏼐 􏼑

− 1
� K′K + I( 􏼁 − ki

′ki􏼂 􏼃
− 1

� K′K + I( 􏼁
− 1

+
K′K + I( 􏼁

− 1
ki
′ki K′K + I( 􏼁

− 1

1 − mdi

,

(29)

where mdi � ki(K′K + I)− 1ki
′. We also have

K(i)
′K(i) + I􏼐 􏼑

− 1
K(i)
′K(i) + d􏽢βML􏼐 􏼑 � K′K + I( 􏼁 − ki

′ki􏼂 􏼃
− 1

K′K + d􏽢βML − ki
′ki􏼐 􏼑

� K′K + I( 􏼁
− 1

K′K + d􏽢βML􏼐 􏼑 +
K′K + I( 􏼁

− 1
ki
′ki K′K + I( 􏼁

− 1
K′K + d􏽢βML􏼐 􏼑

1 − mdi

−
K′K + I( 􏼁

− 1
ki
′ki

1 − mdi

.

(30)

Now,
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􏽢βd(i) � K′K + I( 􏼁
− 1

K′K + d􏽢βML􏼐 􏼑 −
K′K + I( 􏼁

− 1
ki
′

1 − mdi

si���
􏽢Wii

􏽱 − ki K′K + I( 􏼁
− 1

K′K + d􏽢βML􏼐 􏼑⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

� 􏽢βd −
K′K + I( 􏼁

− 1
ki
′

1 − mdi

si���
􏽢Wii

􏽱 − ki
􏽢βd

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

� 􏽢βd −
X′ 􏽢WX + I􏼐 􏼑

− 1
xi
′

���
􏽢Wii

􏽱

χdi

1 − mdi

􏽢βd − 􏽢βd(i) �
X′ 􏽢WX + I􏼐 􏼑

− 1
xi
′

���
􏽢Wii

􏽱

χdi

1 − mdi

.

(31)

Hence, the theorem is completed.
Following [42] for the PLRE, the Cook’s distance is

redefined as

Cdi �
􏽢βd − 􏽢βd(i)􏼐 􏼑′ X′ 􏽢WX􏼐 􏼑 􏽢βd − 􏽢βd(i)􏼐 􏼑

(p + 1)
. (32)

&e ith observation is considered as influential if the
distance between 􏽢βd(i) and 􏽢βd is larger. Another version can
be expressed as

Cdi �
1

(p + 1)
􏽢βd − 􏽢βd(i)􏽨 􏽩′ X′ 􏽢WX + I􏼐 􏼑 X′ 􏽢WX + dI􏼐 􏼑

− 1

× X′ 􏽢WX􏼐 􏼑 X′ 􏽢WX + dI􏼐 􏼑
− 1

X′ 􏽢WX + I􏼐 􏼑 􏽢βd − 􏽢βd(i)􏽨 􏽩.

(33)

Using the Liu estimator, we defined the change in
Pearson chi-square as

Δχ2di � Δχ2d(i) � Δχ2d0 �
1

1 − hdii

yi − 􏽢μdi( 􏼁
2

􏽢μdi

􏼢 􏼣, (34)

where the squared Liu Pearson residuals χ2d0 are used to
represent the complete data set and χ2d(i) computed without
ith observation. Correspondingly, with Liu estimator, we
formulated the change in deviance statistic as

Δd2
d � d

2
d(i) − d

2
d0 � d

2
di +

χ2dihdii

1 − hdii

, (35)

where d2
d0 and d2

d(i) represent the squared Liu deviance
residuals with complete data and the squared Liu deviance
residuals computed without ith observation, and

ddi � si

������������������������������������

2 yilog
yi

exp xi
′􏽢βd􏼐 􏼑

⎛⎝ ⎞⎠ − yi − exp xi
′􏽢βd􏼐 􏼑􏼐 􏼑⎛⎝ ⎞⎠

􏽶
􏽴

,

(36)

where si is the sign function of (yi − exp(xi
′􏽢βd)).

Following (19), we give the DFFITS for PLRM as

DFFITSdi �
􏽢μdi − 􏽢μdi(i)���

hdii

􏽰 �

���
Wii

􏽰
xi
′ 􏽢βd − 􏽢βd(i)􏼐 􏼑

���
hdii

􏽰 , (37)

where 􏽢μd0 and 􏽢μd(i) represent the predicted regressand of the
complete data set and predicted regressand after deleting the
ith case.

Using the SMW theorem, we simplified (37) as

DFFITSdi � tdi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

������
hdii

1 − hdii

􏽳

, (38)

where tdi � χdi
′

����������������

(n − p′/n − p − χ′2di)

􏽱

is the ith Pearson
Jackknife residual with Liu estimator. □

4. Simulation Study

In this section, we summarize the results of the PRM and the
PLRM influence diagnostics using the Monte Carlo simu-
lation scheme. We follow the same simulation scheme used
by many researchers to see [43, 44]. &e response variable y

is generated from the Poisson distribution with mean
function μi as defined by

μi � exp β0 + β1xi1 + β2xi2 + · · · + βpxip􏼐 􏼑, i � 1, 2, . . . , n.

(39)

We set simulation with p � 2, 4, 6 explanatory variables
with various sample sizes plus the mild to severe levels of
collinearity. We assumed sample sizes
n � 25, 50, 100, 150, 200. Moreover, we generated the re-
gressors using the following formula:

xij �

�������

1 − ρ2􏼐 􏼑

􏽱

zij + ρzip + 1, j � 1, 2, . . . , p + 1, i � 1, 2, . . . , n.

(40)

We consider the different collinearity levels as
ρ2 � 0.75, 0.85, 0.95, 0.99, and we assume the arbitrary values
of regression coefficients in such a way that􏽐

p
j�1 β

2
j � 1. Now

we generated few influential observations in the regressors
by using the expression Xij � Xij + α0, i � 15 and
j � 1, 2, . . . , p, where α0 � Xj + 6. All the analyses are
performed using the R software with 1000 replications.
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4.1. Results and Discussion. &e study results of the cal-
culations of the identification of the unusual observations
with LE in the presence of mild to severe multicollinearity
are provided in Tables 1–6 with p � 2, 4, and 6 with defined
optimum d1 and d2. From Tables 1–3 with p� 2, it is clear
that performed Cdi is good as compared to the Ci method
for different sample sizes with multicollinearity. &e in-
fluence detection of Δχ2di and Δd

2
di methods is identical and

performs significantly better than Δχ2i and Δd2
i , respec-

tively. However, it is observed that their performance does
not occur in a better way than that of the Ci method for all
the combinations of n, p and ρ. Comparable effects are
observed on DFFITSi method, and it is found that the
detection percentage of influential observations by
DFFITSi method is better than Ci, although the perfor-
mance of DFFITSdi related to Cdi is equally better. Fur-
thermore, as we increased the sample sizes, the percentage
of detecting the influential observation of the developed
measures equally increases. Moreover, from Tables 4–6, we
observed that the newly developed diagnostic measures
performed more efficiently with d2, but d1 give better
detection percentage as compared to d2. Furthermore,
varying the regressors size affects the functioning of Cdi

method and DFFITSdi method, respectively. Δχ2di and Δd
2
di

values are larger than Δχ2i and Δd2
i , respectively. Further the

changing pattern of sample size and multicollinearity to-
gether with their effects are demonstrated explicitly to
study the performance of newly developed measures
through graphs; see Figures 1, 2, and 3 for defined d1 and
d2. Considering Figures 1–3, with defined combinations of
sample sizes, regressors, and collinearity levels, we clearly
observe a positive increase in the performance of newly
developed measures.

5. Application: English League Football Data

For the illustration of the proposed diagnostic methods, we
analyze the football English League data set which is also
available in Table 7. &e said data comprise n � 20 obser-
vations with one response variable, i.e., the number of won
matches (y) and p� 5 explanatory variables, i.e., the number
of yellow cards (X1), the number of red cards (X2), goals
won (X3), goals conceded (X4), and the number of points
earned (X5). Algamal and Alanaz [11] also used this data set.
After checking the χ2, the goodness of fit test found that it is
well fitted to the Poisson distribution. &e said data are
multicollinear as the condition index CI� 31.274.

From Table 8, it is found that all methods commonly
identify the 1st observation as the influential observation.
Change in chi-square statistic and change in deviance sta-
tistic with ML estimator do not detect any of the observation
as influential. Furthermore, observation 19th was detected as
influential by DFFITS without Liu estimator and by all of the
proposed diagnostics.

&e effect of deleting the highlighted observations on the
estimates of PRM and PLRM is presented in Table 9. We
found amaximum change in PRM and PLRM estimates after
the removal of the 1st observation that was detected by all
selected and proposed measures. &e second observation
that was identified by just DFFITSi and all proposed mea-
sures is the 19th. After the deletion of detected observations,
we found the maximum change on 􏽢β2 and 􏽢β3. After ex-
amining these results, it was noted that in the presence of
multicollinearity, PLRM diagnostic measures efficiently
detect the influential observations. Furthermore, we in-
corporated index plots to summarize the efficacy of the
proposed measures in Figure 4.

Table 1: Influence diagnostics detections (%) with d1 and p � 2.

n ρ2 Ci Δχ2i Δd2
i DFFITSi Cdi Δχ2di Δd2

di DFFITSdi

25

0.75 79.2 47.5 47.5 96.1 91.8 77 76.9 91.8
0.85 77.6 42.4 42.4 95.1 91.1 75.7 75.8 90.9
0.95 79.5 44.9 44.9 95.1 90.2 77.1 77.1 90.2
0.99 75.6 40 40 94.5 90.3 72.2 72.2 90.3

50

0.75 80.9 37.1 37.1 97 91.9 71 71.1 91.9
0.85 81 35.9 35.9 97.6 91 70.7 70.5 91
0.95 79.3 32.6 32.6 97.3 90.8 68.8 68.7 90.8
0.99 78.5 33.2 33.2 96.1 91.2 68.2 68.1 91.2

100

0.75 89.5 42.2 42.2 98.6 95.9 73.9 73.7 95.9
0.85 87.5 37.9 37.9 99 94.4 72.8 72.7 94.4
0.95 86.3 35.7 35.7 97.9 94.8 70.1 70.1 94.8
0.99 86.9 39.1 39.1 98.4 95.4 74.2 74.4 95.4

150

0.75 91 45 45 99.2 96.1 76.8 76.9 96.1
0.85 89.1 39.3 39.3 98.7 95.3 72.6 72.6 95.3
0.95 90.8 38.3 38.3 99.2 96 73 72.9 96
0.99 88.2 39.7 39.7 99 94.9 71.8 71.8 94.9

200

0.75 91.6 47.4 47.4 99.3 96.5 75.4 75.5 96.5
0.85 91.4 42.7 42.7 99.1 96.7 73.5 73.5 96.7
0.95 90.7 41.1 41.1 99.9 95.3 72.5 72.5 95.3
0.99 93.8 41.3 41.3 99.3 96.8 75.6 75.5 96.8
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Table 2: Influence diagnostics detections (%) with d1 and p � 4.

n ρ2 Ci Δχ2i Δd2
i DFFITSi Cdi Δχ2di Δd2

di DFFITSdi

25

0.75 75.9 57 57 94.8 91 82.6 82.6 90.9
0.85 69.7 48.9 48.9 93.7 87.8 76.4 76.4 87.7
0.95 67.3 45.6 45.6 93.5 85.4 74.3 74.3 85.3
0.99 65.7 44.4 44.4 93.9 85.3 74.3 74.2 85.2

50

0.75 78.6 47.8 47.8 97.4 91.5 77.9 77.9 91.4
0.85 77.8 44.9 44.9 97.7 90.6 77.5 77.4 90.4
0.95 74.1 38.6 38.6 95.1 88.5 72.6 72.6 88.5
0.99 71.7 35.8 35.8 95.9 86.7 68.8 68.7 86.7

100

0.75 86.1 50.4 50.4 98.8 94.4 79.4 79.3 94.4
0.85 84.8 44.6 44.6 97.9 93.8 77.7 77.7 93.8
0.95 81.5 39.7 39.7 97.6 91.3 72.5 72.3 91.3
0.99 82.2 40 40 98.5 93.7 75 75 93.7

150

0.75 86.6 49.6 49.6 98.8 94.5 78.2 78.2 94.5
0.85 87.5 46.7 46.7 98.8 95.3 78.4 78.5 95.3
0.95 85.8 42.5 42.5 98.6 94.7 74.3 74.2 94.7
0.99 86.8 41.4 41.4 99.2 94.5 76.3 76.4 94.5

200

0.75 90.1 50.5 50.5 99 96.6 80.1 80.1 96.6
0.85 89.8 48 48 99.3 96.3 79.3 79.3 96.3
0.95 87.7 46.9 46.9 99.2 94.8 75.9 75.9 94.8
0.99 88.1 39.9 39.9 98.8 95.2 73.7 73.7 95.2

Table 3: Influence diagnostics detections (%) with d1 and p � 6.

n ρ2 Ci Δχ2i Δd2
i DFFITSi Cdi Δχ2di Δd2

di DFFITSdi

25

0.75 73.1 54.5 54.5 93.7 88.6 78.1 78.1 88.4
0.85 72.3 52.6 52.6 93.6 87.4 78.8 78.8 87.4
0.95 68.4 47 47 93.9 85.9 76.5 76.5 85.7
0.99 67.4 45.1 45.1 93 84.5 72.4 72.3 84.5

50

0.75 77.3 46.2 46.2 97.2 91.2 76.9 76.9 91.2
0.85 74 43.2 43.2 96.5 89.8 74.7 74.7 89.8
0.95 72.4 38.4 38.4 96.7 89.6 71.6 71.5 89.5
0.99 73.1 35.2 35.2 95.9 87.5 68.5 68.7 87.5

100

0.75 83.8 47 47 98.7 95.1 77.2 77.1 95.1
0.85 84.1 46.6 46.6 98.3 94.2 78.7 78.7 94.2
0.95 82 41.9 41.9 97.8 94 75.4 75.4 94
0.99 81.4 38.4 38.4 98.5 91.6 71.4 71.3 91.6

150

0.75 88.9 51.5 51.5 98.8 95.4 80.3 80.3 95.4
0.85 86 47.7 47.7 99.1 94.4 78.1 78.2 94.4
0.95 86.5 42.7 42.7 98.6 94.2 75.2 75.4 94.2
0.99 83.9 40.3 40.3 98.7 93.6 71.4 71.4 93.6

200

0.75 90.7 50.1 50.1 99.1 95.3 81.2 81.2 95.3
0.85 88.8 45.8 45.8 99.2 96.9 76.3 76.3 96.9
0.95 88 44.8 44.8 99.2 95.5 74.7 74.8 95.5
0.99 87.7 41.9 41.9 99.3 94.4 75.7 75.7 94.4

Table 4: Influence diagnostics detections (%) with d2 and p � 2.

n ρ2 Ci Δχ2i Δd2
i DFFITSi Cdi Δχ2di Δd2

di DFFITSdi

25

0.75 77.7 44.6 44.6 95.4 91.3 75 75 91.3
0.85 74.6 38.9 38.9 95.1 89.9 73 73 89.9
0.95 76.8 42.4 42.4 94.5 89.9 74.4 74.6 89.9
0.99 75.4 40.6 40.6 95.2 90.3 71.3 71.3 90.3

50

0.75 78.2 35.9 35.9 97.6 91.6 68 68 91.5
0.85 81 34.5 34.5 98 92.6 69.5 69.6 92.6
0.95 79.1 35.1 35.1 97 90.8 68.9 68.7 90.7
0.99 80.2 34.3 34.3 97.2 91.5 67.5 67.5 91.5
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Table 4: Continued.

n ρ2 Ci Δχ2i Δd2
i DFFITSi Cdi Δχ2di Δd2

di DFFITSdi

100

0.75 87.9 40.1 40.1 98.5 94.3 73.1 73.2 94.3
0.85 86.6 42.3 42.3 98.2 94 72 72 94
0.95 88.4 37.1 37.1 98.6 94.8 74.2 74.3 94.8
0.99 88.8 42.3 42.3 98.6 94.1 73.5 73.4 94.1

150

0.75 91.1 46.1 46.1 98.9 96.4 76.1 76.1 96.4
0.85 90.3 39.2 39.2 99.8 95.6 72.4 72.4 95.6
0.95 90.2 38.8 38.8 99 95.9 72 72.1 95.9
0.99 89.8 39.1 39.1 99.2 95.5 74.7 74.7 95.5

200

0.75 93 44.9 44.9 99.3 96.4 75.9 76 96.4
0.85 93.2 43.6 43.6 99.6 96.6 77.6 77.7 96.6
0.95 91.9 41.9 41.9 99.2 96.9 73.4 73.4 96.9
0.99 92.6 40.3 40.3 99.5 96.3 74.3 74.2 96.3

Table 5: Influence diagnostics detections (%) with d2 and p � 4.

n ρ2 Ci Δχ2i Δd2
i DFFITSi Cdi Δχ2di Δd2

di DFFITSdi

25

0.75 72.7 47.5 47.5 94.6 89.1 76.1 76.2 89.1
0.85 73.5 46.1 46.1 94.7 88.7 77.4 77.4 88.7
0.95 69.9 41.2 41.2 91.9 86.5 73.7 73.8 86.5
0.99 70.3 42.5 42.5 94.2 87.6 73.6 73.6 87.6

50

0.75 79.6 40.6 40.6 96.4 91.2 75.1 75.1 91.2
0.85 76.5 37.1 37.1 97.4 91.2 73.6 73.4 91.2
0.95 78.9 38.8 38.8 96.8 89.6 74 74 89.6
0.99 74.4 36.1 36.1 97.7 90.5 71 70.9 90.5

100

0.75 87 45.5 45.5 99.1 95.7 76.2 76.1 95.7
0.85 84.1 41.2 41.2 97.8 93.7 73.5 73.5 93.7
0.95 84.3 38.4 38.4 98.4 94.5 73.5 73.5 94.5
0.99 86 38.3 38.3 98.9 94.5 74.4 74.3 94.5

150

0.75 89.5 46.3 46.3 99.1 95.9 77.3 77.3 95.9
0.85 89.5 44.4 44.4 99.2 96 77.7 77.6 96
0.95 89.6 41.9 41.9 99.1 95.8 76.3 76.4 95.8
0.99 86.8 38.8 38.8 98.4 94.3 71.5 71.5 94.3

200

0.75 90.9 47.3 47.3 98.8 96.4 79.9 79.8 96.4
0.85 89.3 43.8 43.8 99.2 95.5 76 75.9 95.5
0.95 89.6 41.5 41.5 99.6 95.5 75.8 75.8 95.5
0.99 89.6 41.9 41.9 99.1 95.9 72.6 72.7 95.9

Table 6: Influence diagnostics detections (%) with d2 and p � 6.

n ρ2 Ci Δχ2i Δd2
i DFFITSi Cdi Δχ2di Δd2

di DFFITSdi

25

0.75 75.9 57 57 94.8 91 82.6 82.6 90.9
0.85 69.7 48.9 48.9 93.7 87.8 76.4 76.4 87.7
0.95 67.3 45.6 45.6 93.5 85.4 74.3 74.3 85.3
0.99 65.7 44.4 44.4 93.9 85.3 74.3 74.2 85.2

50

0.75 78.6 47.8 47.8 97.4 91.5 77.9 77.9 91.4
0.85 77.8 44.9 44.9 97.7 90.6 77.5 77.4 90.4
0.95 74.1 38.6 38.6 95.1 88.5 72.6 72.6 88.5
0.99 71.7 35.8 35.8 95.9 86.7 68.8 68.7 86.7

100

0.75 86.1 50.4 50.4 98.8 94.4 79.4 79.3 94.4
0.85 84.8 44.6 44.6 97.9 93.8 77.7 77.7 93.8
0.95 81.5 39.7 39.7 97.6 91.3 72.5 72.3 91.3
0.99 82.2 40 40 98.5 93.7 75 75 93.7

150

0.75 86.6 49.6 49.6 98.8 94.5 78.2 78.2 94.5
0.85 87.5 46.7 46.7 98.8 95.3 78.4 78.5 95.3
0.95 85.8 42.5 42.5 98.6 94.7 74.3 74.2 94.7
0.99 86.8 41.4 41.4 99.2 94.5 76.3 76.4 94.5

200

0.75 90.1 50.5 50.5 99 96.6 80.1 80.1 96.6
0.85 89.8 48 48 99.3 96.3 79.3 79.3 96.3
0.95 87.7 46.9 46.9 99.2 94.8 75.9 75.9 94.8
0.99 88.1 39.9 39.9 98.8 95.2 73.7 73.7 95.2
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Figure 1: Graph of influential observation detection percentages of proposed measures for p� 2.

80
80

75
70

Pe
rc
en
ta
ge

Pe
rc
en
ta
ge

Pe
rc
en
ta
ge

Pe
rc
en
ta
ge

75
75

75
70

Pe
rc
en
ta
ge

Pe
rc
en
ta
ge

Pe
rc
en
ta
ge

Pe
rc
en
ta
ge

d1 d2

25 50 100 150 200
n

25 50 100 150 200
n

25 50 100 150 200
n

25 50 100 150 200
n

25 50 100 150 200
n

25 50 100 150 200
n

25 50 100 150 200
n

25 50 100 150 200
n

ρ=0.75

ρ=0.85

ρ=0.95

ρ=0.99

ρ=0.75

ρ=0.85

ρ=0.95

ρ=0.99

Cdi
Δχ2di

Δd2di
DFFITSdi

Figure 2: Graph of influential observation detection percentages of proposed measures for p� 4.
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Figure 3: Graph of influential observation detection percentages of proposed measures for p� 6.
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Table 7: English League football data.

Y
(no. of won matches)

X1
(no. of yellow cards)

X2
(no. of red cards)

X3
(goals own)

X4
(goals conceded)

X5
(no. of points earned)

30 72 0 33 52 93
26 62 0 26 60 86
23 71 4 39 41 78
22 54 0 42 36 76
23 68 3 44 33 75
18 78 2 29 25 69
17 72 2 44 18 61
12 59 2 48 −7 46
12 52 3 67 −12 46
12 80 0 51 −8 45
12 78 5 64 −17 45
12 72 1 63 −15 44
11 70 2 56 −15 44
12 77 0 63 −13 41
12 56 0 70 −25 41
11 65 2 55 −16 40
11 84 5 68 −28 40
9 67 5 80 −43 34
5 77 1 53 −26 28
6 78 4 69 −40 24

Table 8: Influential observations detected using the PRM and the PLRM.

Procedures PRM Procedures PLRM 􏽢d1

Ci 1 Cdi 1,19
Δχ2i — Δχ2di 1,19
Δd2

i — Δd2
di 1,19

DFFITSi 1,6,14,19 DFFITSdi 1,6,7,8,10,14,15,16,18,19,20

Table 9: Absolute change (%) in the estimates after deletion of influential observations.

Estimates
Influential observations

1st 19th 1st and 19th

PRM PLRM PRM PLRM PRM PLRM
􏽢β0 69.1 81.0 27.6 23.0 11.9 52.0
􏽢β1 3944.7 17.8 1448.5 47.2 3341.4 56.8
􏽢β2 510.0 160.4 139.8 54.4 392.3 189.6
􏽢β3 355.4 626.9 77.7 75.7 119.2 485.2
􏽢β4 144.7 50.9 70.5 19.5 13.9 28.4
􏽢β5 58.1 46.2 20.9 10.5 12.2 31.5
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Figure 4: Graphical representation of influential observations in English League Football data.
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6. Conclusion

&is study introduces diagnostic measures for Poisson Liu
regression using biased estimator to handle influential ob-
servations and multicollinearity simultaneously in the PRM.
As discussed earlier, multicollinearity affects the perfor-
mance of traditional ML estimator in PRM. &erefore, we
adopted the Liu estimator due to its efficient statistical
properties to solve multicollinearity and influential obser-
vations in PRM. &e simulation results support the per-
formance of new diagnostic measures as the detection
percentage of ML estimators and the existing measures turn
out to be the worst with increasing the sample size, number
of regressors, and the level of multicollinearity. &e results
proved that the suggested measures proved more beneficial
for the identification of influential observations together
with multicollinearity. Hence, it is suggested that these
proposed measures guide the user to handle the issue of
multicollinearity with robust estimator support efficiently.
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