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Purpose: To improve the robustness of pulmonary ventilation‐ and perfusion‐
weighted imaging with Fourier decomposition (FD) MRI in the presence of respira-
tory and cardiac frequency variations by replacing the standard fast Fourier transform 
with the more general nonuniform Fourier transform.
Theory and Methods: Dynamic coronal single‐slice MRI of the thorax was per-
formed in 11 patients and 5 healthy volunteers on a 1.5T whole‐body scanner using 
a 2D ultra‐fast balanced steady‐state free‐precession sequence with temporal resolu-
tions of 4‐9 images/s. For the proposed nonuniform Fourier‐decomposition (NUFD) 
approach, the original signal with variable physiological frequencies that was 
acquired with constant sampling rate was retrospectively transformed into a signal 
with (ventilation or perfusion) frequency‐adapted sampling rate. For that purpose, 
frequency tracking was performed with the synchro‐squeezed wavelet transform. 
Ventilation‐ and perfusion‐weighted NUFD amplitude and signal delay maps were 
generated and quantitatively compared with regularly sampled FD maps based on 
their signal‐to‐noise ratio (SNR).
Results: Volunteers and patients showed statistically significant increases of SNR in 
frequency‐adapted NUFD results compared to regularly sampled FD results. For ven-
tilation data, the mean SNR increased by 43.4%±25.3% and 24.4%±31.9% in volun-
teers and patients, respectively; for perfusion data, SNR increased by 93.0%±36.1% 
and 75.6%±62.8%. Two patients showed perfusion signal in pulmonary areas with 
NUFD that could not be imaged with FD.
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1  |   INTRODUCTION

Pulmonary Fourier‐decomposition (FD) MRI is a noninvasive  
free‐breathing imaging method for extracting functional  
information about ventilation and perfusion in the lung.1 FD 
MRI works on a registered series of dynamically acquired 
MR images of the lung, in which periodic signal changes  
associated with perfusion and ventilation can be spectrally 
separated and subsequently analyzed. Both signal variations 
are correlated with proton density variations, which are caused 
by changes in capillary blood filling (together with intravoxel  
dephasing effects) or changes in alveoli density, respectively.2-4

Several studies have shown the FD method to be a via-
ble tool for spotting local pulmonary pathologies5,6 without  
requirement of contrast‐agent administration (neither intrave-
nous agents for perfusion nor gaseous agents for ventilation 
assessment) or the health risks of radiation‐based methods 
(as, e.g., CT or single photon emission CT). Inaddition to 
mapping the spectral amplitude, it has also been suggested 
that the phase information obtained by FD MRI could  
potentially be used for estimating the signal arrival time. The 
phase difference (between 2 voxels) of a single spectral fre-
quency component is proportional to the temporal shift of the 
signals. Consequently, the signal arrival time (i.e., the “signal  
delay”) can be mapped by evaluating the phase difference 
compared to a starting point. Thus, localized delays of spa-
tial signal propagation caused by pathologies such as cystic  
fibrosis, chronic obstructive pulmonary disease, chronic 
thromboembolic pulmonary hypertension (CTEPH), asthma, 
or idiopathic pulmonary fibrosis7,8 could be displayed.

However, inevitable random variations of respiratory or 
cardiac frequencies during free‐breathing pulmonary mea-
surements can be reason for artificial signal loss when using 
the established FD MRI approach. Related methods that have 
been proposed to overcome this problem require complex mul-
tiple‐step post‐processing including peak finding, exact phase 
estimation and data resorting of k‐space9 or image‐space 
data10 to use all of the measured signal variations as well as 
recalibrate the signal contribution to a single frequency.

The purpose of this study was to return to the concep-
tual simplicity of the initially proposed FD method and to 
improve its robustness (quantified in terms of signal‐to‐noise 
ratio [SNR] maps) in the presence of frequency variations 
by replacing the well‐known fast Fourier transform with the 

more general nonuniform fast Fourier transform (NUFFT). 
This nonuniform Fourier‐decomposition (NUFD) approach 
requires transforming the original, evenly sampled signal 
with variablefrequency into a signal with constant frequency 
that is sampled at varying rate.

2  |   THEORY

In almost all real‐time ventilation and perfusion measurements, 
signal frequencies vary nonlinearly over time. When calculating  
the Fourier transform, this will not only spread the resulting 
intensity over multiple frequency bins, but also cause phase  
errors if spectral content overlaps. In the following sections, an 
approach is described to correct for such frequency variations.

2.1  |  Signal sampling
In the following, we consider an oscillating signal S(t) with 
varying frequency f(t) and assume that S(t) is sampled at equi-
distant sampling times tn =nΔt with the constant sampling 
interval Δt. If the signal frequency f(t) is varying, then the 
numbers of sample points tn per signal cycle will change cor-
respondingly (cf. Figure 1A). However, by transforming the 
original sampling times tn (together with the sampled signal 
intensities) to “virtual,” nonequidistant sampling times t̃n, the 
same sampled intensities appear as the time course of a virtual 
single‐frequency signal S̃ (t̃) (cf. Figure 1B). Thus, a uniformly 
sampled signal with variable frequency can be transformed 
into a nonuniformly sampled signal with constant frequency.

The calculation of the appropriate virtual, nonequidistant  
sampling times t̃n can be based on the instantaneous fre-
quency f(t) of the signal, which can be determined byappro-
priate frequency‐tracking techniques as described below. 
To obtain identical virtual cycle durations of �S (t̃), the n‐th 
sampling intervals Δt̃n must be modified proportional to the 
tracked frequency

resulting in the new sampling times
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Conclusion: This study demonstrates that using nonuniform Fourier transform in 
combination with frequency tracking can significantly increase SNR and reduce fre-
quency overlaps by collecting the signal intensity onto single frequency bins.
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The scaling factor fmean is to be chosen such that the total 
sampling duration remains the same, i.e. t̃N − t̃1 = tN − t1. 
Assuming t̃1 = t1 =0, this is achieved by setting fmean to the 
mean value of the tracked frequency:

2.2  |  NUFFT
Based on the new (virtual) sampling times t̃n, the selected 
frequency component Fk (containing, e.g., the ventilation 
or the perfusion component of a pulmonary measurement) 
of the signal S̃ (t̃) can be quantified by Fourier analysis. 
However, because the sampling times t̃n are not equidistant, 
this cannot be done using standard FFT algorithms; instead, 
a type‐1 NUFFT is required to calculate the (equidistant) fre-
quency spectrum of a signal defined at nonequidistant time 
points.a  The type‐1 discrete nonuniform Fourier transform is 
defined as

This looks similar to a regular discrete Fourier trans-
form with the modification that the sampling times t̃n are not 
evenly spaced.

3  |   METHODS

3.1  |  Image acquisition
Five healthy volunteers (24‐28 years old; 2 female and 3 
male) and 11 patients (5 with suspicion of CTEPH, 4 with 
suspicion of idiopathic pulmonary arterial hypertension 
(PAH) and 2 with suspicion of idiopathic pulmonary fibrosis, 
31‐84 years old; 5 female and 6 male) underwent non–con-
trast‐enhanced MRI under free‐breathing conditions. None of 
the healthy volunteers were smokers. Participants were meas-
ured as preparation and part of a study (registration number 
NCT02791282) and written informed consent was obtained 
from all subjects. Patients with pulmonary hypertension were 
referred to the study by means of the pneumology department 
with no other exclusion criteria than being able to undergo 25 
min of measurement; thus, only the most severe cases were 
excluded. MRI was performed on a 1.5T whole‐body scanner 
(Siemens Magnetom Aera, Siemens Healthineers, Erlangen, 
Germany) with an 18‐channel body array coil and 16 ele-
ments of a spine array coil. Functional MRI data were ac-
quired in supine position (head first) for a single coronal 
mid‐lung slice per subject. Dynamic single‐slice imaging 
was performed with a 2D ultra‐fast balanced steady‐state 
free‐precession (uf‐bSSFP) sequence,11 optimized to distin-
guish signal variations in the lung parenchyma. The main 
pulse sequence parameters were as follows: field of view = 
450 × 450  mm2, matrix = 96 × 96 voxels, slice thickness 
= 15 mm, repetition time = 1.03 ms, echo time = 0.36 ms, 

(3)fmean =
1

N

N
∑

k=1

f
(

tk
)

.

(4)Fk =NUFFT
(

S̃
(

t̃n
))

=

N
∑

n=1

S̃
(

t̃n
)

exp
(

−2𝜋ikt̃n∕
(

t̃N − t̃1
))

F I G U R E  1   Constant and frequency‐
adapted sampling rate. A, Variable‐
frequency signal with constant sampling 
rate; the frequency varies every signal cycle. 
B, Constant‐frequency signal with variable 
sampling rates; the same signal as above has 
been transformed into a constant‐frequency 
signal by appropriately modifying the 
sampling rates
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flip angle: 24.5° for volunteers and 24.5‐80° for patients. For 
volunteers, the temporal resolution was 115 ms/image, the 
series consisted of 1024 images, resulting in total measure-
ment times of 117s. For the patients, the temporal resolution 
varied between 115 and 216 ms/image, the series consisted 
of 200 to 1024 images, resulting in total measurement times 
between 40 and 117 s.

One of the 5 healthy test subject measurements was 
repeated 6 times with changing amounts of frequency vari-
ability between them to investigate the stability of the com-
pensation. The frequency variability was simply yielded by 
asking the test subject to change their ventilation rate more 
or less within each measurement. Due to respiratory sinus 
arrhythmia12 increased necessity for frequency tracking 
in both perfusion and ventilation signal components was 
expected.

3.2  |  Image processing workflow
A prototype software, fMRLung 4.5 (Siemens Digital 
Services, Princeton, NJ) was used to apply a nonrigid reg-
istration algorithm13,14 to the measured image series. The 

reference image was chosen manually based on the mean 
value of the diaphragm signal in the apical–basal direction to 
yield mid‐ventilation position.

All further image processing was performed with Matlab 
(The MathWorks, Natick, MA). The first 20 images were 
discarded due to transient signal behavior of the uf‐bSSFP 
sequence. In every voxel, the DC signal was subtracted from 
the time signal to focus purely on the variations. A region 
of interest (ROI) was manually segmented (with function 
‘roipoly, Matlab version 2018a) along the pleural lines cov-
ering both pulmonary veins as well as parenchyma collect-
ing both average perfusion and ventilation signal variations. 
Subject‐specific bandpass filtering was applied to separate 
ventilation and perfusion components similar to the standard 
FD method. Additional high pass filtering was applied on 
the ventilation‐weighted signal to remove frequencies below 
0.07 Hz (corresponding to signal periods longer than 14 s), 
which were considered baseline drift being substantially 
slower than realistic breathing (Figure 2A).

Frequency tracking of the resulting signal‐time course 
was performed with the synchro‐squeezed wavelet transform 
(SWT) method (function “wsst”, Matlab version 2018a),15 

F I G U R E  2   Workflow of NUFD MRI image processing. A, Extraction of ventilation and perfusion signal from large ROI by band‐pass 
filtering. B, Resulting time‐frequency map from SWT with tracked frequencies from ridge detection. C, Ventilation and perfusion signals displayed 
with recalculated sampling points (frequency variations are reduced in comparison to A. D, Resulting NUFFT spectra from the curves in C, 
showing that intensity has indeed been collected onto a single frequency bin for both ventilation and perfusion
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which resulted in a 2D frequencies‐over‐time spectrum (time‐
frequency map in Figure 2B, top). For SWT, the analytical 
Morlet wavelet was selected as a mother wavelet over bump 
wavelet, due to its narrower variance in time dimension. To 
track the frequency of interest, a method called ridge detec-
tion can be used; e.g., the function “wsstridge” in Matlab.16 
Ridge detection (Figure 2B, bottom) follows the frequency of 
the maximum intensity signal component in the SWT spec-
trum by means of a penalized forward backward greedy al-
gorithm. The penalty parameter limits large frequency jumps 
and was set to 0.3.

New “virtual” sampling times were then calculated 
with Equation 2, as described above (Figure 2C). Then, 
NUFFT was performed on the averaged lung ROI data, 
yielding 2 frequency spectra (1 for ventilation, 1 for per-
fusion), in which the relevant frequency bins for ventila-
tion fvent or perfusion fperf could be determined (Figure 2D). 
The NUFFT was implementedb  in Matlab with a Gaussian 
gridding based method,17,18 which has shown to be yield 
better reconstruction performance for NUFFT estimations 
than methods combining other types of interpolation with 
standard FFT.19

Finally, ventilation‐ and perfusion‐weighted maps were 
generated applying the NUFFT analysis (with the new sam-
pling times determined above) for every lung voxel, similar 
as with the FD method. Amplitude maps were then calculated 
from the frequency spectra with the ventilation and perfusion 
frequencies fvent and fperf extracted from the averaged ROI 
time signal.

Using the complex phase of the spectral frequency bin 
of every voxel (after applying a 2D phase unwrapping algo-
rithm,20 another map termed “(signal) delay map” was gen-
erated showing the delay of the signal relative to a reference 
voxel. The actual time delay tdelay was calculated for each 
voxel as

where ϕ is the phase angle, ϕ0 is the phase of a reference 
voxel (with the highest phase value, i.e., lowest time delay in 
the analyzed ROI), and T is the cycle period, i.e., the inverse 
frequency T =

1

f
 of the ventilation or perfusion frequencies 

fvent and fperf.
For comparison, FD maps (with amplitude data and 

phase‐based temporal delay data) were produced for all 
measurements.

3.3  |  Image evaluation
A standard method for SNR calculation of Fourier trans-
forms is to compare the amplitude of the signal frequency 

bin to the power of the noise frequency bins.21 In the pre-
sent study, SNR maps were calculated by dividing the sig-
nal of the ventilation and perfusion maps by the standard 
deviation of the noise bins of each lung voxel. The SNR 
maps were manually and separately segmented for both 
perfusion and ventilation evaluation. The perfusion ROI 
excluded the lower left lung where the heart moved into 
the section; the ventilation ROI excluded the large pulmo-
nary vessels. To quantify and compare these SNR maps, 
the average SNR (mean value) within the ROI was then 
calculated. The percentage difference between SNR for 
the NUFD and FD method was then calculated. Statistical 
evaluation was lastly performed with 1‐sample t‐tests 
(2‐tailed) on percentage change of SNR, for patient and 
volunteer measurements, respectively. Differences were 
considered to be statistically significant if P‐values were 
less than 0.05.

4  |   RESULTS

4.1  |  SNR evaluation
Comparing NUFD to FD evaluation, a statistically signifi-
cant increase of average ventilation and perfusion SNRs 
of healthy volunteers was found (including all measure-
ments from the variable frequency test). Ventilation SNRs 
increased by 43.4%±25.3% (P < 0.001) and perfusion 
SNRs by 93.0%±36.1% (P < 0.001). The average increase 
of all eleven patients’ ventilation and perfusion SNRs from 
NUFD compared to FD was also statistically significant with 
24.4%±31.9% (P=0.03) and 75.6%±62.8% (P=0.003) , 
respectively. All results are summarized in the Table 1.

Figure 3 displays an example of the resulting frequency 
spectra from the averaged ROI signal of a typical volunteer 
measurement, comparing the NUFD and FD approach. The 
spread‐out frequency components of the FD approach have 
been collected and are clearly not overlapping in the NUFD 
results. In addition, both NUFD ventilation and perfusion 
have gained a clear increase of amplitude.

Figure 4 shows examples of SNR maps from the same 
measurement. Both ventilation and perfusion maps display 
substantially higher SNRs with the NUFD approach com-
pared to the FD evaluation.

4.2  |  Influence of frequency variability and 
volunteer data
Two of the resulting NUFD and FD maps from the repeated 
volunteer measurements with different ventilation frequency 
variability are presented in Figure 5. Improvements due to 
the NUFD approach were especially prominent in ventila-
tion delay maps of measurement 2, in which the volunteer 
was asked to breathe very irregularly. Using the FD method 

(5)tdelay=
�0−�

2π

T =
�0−�

2�f
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resulted in a different signal delay pattern in the ventila-
tion case. Comparing the ventilation delay patterns between 
measurements 1 and 2, the NUFD map of measurement 2 
was substantially more similar to measurement 1 than the FD 
maps. Generally, the perfusion delay maps illustrate consist-
ently the propagation of the perfusion signal from the large 
central vessels to the pulmonary periphery.

In Table 2 below, a clearly improved average SNR is pre-
sented when comparing the NUFD and FD maps. However, 

it should be noted that the SNR increase was not linearly cor-
related with frequency variability. In fact, the highest ventila-
tion frequency variability yielded the smallest increase in the 
estimation of measurement 2.

The NUFD delays of perfusion (i.e., tdelay,max− tdelay,min 
within an individual map) ranged from 70 to 185  ms for 
the different volunteers (mean value over all volunteers was 
126±42.5 ms); for ventilation, the NUFD delays ranged from 
180 to 370 ms (mean value was 280±68.9 ms).

F I G U R E  3   Frequency spectra from NUFD (A,C) and FD (B,D) MRI based on extracted and averaged ROI signal for ventilation (A,B) and 
perfusion (C,D) component

T A B L E  1   SNR results for ventilation and perfusion measurements from FD and NUFD method displaying average and standard deviation 
SNR of volunteer and patient measurements

SNR NUFD SNR FD
SNR increase 
(absolute)

SNR increase 
(relative) P‐Value

Volunteer ventilation (n=11) 144.1 ± 32.6 102.7 ± 27.8 41.4 ± 17.7 43.4% ± 25.3% 2 × 10−5

Volunteer perfusion (n=11) 52.3 ± 11.6 27.8 ± 6.8 24.5 ± 8.3 93.0% ± 36.1% 7 × 10−6

Patients ventilation (n=11) 121.8 ± 64.5 95.1 ± 41.1 26.7 ± 36.3 24.4% ± 31.9% 3 × 10−2

Patients perfusion (n=11) 18.5 ± 13.5 11.2 ± 7.5 7.3 ± 7.9 75.6% ± 62.8% 3 × 10−3

Average and standard deviation increase in SNR (absolute and relative) between the 2 methods are also summarized with associated P‐values.
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F I G U R E  4   SNR maps generated from NUFD and regularly sampled FD spectra in a healthy volunteer. A,B, Ventilation (V) SNR maps 
displaying average SNRs of 195.3 and 144.2, respectively, corresponding to a +35.4% increase of SNR. C,D, Perfusion (Q) SNR maps displaying 
average SNRs of 80 and 39 corresponding to a +106% increase of SNR

F I G U R E  5   Influence of frequency variability. A‐H, Ventilation‐weighted (V) amplitude and signal delay maps from 2 measurements; the 
standard deviations of the ventilation frequencies were 0.01 Hz and 0.11 Hz, respectively. I‐P, Perfusion‐weighted (Q) amplitude and signal delay 
maps from 2 measurements; the standard deviations of cardiac frequencies were 0.04 Hz and 0.03 Hz, respectively
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4.3  |  Patient data
Two patients, 1 with suspicion of CTEPH and 1 with suspi-
cion of PAH are presented in Figure 6. Both show large per-
fusion defects in the amplitude maps from both the FD and 
NUFD methods. However, when using the NUFD method, 
the SNR was increased in the perfusion maps for both meas-
urements (from 11.5 to 19.6 in the CTEPH case, yielding 
71% increase and from 7.2 to 10.7 in the PAH case, yield-
ing 48% increase). This ensured that weaker blood pulsatil-
ity could be imaged in both cases, as can be seen, e.g., in 
Figure 6A,B,F,G. The PAH patient displayed a low but 
noticeable signal increase, homogenously spread in the left 
and right lung parenchyma with NUFD that could not be 
noticed with FD; the CTEPH patient showed stronger signal 
intensities in areas of the lower and upper right lung.

Increased SNR becomes also apparent when comparing 
the perfusion signal delay maps from FD and NUFD. For the 
PAH patient (Figure 6D,E), the NUFD delay map shows a 
smoother signal delay than the FD map, whose phase esti-
mate is strongly distorted by noise.

5  |   DISCUSSION

In this work, a new method for pulmonary Fourier‐decompo-
sition MRI based on the nonuniform Fourier transform was 
presented and applied for visualizing signal amplitudes and 
quantifying the signal delay in the lungs. It was demonstrated 
that, by adding a frequency‐tracking step to the original FD 
method and switching perspective from variable signal fre-
quency to variable sampling frequency, spectrally spread‐out 

T A B L E  2   Resulting average SNR from 6 measurements with varying frequency variability

Ventilation Perfusion

1 2 3 4 5 6 1 2 3 4 5 6

std (f) (Hz) 0.014 0.11 0.03 0.05 0.05 0.04 0.04 0.07 0.09 0.06 0.05 0.05

mean (f) (Hz) 0.12 0.20 0.15 0.20 0.14 0.14 0.95 1.04 0.96 1.04 0.96 0.99

mean(SNR
FD) 96.6 99.7 82.4 72.4 82.4 91.9 35.1 21.0 27.1 21.7 32.4 27.1

mean(SNR
NUFD) 144.8 103.3 111.8 127.9 111.2 130.2 66.0 47.6 43.8 52.9 43.5 48.9

increase (SNR) 48.2 3.5 29.4 55.5 28.8 38.3 30.9 26.6 16.8 31.2 11.1 21.8

increase (SNR)% 50% 4% 36% 77% 35% 42% 88% 127% 62% 144% 34% 81%

Table describes frequency variability std(f) (standard deviation of the tracked frequency) and mean frequency mean(f) for perfusion and ventilation signals with SNRs 
from FD and NUFD method as well as the absolute and relative SNR increase.

F I G U R E  6   Perfusion‐weighted NUFD and FD maps of patients with suspected PAH and CTEPH. A,B,F,G, FD and NUFD perfusion‐
weighted amplitude maps. D,E,I,J, Perfusion time delay maps. C,H, These 2 patients also had iodine‐enhanced dual‐energy CT pulmonary 
angiogram (CTPA) measurements (100/140Sn kV, 165/140 mAref, pitch = 1.2 for PAH patient and 90/150Sn kV, 60/46 mAref, pitch = 1.2 
for CTEPH patient) performed as part of clinical routine within 3 months of their MR scans. The comparison shows that perfusion signal 
improvements from NUFD coincides better with displayed iodine concentration in both CTPA images. For the CTEPH patient, the CTPA image 
displays the decreasing, yet still existing signal intensity in the upper and lower part of the right lung where the lower part is stronger than the 
upper. This coincides better with the NUFD perfusion amplitude map than the one generated with FD
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signal contribution could be collected onto a single frequency 
bin. This led to lessened bin spread caused by frequency 
variability as well as significant increase of SNR in both 
healthy test subjects and patient measurements, which can be 
expected to translate into more reliable quantitative results 
and less noisy parameter maps.

The patient measurements shown in Figure 6 clearly 
exemplify the difference NUFD can make for the evalua-
tion of functional maps compared to FD. The effects are 
especially illustrated in the time delay maps comparing 
NUFD and FD, in which the PAH patient (Figure 6D,E) 
showed smoother progression and the CTEPH patient dis-
played further subtleties with better detectable signal pro-
gression (Figure 6I,J) in the upper right lung. In both cases, 
SNR was significantly improved. In the amplitude maps of 
the PAH patient (Figure 6A,B), the signal was substantially 
raised in voxels that had signal close to or lower than the 
noise floor (i.e., the local noise level of these voxels) with 
the FD method.

A key step of our new approach is frequency tracking of 
either the respiratory or the cardiac frequency during the 1 
to 2 min of measurement. Current signal processing studies 
still discuss how best to describe signals with varying fre-
quencies as amalgamation of multiple components and have 
specifically highlighted the influence of variable signal am-
plitudes.22 Variable amplitudes are expected in biological 
signal variations (especially for ventilation‐associated sig-
nals) and must be dealt with to avoid misleading added low 
frequency components. With this in mind, the SWT method 
was selected due to its implementation where a variable am-
plitude factor is added to the regular wavelet transform defini-
tion. In addition, SWT has also been shown to offer improved 
frequency localization in time compared with regular con-
tinuous wavelet transform.23 The resulting time‐frequency 
representation of the SWT approach also helps to spread out 
potential artifacts and noise over the 2D frequency‐time spec-
trum resulting in more stable estimates than those performed 
only in the (1D) time domain.

Because the NUFD method requires no changes in image 
acquisition parameters, it can easily be implemented as a 
complement to ongoing and future studies. The tracking of 
the (free‐breathing) respiratory frequency offers fewer lim-
itations for patient selection compared to regular FD MRI, as 
even patients strongly suffering from their conditions, which 
have troubles to breathe regularly, can be examined.

Due to the possibility of determining the signal delay with 
high temporal resolution from phase estimates, time delay 
maps can be calculated to estimate how the perfusion or respi-
ratory signal propagates through microstructures in the lungs. 
However, further studies are required to validate the resulting 
delay maps quantitatively. The measured range of ventilation 
delays throughout the lungs of healthy subjects was between 
approximately 180 and 370 ms. This agrees well with results 

from a dynamic spiral MRI study,24 in which similar values 
were shown for the gas delay during inhalation.

Similar to PREFUL10 and SENCEFUL,9 the proposed 
NUFD method generates functional maps where all of the 
signal contribution collected during the measurement can 
be used. Because the same amount of signal is used for the 
evaluation, one would expect similar SNR increases with the 
NUFD approach as with the 2 other methods compared to FD. 
NUFD MRI, however, distinguishes itself in that it does not 
require exact phase estimates for performing image or k‐space 
line resorting, thus simplifying the final implementation.

There are some limitations of this study. First, the pro-
posed NUFD approach requires an additional (in compari-
son to FD MRI) frequency‐tracking step. There exist several 
approaches for frequency tracking and here we used the 
SWT in combination with ridge detection. Further studies 
should compare this technique with other approaches (such 
as, e.g., frequency tracking by simple peak finding) to deter-
mine the most robust and reliable technique. Second, even 
without frequency variability, NUFD MRI can suffer from 
the same amplitude stability issues as was described for FD 
MRI,25 for which solutions such as windowing21 or matrix 
pencil decomposition,25 are readily available. Thus, NUFD 
estimates of both amplitude and phase can be expected to be 
further improved upon with an optimal choice of a filtering 
window function. However, because the focus of this study 
was to compare the results between NUFD and FD MRI 
(where windowing is not an efficient option due to the pre-
dominant influence of frequency variability in vivo), this was 
left out for future investigations. Furthermore, this is a proof 
of principle study and future studies with larger sample size 
are required to establish clinical relevance of the found SNR 
improvements. Finally, it should be noted that because imag-
ing is performed in 2D, artifacts can occur as with the regular 
FD method due to movement of structures in an out of the 
slice which would likely occur at ventilation rate.

6  |   CONCLUSIONS

This study presents a modification of functional Fourier‐ 
decomposition lung imaging with frequency‐adapted Fourier 
transform to compensate for variability in perfusion and ven-
tilation frequency. We demonstrated that using nonuniform 
Fourier transform in combination with frequency tracking can 
significantly increase SNR and reduce frequency overlaps by 
collecting the signal intensity onto single frequency bins.
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ENDNOTES
a	 Generally, 3 types of NUFFT algorithms are differentiated: (1) Type‐1 

NUFFTs perform a spectral analysis of data sampled at nonequidistant 
time points resulting in an equidistantly defined frequency spectrum; (2) 
type‐2 NUFFTs perform a spectral analysis of equidistantly sampled data 
resulting in a nonequidistantly defined frequency spectrum; (3) type‐3 
NUFFTs combine type‐1 and type‐2 NUFFT, namely transforming a 
nonequidistantly sampled signal to a nonequidistantly defined frequency 
spectrum. 

b	Code initially written by M. Ferrara at AFRL Sensors Directorate 
Innovative Algorithms Branch. 

REFERENCES

	 1.	 Bauman G, Puderbach M, Deimling M, et al. Non‐contrast‐ 
enhanced perfusion and ventilation assessment of the human lung 
by means of Fourier decomposition in proton MRI. Magn Reson 
Med. 2009;62:656–664.

	 2.	 Kjørstad Å, Corteville DMR, Fischer A, et al. Quantitative lung 
perfusion evaluation using Fourier decomposition perfusion MRI. 
Magn Reson Med. 2014;72:558–562.

	 3.	 Zapke M, Topf H‐G, Zenker M, et al. Magnetic resonance lung 
function–a breakthrough for lung imaging and functional assess-
ment? A phantom study and clinical trial. Respir Res. 2006;7:106.

	 4.	 Martirosian P, Boss A, Fenchel M, et al. Quantitative lung perfu-
sion mapping at 0.2 T using FAIR True‐FISP MRI. Magn Reson 
Med. 2006;55:1065–1074.

	 5.	 Bauman G, Scholz A, Rivoire J, et al. Lung ventilation‐ and per-
fusion‐weighted Fourier decomposition magnetic resonance 
imaging: in vivo validation with hyperpolarized 3He and dynamic 
contrast‐enhanced MRI. Magn Reson Med. 2013;69:229–237.

	 6.	 Bauman G, Lützen U, Ullrich M, et al. Pulmonary functional imag-
ing: qualitative comparison of Fourier decomposition MR imaging 
with SPECT/CT in porcine lung. Radiology. 2011;260:551–559.

	 7.	 Bauman G, Eichinger M, Uecker M. High temporal resolution 
radial bSSFP sequence with nonlinear inverse reconstruction for 
the measurement of the pulmonary blood inflow time using Fourier 
decomposition MRI. In: Proceedings of the 20th Annual Meeting 
of ISMRM, Melbourne, Australia, 2012. Abstract 1340.

	 8.	 Veldhoen S, Weng AM, Wirth C, et al. Pulmonary phase imaging 
using self‐gated Fourier decomposition MRI in patients with cystic 
fibrosis. In: Proceedings of the 24th Annual Meeting of ISMRM, 
Singapore, 2016. Abstract 114.

	 9.	 Fischer A, Weick S, Ritter CO, et al. SElf‐gated Non‐Contrast‐
Enhanced FUnctional Lung imaging (SENCEFUL) using a quasi‐
random fast low‐angle shot (FLASH) sequence and proton MRI. 
NMR Biomed. 2014;27:907–917.

	10.	 Voskrebenzev A, Gutberlet M, Klimeš F, et al. Feasibility of 
quantitative regional ventilation and perfusion mapping with 
phase‐resolved functional lung (PREFUL) MRI in healthy 

volunteers and COPD, CTEPH, and CF patients. Magn Reson Med. 
2018;79:2306–2314.

	11.	 Bieri O. Ultra‐fast steady state free precession and its application 
to in vivo (1)H morphological and functional lung imaging at 1.5 
tesla. Magn Reson Med. 2013;70:657–663.

	12.	 Hirsch JA, Bishop B. Respiratory sinus arrhythmia in humans: 
how breathing pattern modulates heart rate. Am J Physiol. 
1981;241:H620–H629.

	13.	 Chefd’hotel C, Hermosillo G, Faugeras O. Flows of diffeomor-
phisms for multimodal image registration. In: Proceedings IEEE 
International Symposium on Biomedical Imaging, Washington, 
DC, 2002:753–756.

	14.	 Chefd’Hotel C, Hermosillo G, Faugeras O. A variational approach 
to multi‐modal image matching. In: Proceedings IEEE Workshop 
on Variational and Level Set Methods in Computer Vision, 
Vancouver, BC, Canada, 2001:21–28.

	15.	 Daubechies I, Lu J, Wu H‐T. Synchrosqueezed wavelet transforms: 
an empirical mode decomposition‐like tool. Appl Comput Harmon 
Anal. 2011;30:243–261.

	16.	 Carmona RA, Hwang WL, Torresani B. Characterization of sig-
nals by the ridges of their wavelet transforms. IEEE Trans Signal 
Process. 1997;45:2586–2590.

	17.	 Greengard L, Lee J. Accelerating the nonuniform fast Fourier 
transform. SIAM Rev. 2004;46:443–454.

	18.	 Liu QH, Nguyen N. An accurate algorithm for nonuniform fast 
Fourier transforms (NUFFT’s). IEEE Microw Guid Wave Lett. 
1998;8:18–20.

	19.	 Zhang K, Kang JU. Graphics processing unit accelerated non‐ 
uniform fast Fourier transform for ultrahigh‐speed, real‐time 
Fourier‐domain OCT. Opt Express. 2010;18:23472.

	20.	 Goldstein RM, Zebker HA, Werner CL. Satellite radar inter-
ferometry: two‐dimensional phase unwrapping. Radio Sci. 
1988;23:713–720.

	21.	 Harris FJ. On the use of windows for harmonic analysis with the 
discrete Fourier transform. Proc IEEE. 1978;66:51–83.

	22.	 Huang NE, Shen Z, Long SR, et al. The empirical mode 
decomposition and the Hilbert spectrum for nonlinear and non‐ 
stationary time series analysis. Proc R Soc Lond Math Phys Eng 
Sci. 1998;454:903–995.

	23.	 Thakur G, Brevdo E, Fučkar NS, Wu H‐T. The Synchrosqueezing 
algorithm for time‐varying spectral analysis: robustness prop-
erties and new paleoclimate applications. Signal Process. 
2013;93:1079–1094.

	24.	 Salerno M, Altes TA, Brookeman JR, de Lange EE, Mugler JP. 
Dynamic spiral MRI of pulmonary gas flow using hyperpolarized 
(3)He: preliminary studies in healthy and diseased lungs. Magn 
Reson Med. 2001;46:667–677.

	25.	 Bauman G, Bieri O. Matrix pencil decomposition of time‐resolved 
proton MRI for robust and improved assessment of pulmonary ven-
tilation and perfusion. Magn Reson Med. 2017;77:336–342.

How to cite this article: Bondesson D, Schneider MJ, 
Gaass T, et al. Nonuniform Fourier‐decomposition 
MRI for ventilation‐ and perfusion‐weighted imaging 
of the lung. Magn Reson Med. 2019;82:1312–1321. 
https​://doi.org/10.1002/mrm.27803​

https://doi.org/10.1002/mrm.27803

