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Abstract

According to a prominent view of sensorimotor processing in primates, selection and specification of possible actions are
not sequential operations. Rather, a decision for an action emerges from competition between different movement plans,
which are specified and selected in parallel. For action choices which are based on ambiguous sensory input, the
frontoparietal sensorimotor areas are considered part of the common underlying neural substrate for selection and
specification of action. These areas have been shown capable of encoding alternative spatial motor goals in parallel during
movement planning, and show signatures of competitive value-based selection among these goals. Since the same network
is also involved in learning sensorimotor associations, competitive action selection (decision making) should not only be
driven by the sensory evidence and expected reward in favor of either action, but also by the subject’s learning history of
different sensorimotor associations. Previous computational models of competitive neural decision making used predefined
associations between sensory input and corresponding motor output. Such hard-wiring does not allow modeling of how
decisions are influenced by sensorimotor learning or by changing reward contingencies. We present a dynamic neural field
model which learns arbitrary sensorimotor associations with a reward-driven Hebbian learning algorithm. We show that the
model accurately simulates the dynamics of action selection with different reward contingencies, as observed in monkey
cortical recordings, and that it correctly predicted the pattern of choice errors in a control experiment. With our adaptive
model we demonstrate how network plasticity, which is required for association learning and adaptation to new reward
contingencies, can influence choice behavior. The field model provides an integrated and dynamic account for the
operations of sensorimotor integration, working memory and action selection required for decision making in ambiguous
choice situations.
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Introduction

Actions beyond simple reflexes are generally not the direct

consequence of a sensory input. Instead, the association of a

specific sensory input with an appropriate action has to be learned

from experience, and depends on the behavioral context. Often

these context-dependent associations can be described in terms of

a general mapping rule. In most situations, subjects can choose

among more than one associated action. This requires a process

for action selection, a form of decision making. We propose that a

reward-based learning mechanism for forming new sensorimotor

associations is integrated in the action selection system. Through

this integration in a common neural substrate, the learning history

directly influences the decision process.

While traditional psychological theories tended to view decision

making as the outcome of a higher cognitive process which is

separate from perception and action [1], more recent neurophys-

iologically motivated ideas emphasize the integrative nature of

sensorimotor processing and action selection [2–5]. Several cortical

areas form frontoparietal networks for making goal-directed

saccades, like the lateral intraparietal area (LIP) and the frontal

eye fields (FEF), or goal-directed reaches, like the parietal reach

region (PRR) and the dorsal premotor cortex (PMd) [6–9]. At the

same time, neurons in these areas show signatures of valuation and

selection of action, since their neural responses are modulated by the

subject’s choice preference based on reward expectancy or other

decision variables [5,10–19].

We present a dynamic neural field (DNF) model that unifies the

processes of sensory integration, working memory formation,

associative learning and action selection in a context-dependent

mapping task. The model implements a reward-driven Hebbian

mechanism that allows it to learn simple associative sensorimotor

mappings from reward history. The model selects from a

continuum of ‘behavioral’ options through an integrated compe-

tition process between potential action plans. This framework

reflects the conceptual idea of integrated sensorimotor and

decision processing [2,20].

With this model, first, we explain adaptive decision behavior

and its neural underpinnings in tasks which require rule-based

selection of spatial motor goals. As an example, we use the model
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to mimic the behavioral and neural findings of a previous monkey

experiment. In this experiment, the authors investigated the

preparatory neural activity in situations in which in response to an

ambiguous visual cue, two potential motor goals could be ‘freely’

chosen according to two different spatial transformation rules [5].

Varying reward contingencies lead to different choice behavior

and neural activity patterns in this experiment. Previous models of

decision making did not utilize learning in decision tasks with

ambiguous choice situations, hence could not adapt to different

reward contingencies. Conceptually, they either did not imple-

ment neural-inspired mechanisms of sensorimotor mapping, like

threshold-models of decision making (see [21] for review), or were

limited to solve predefined target-selection tasks [2]. Other models,

which implemented sensorimotor association learning, did not

investigate decision making in ambiguous situations [22–24].

Second, we used our model to make predictions about specific

patterns of choice errors in a generalization task. We tested the

predictions which result from these assumptions in an additional

behavioral monkey experiment.

Our results provide support for two assumptions, which are

more general than the specific examples for which we directly

demonstrate the suitability of our approach. The first assumption

regards the neural mechanism underlying context-specific ‘‘rule-

based’’ spatial remapping in visuomotor tasks. It is in general

unclear if rules that can be derived by abstraction from concrete

examples are encoded as such in the monkey brain, or if instead

the brain stores the individual underlying associations that

constitute the rule. We propose that spatial mapping rules are

learned, at least in our monkey experiments, by local associations.

The nature of local associations limits the ability to generalize a

mapping rule and imposes interactions between novel cues and

already trained cue locations, which lead to specific patterns of

choice errors. The second assumption regards the interaction of

sensorimotor learning with adaptive choice behavior in action

selection tasks. We propose that the same reward-driven Hebbian

learning mechanism which allows learning of arbitrary stimulus-

response mappings also contributes to adapting the choice

behavior to changing probabilistic reward contingencies in a

free-choice task, in addition to other biasing factors for adapting

choice behavior. As an inevitable consequence, the learning and

reward history influences the decision process, and biases the

behavior in free-choice situations.

Methods

Ethics statement
This study was granted permission to carry out experiments on

vertebrates by the Niedersächsische Landesamt für Verbrau-

cherschutz und Lebensmittelsicherheit, No 33-9-42502-047-064/

07. All animal work was conducted according to the German

Animal Welfare Act and all experiments were conducted in

conformity with the European Communities Council Directive of

November 1986 (86/609/ECC).

Rule-based motor-goal selection tasks
Our approach addresses sensorimotor association learning and

decision making in situations in which context-dependent remap-

ping of a spatial sensory (e.g. visual) location onto different motor

(e.g. reach) goals is required, and the mapping is achieved

according to geometric transformation rules. Different variants of

the task were employed in previous studies [5,25–27] and are

discussed in more detail below, but they all share the same basic

structure (Figure 1): Two cues are presented, a spatial and a

contextual cue, that together determine the rewarded goal location

for a reach movement. The spatial cue is located at one of four

equally spaced positions representing directions in the center-out

workspace. The contextual cue can have two different colors and

determines the mapping rule for the current trial. The mapping

rule is either ‘direct’ (green), meaning that the rewarded motor

goal is located at the same position as the spatial cue, or ‘inferred’

(blue), which means the rewarded goal is located in the direction

opposite to the spatial cue. The reach movement has to be

executed after a memory period upon a ‘go’-signal.

Conceptual design of the neurodynamic model
We use a model architecture that consists of multiple dynamic

neural fields (DNF) to capture the neural processes underlying cue

perception, working memory for visual locations, movement plan

formation, and movement initiation (Figure 2A). Each DNF

describes neural activation patterns at the population level. Its

functional properties are determined by lateral interactions within

each field (Figure 2B), which are predefined, and its connections to

other fields in the architecture, which are partly plastic. This

model is not intended to serve as a comprehensive and strict

anatomical model, which is why we will have to refrain from

drawing simple one-to-one links between individual DNFs and

corresponding cortical areas. Nonetheless, the model architecture

captures the general structure of spatial processing pathways in the

primate frontoparietal cortex (see Discussion for a comparison to

neurophysiology), and is largely analogous to a previous neuro-

dynamic model that explicitly aimed to reproduce activation

patterns in specific cortical areas [2]. The goal of the study is to

emphasize general principles, which likely can be found in several

sensorimotor subsystems, and to highlight these principles for a

specific finding in specific cortical areas for which we have detailed

knowledge.

The model is largely pre-structured in its inter-field connectivity

(white projection arrows in Figure 2A). The pre-structuring allows

it to perform basic functions without any initial training:

1. Selecting the spatial stimulus location as ‘default’ motor plan;

this is realized by a direct topological connectivity between a

spatial sensory input field and the motor-related fields

(Figure 2A). This corresponds to the widespread tendency of

subjects to direct their actions towards a salient stimulus,

sometimes even involuntarily as in the case of saccades [28].

Author Summary

Decision making requires the selection between alterna-
tive actions. It has been suggested that action selection is
not separate from motor preparation of the according
actions, but rather that the selection emerges from the
competition between different movement plans. We
expand on this idea, and ask how action selection
mechanisms interact with the learning of new action
choices. We present a neurodynamic model that provides
an integrated account of action selection and the learning
of sensorimotor associations. The model explains recent
electrophysiological findings from monkeys’ sensorimotor
cortex, and correctly predicted a newly described charac-
teristic pattern of their choice errors. Based on the model,
we present a theory of how geometrical sensorimotor
mapping rules can be learned by association without the
need for an explicit representation of the transformation
rule, and how the learning history of these associations can
have a direct influence on later decision making.

A Learning Neural Field Model
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2. Selecting one reach plan out of several alternatives; this is

realized by lateral inhibition and a winner-take-all dynamic

(Figure 2B). This serves competitive action selection, i.e., the

ability to ‘make a decision’.

3. Memorizing the last stimulus location in absence of the

stimulus; this is realized by local excitation which can form self-

sustained peaks of activation in DNFs (Figure 2B). This serves

the function of a ‘working memory’.

These basic functions allow the model to produce a memory-

guided reach directly towards a previously cued goal position as a

default behavior. In addition to this, the model must be flexible

enough to learn different spatial mappings from the spatial sensory

input onto the motor output. This is achieved through additional

plastic connectivity (red connections in Figure 2A) between input

and output via a cue integration and association field. Plastic

connections are adapted by a reward-driven Hebbian learning

mechanism (see below).

Dynamic neural fields
DNFs describe neural activation patterns through the evolution

of continuous activation distributions over time, emphasizing the

role of attractor states and instabilities [20,29]. DNFs are based on

the concept of population coding, in which a value along a certain

feature dimension, e.g. the location of a visual stimulus or the

endpoint of a planned movement, is represented through the

distribution of activity within a population of neurons. These

neurons have different tuning functions that sample the underlying

feature space [30,31]. Abstracting from the discrete spiking

neurons, DNFs directly describe the activation distributions over

the underlying feature space [32–35]. This activation distribution

evolves continuously in time under the influence of external input

and lateral interactions, governed by a differential equation of the

form

t _uu(x,t)~{u(x,t)zhzS(x,t)z

ð
k(x,x’)f u(x’,t)ð Þdx’zj(t)

Here, u(x,t) is the activation at time t for a position x along the

underlying feature dimension, _uu(x,t) is its rate of change over time,

which is scaled with a time constant t, and h is the (negative) global

resting level for the field activation. Any point in the field receives

external input S(x,t), as well as endogenous input from other parts

Figure 1. Structure of the context-dependent reach task that model and monkeys had to perform. In the beginning either a single
spatial cue (PMG task, B) or a spatial and a contextual cue (DMG task, A) were presented, indicated by a white circle (spatial cue) and a colored
rectangle (contextual cue). During the memory period no cue was shown. The ‘go’-signal indicated the subject to make a reach movement towards
the goal, which was either at the same location as the spatial cue (direct trial; green) or at the diametrically opposite location (inferred trial; blue). In
one part of the PMG trials the contextual cue was presented at the end of the memory period (PMG-CI), and in another part no contextual cue was
shown at all (PMG-NC) and a free choice had to be made (see Methods). In the inferred reach training task (C), a second spatial cue (target cue) is
shown at the end of the memory period to indicate the rewarded goal position. This cue is gradually faded out over many trials during the training.
doi:10.1371/journal.pcbi.1002774.g001
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PLOS Computational Biology | www.ploscompbiol.org 3 November 2012 | Volume 8 | Issue 11 | e1002774



Figure 2. Model architecture and interactions in neural fields. (A) The model consists of four interconnected DNFs and a set of dynamic
nodes. The spatial input field, motor preparation field, and motor field are one-dimensional fields that span the space of possible spatial cue/reach
directions. The two-dimensional association field is defined over this directional space as well as a second dimension along which selectivity for the
contextual cue develops. Its activation is shown color coded (red highest, blue lowest activation). The activation of the two context nodes is shown as
a bar plot. Fixed projections between the fields are shown as white arrows; variable projections (that are subject to learning) are shown through dark
red arrows with a weight matrix W. (B) Lateral interactions in DNFs, shown exemplarily for the motor preparation field. Exogenous input from other
fields (indicated by grey arrows at the bottom) locally increases activation (red). Regions of high activation produce an output signal (the soft
threshold of the sigmoid output function is indicated by the dashed line), which acts on other parts of the field and is also projected to other fields of

A Learning Neural Field Model
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of the field. Furthermore, each point in the field is affected by

additive noise j(t), drawn from a normal distribution, that

represents unspecific input and spontaneous activity. The lateral

interactions are characterized by an interaction kernel k(x,x’),
which consists of a local excitatory and a long-range inhibitory

component. The lateral connectivity pattern reflects the mutual

excitation between neurons with similar tuning curves and

inhibition between those with dissimilar tuning curves. This

interaction kernel is convolved with the output of the field, which

is computed from the field activation via a sigmoid function,

f u(x,t)ð Þ~ 1

1zexp {bu(x,t)ð Þ

The field output is close to zero for low activation levels, rises

around a soft threshold (arbitrarily placed at zero), and saturates

for higher activations. The specific pattern of lateral interactions

promotes the formation of localized peaks of activation as attractor

states of the field dynamics (Figure 2B).

Depending on the interaction parameters (see Text S1,

Table S1 and S2), different dynamic regimes can be achieved

(for a quantitative analysis see [35]): With moderately strong

local interactions, multiple simultaneous peaks can provide a

representation of (multiple) current inputs that is stabilized

against fluctuations. For stronger self-excitation (balanced by

sufficient inhibition), peaks may become self-sustained in the

absence of input, yielding a model of working memory (similar

to the implementation with spiking neurons described by [36]).

If strong global inhibition is present in a field, a competitive

regime is created in which only a single peak can form,

implementing a winner-take-all selection that is stabilized over

time.

For numerical simulations, the conceptually continuous field

dynamics have to be discretized in space and time. To perform

comparisons with electrophysiological data, the field output at one

point in the field is equated to the firing rate of neurons with

corresponding selectivity profile. Evidence for a cortical organiza-

tion that supports the neural field dynamic have been shown by

[37].

Model architecture
The dynamic model for context-dependent reaching consists of

a set of interconnected DNFs and discrete nodes that can be

organized into four levels: Perception (spatial and context input

fields), memory and association (association field), movement

planning (motor preparation field) and movement initiation (motor

field), which are shown in Figure 2A. A complete formal

description of the model with all parameter values is given in

Text S1, Table S1 and Table S2.

A direct pathway from the spatial input field to the motor preparation

field and further to the motor field implements a default sensorimotor

mapping that is functional prior to any task-specific learning. The

direct pathway comprises three DNFs defined over a one-

dimensional space. In our case this space represents the angular

direction (with circular boundary conditions) of either the location

of the spatial cue (as direction from the central fixation point) or

the direction of a reach movement in a center-out reach task. The

projections between the fields along this direct pathway are

topologically organized, that is, the output at a certain point in one

field drives activation at the corresponding point (coding for the

same direction) in another field, and to a lesser degree in the direct

neighborhood of that point. The spatial input field features

relatively weak local interactions to form a stabilized representa-

tion of a currently presented spatial cue. It projects in a topological

fashion onto the motor preparation field. The motor preparation

field has moderate local excitatory and global inhibitory interac-

tions, producing a soft competition behavior between different

regions of the field. While these competitive interactions promote

the concentration of activation in a single region, they still allow

multiple activation peaks to exist simultaneously if they are driven

by multiple localized inputs.

The motor preparation field in turn reciprocally projects to the

motor field in a topological manner. The motor field itself features

stronger self-excitation and global inhibition, producing a strong

selection behavior that only allows a single stabilized activation

peak to prevail. The motor field is held at a low resting level during

most of the time, so that it cannot form a peak from the motor

preparation field’s input alone. Only after the ‘go’-signal has been

provided, the motor field is globally excited and an activation peak

can form, simulating a gating mechanism for movement initial-

ization. Similar gating mechanisms have been described for

saccade generation [38]. When a peak has formed in the motor

field, it projects back to the motor preparation field, such that the

actually selected motor plan is reinforced in that field and others

are suppressed.

An additional indirect pathway from the spatial input to the

motor preparation field runs through the association field. This field

spans two dimensions. The first dimension of the association field

corresponds to the angular spatial representation also used in the

spatial input field, motor preparation field, and motor field. The

second dimension of the field is initially (i.e., before training) not

associated with a specific feature, but instead provides redundancy

in the existing representation to allow further specialization

through learning. The association field receives one of its inputs

from the spatial input field. This input is organized topologically

along the spatial dimension, and is homogeneous along the second

dimension. That means that a localized peak of activation in the

spatial input field induces a vertical ridge of activation at the

corresponding spatial location in the association field. The lateral

interactions (local excitation and global inhibition) will produce a

localized peak of activation from this ridge-like input (see

Figure 2A).

The association field receives a second input from a set of two

context input nodes. These nodes provide a simple, discrete

representation of the context for the current trial (direct or

inferred), indicated by the color cue. The nodes feature self-

excitation and mutual inhibition, such that if one node becomes

sufficiently activated by external input, it will remain active and

suppress activation of the other node. There is an all-to-all

connection from the context input nodes to the association field,

which is initially unspecific (with small, random weights from each

node to every point in the field, shown in Figure 3A). These

connections are modified during the learning phase as detailed

below, and can then influence where along the spatial input ridge

an activation peak will form.

When a peak has formed in the association field, it remains

stable even without exogenous inputs due to strong self-excitation.

the architecture. The lateral interactions consist of local excitatory connections and surrounding inhibitory connections, which together implement a
soft competition between distant field regions. This creates a selection property in the field, promoting the formation of a single peak even for multi-
modal input.
doi:10.1371/journal.pcbi.1002774.g002
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Figure 3. Weight changes in the model during IR training. (A, C, E, G) Weight difference matrix from the context input nodes to the association
field. The color at each point of the field indicates the difference of the weights from the inferred context input node and the direct context input
node to that point in the association field. In the untrained network, weight differences are randomly distributed around 0 without any spatial
pattern (A). Over the course of IR training, distinct areas sensitive for direct or inferred context input evolve at the trained spatial positions (C, E, G). (B,
D, F, H) Index shift in the projection from the association field to the motor preparation field (difference between spatial position of a point in the
association field and the position in the motor preparation field to which it projects most strongly). In the beginning each point in the same spatial
column preferably connects to the corresponding spatial position in the motor preparation field (B, index shift = 0u). After IR training those areas
which prefer the inferred context input preferably connect to the opposite spatial position in the motor preparation field, corresponding to an index
shift of about 180u (D, F, H).
doi:10.1371/journal.pcbi.1002774.g003
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This peak provides a second input to the motor preparation field.

The projection from the association to the motor preparation field

is initially topologically organized along the spatial dimension, so

that it supports a delayed reach movement to the memorized

location of a previously presented spatial cue, but it is likewise

subject to learning.

Learning in the DNF model
The projections from the context neurons to the association

field and from the association field to the motor preparation field

are adapted according to a reward-driven Hebbian learning rule

[24,39–41]. We use two variants of the basic Hebbian rule that

incorporate an implicit limit of weight growth, the ‘instar’ and

‘outstar’ learning rules in the formulation of Marshall [42]. These

rules have successfully been used in topographical dynamic neural

networks that are comparable to DNFs [43,44]. We further

adapted them to be used in a reward-dependent manner: As in the

original rules, the weights between active regions are strengthened

if the reward signal is positive, but in addition they are weakened if

the reward signal is negative. Physiologically, a teaching signal

could be conveyed by dopaminergic neurons via the cortico-basal

circuitry (for review see [45]). It has been shown that dopamine

neurons signal rewards through phasic activity and lack of

expected reward through depressed activity [46]. However, our

teaching signal does not habituate. Instead, we manually stop the

learning process once the task has been trained.

The learning rules are applied once for each trial after the

system has selected a response, which is defined as a sufficiently

strong peak in the motor field (smoothed field output at one

position exceeds a threshold hm). The direction of the planned

reach, given by the position of the activation peak in the motor

field, is compared to the rewarded goal location according to the

task requirements. The trial is considered a success, with a reward

signal of r~1, if the reach direction falls within a tolerance

window (68u) around the desired goal direction, and a failure,

with a reward signal of r~{1, otherwise (this corresponds to the

omission of the actual reward in the electrophysiological study).

The connection weights from the context neurons to the

association field are updated according to the reward-dependent

instar rule:

DWac(x,y,l)~g(r):f ua(x,y)ð Þ: gc(l){Wac(x,y,l)½ �

gc(l)~
f uc(l)ð Þ for rw0

Nc
: 1{f uc(l)ð Þð Þ for rv0

(

Nc~

P
l’[L f (uc(l’))P

l’[L 1{f (uc(l’))ð Þ , L~fdirect, inferredg

Here, Wac(x,y,l) is the weight from the context node l to position

(x,y) in the association field, DWac is the change of that weight in

one trial, f ua(x,y)ð Þ is the association field output at position (x,y)
and f uc(l)ð Þ the output of context node l. The learning rate g(r)
depends on the reward signal r for that trial, and takes a larger value

gz for rw0 and a smaller value g{ for rv0. In the case of negative

reward signal, a normalization is introduced to ensure that the

overall weight changes are comparable for successful and fail trials.

With the instar learning rule, only those neurons in the

association field that are active during a trial adapt their incoming

connection weights from the context nodes. In the case of a

positive reward signal, the weights of these neurons are adapted in

such a way that the weight patterns become more similar to the

current output pattern of the set of context nodes. The neurons

whose weights have been adapted will be driven more strongly if

the same output pattern of the context nodes appears again in

subsequent trials, and will receive proportionally less input from

different output patterns of the context nodes. Note that there is no

normalization on the presynaptic side, such that multiple regions

in the association field can form preference for the same context

input without competition between them. This means that the

instar rule supports development of divergent projections from the

context nodes to the association field.

The weights from the association field to the motor preparation

field are adapted according to the reward-dependent outstar rule:

DWpa(z,x,y)~g(r): gp(z){Wpa(z,x,y)
� �

:f ua(x,y)ð Þ

gp(z)~
f (up(z)) for rw0

Np
: 1{f (up(z))
� �

for rv0

(

Np~

Ð
f (up(z’)) dz’Ð

1{f (up(z’)) dz’

Analogously, Wpa(z,x,y) is the weight from position (x,y) in the

association field to position z in the motor preparation field, DWpa

is the change of that weight, and f (up) is the output of the motor

preparation field.

With the outstar rule, the normalization of the weights is

reversed compared to the instar rule. Again, weights are only

adapted for those neurons in the association field that are active in

a given trial (these are now the presynaptic neurons). If the reward

signal is positive, outgoing weights of these neurons are adapted in

such a way that the weight patterns become more similar to the

postsynaptic output pattern in the motor preparation field, which

reflects the actually performed reach. In the case of failed trial with

negative reward signal, the connections from the active regions in

the association field to the active region in the motor preparation

field is weakened and the projection to all inactive regions is

strengthened. This increases the probability that a different motor

response is chosen in the next trial with the same conditions. Due

to the normalization in this learning rule, each region in the

association field can only strongly support a single motor response,

but different regions may support the same response without

competition between them. This means that the outstar rule

supports development of convergent projections from the associ-

ation field to the motor preparation field.

Variations of the spatial goal selection task
In the first step, we will use our model to reproduce and explain

the behavioral and neural observations of a previous monkey

experiment, in which the authors investigated neural selectivity in

the frontoparietal cortex during selection of rule-based spatial

motor-goals [5]. The following scenarios were implemented to

simulate this experiment.

Inferred-reach (IR) training task. Due to the pre-structur-

ing, our model by default (without further training) produces

‘direct’ reaches, i.e., reaches to the spatial cue location. We trained

the model to perform both direct and inferred reaches depending

on the context (Figure 1C). At the beginning of an IR training trial

the contextual cue and the spatial cue at one of four possible

locations were presented. A second spatial cue (target cue)

indicating the correct movement goal location for this trial was

shown briefly at the end of the memory period. The movement

goal could be either at the original spatial cue location (direct trial)

or diametrically opposite to it, i.e. at a relative direction of +180u
in the circular spatial input dimension (inferred trial). A ‘go’-signal

A Learning Neural Field Model
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was given directly after the presentation of the target cue to initiate

a movement to it. In the monkey study the ‘go’-signal was

indicated by turning off the manual fixation stimulus at the screen

center, in the model this is simplified by disinhibition of the motor

field. By this procedure in combination with the learning

algorithm, the spatial cue was associated with either of two

separate movement goals depending on the context (see Results).

Direct and inferred trials were randomly intermixed with a

predominance of inferred trials (80%) if not indicated otherwise.

This large proportion of inferred trials emulates the over-exposure

to inferred reach trials compared to direct reach trials during the

behavioral training in the monkey study. We additionally analyzed

the effects of different trial statistics on the model behavior in a

systematic fashion (see Results). Over the course of training with a

total of 1000 trials, the salience of the target cue (amplitude of

input to the spatial input field) was reduced linearly from 1 to 0 so

that eventually the network performed the context-specific

mapping without presence of a target cue. This closely emulates

the training procedure of the monkeys, although there the number

of required trials was monkey specific and typically higher. Before

any of the other task variants was applied to the model, it was first

trained with this task, to be able to perform context-dependent

mapping. We will refer to this as ‘IR-trained model’. This inferred

reach training procedure was equivalent to the training procedure

used in monkeys that learned the task [5]. (Note, though, that

monkey training typically requires many smaller short-term

adjustments of trial parameters to account for motivational factors

and to optimize the training progress of the animal.)

Definite Motor-Goal task (DMG). This task was used as a

control condition to test if the model properly had learned to make

direct and inferred choices depending on the context during IR

training. In the DMG task the spatial and the contextual cue were

presented simultaneously at the beginning of the memory period

(Figure 1A). The cues were only presented briefly and the relative

presentation times, compared to the memory period, were chosen

to be equivalent to the physiological study (see Text S1 and [5]).

The two mapping rules and four locations were presented with

equal probability. The learning rate was set to zero in this control

condition, since it was intended to probe the network state rather

than to change it with this task.

Potential motor-goal task with context instruction (PMG-

CI). This task was used to examine the ongoing decision making

process in situations with incomplete information (partial pre-

cueing). It was a variation of the DMG task in which the spatial

and the contextual cues were separated in time (Figure 1B). First

only the spatial cue was presented. Therefore two potentially

rewarded motor goals remained equally possible throughout the

memory period, either at the location of the spatial cue or

diametrically opposite to it. The contextual cue that was presented

at the end of the memory period resolved this ambiguity and

specified which of the two locations would be the rewarded motor

goal. During testing in this task the learning rate was set to zero.

Potential motor-goal task with no context instruction

(PMG-NC). We used the PMG-NC task to test the free-choice

behavior of the model. PMG-NC trials were identical to PMG-CI

trials, except that no context instruction was shown at all. In this

case two different reward schedules decided about which trials

were rewarded and which not (see below). When the model was

trained with PMG-NC trials, these were randomly interspersed

with PMG-CI trials (PMG-NC:PMG-CI ratio 40:60), equivalent

to the monkey experiment.

Reward schedules. In the PMG-NC trials, two algorithms

determined which of the two potential motor goals would be

rewarded. In the equal probability reward schedule (EPRS) both

potential locations were rewarded with equal probability (50:50),

irrespective of the choices of the model. From a game theoretical

perspective the situation is equivalent to a matching pennies game

in which the computer’s strategy corresponds to the Nash

equilibrium. With this reward schedule, we did not expect changes

to any a-priori choice preferences that might have been present.

This is because the expected reward is independent of the choices

and neither behavioral strategy leads to more than 50% reward. In

the bias minimizing reward schedule (BMRS) the success history was

taken into account to decide which motor goal would be rewarded.

Any behavioral bias for one of the motor goals was punished by

lowering the probability of reward for that goal, so that the

behavioral strategy that yields the highest reward ( = 50%) is one in

which both motor goals are chosen with equal probability (for

details see [5]).

Monkey behavioral and electrophysiological data
The monkey behavioral and neuronal data which we refer to in

this study are taken from a previous electrophysiological study and

are described in detail elsewhere [5]. Previously unpublished

behavioral data is presented from one of the same monkeys to test

predictions of the model (see section Generalization in Results).

Results

Learning an arbitrary mapping rule
During the IR training task the model acquired the initially

unknown inferred mapping rule, in addition to the default direct

mapping. The model forms the required stimulus-response

associations in the following way: The spatial cue induces an

activation peak at the corresponding location in the association

field, and at the same time in the motor preparation field (via the

direct pathway). The association field peak remains self-sustained

after the input disappears, and keeps supporting the activation in

the motor preparation field, due to the a-priori topology of this

projection (Figure 3B). The simultaneously presented contextual

cue activates the corresponding context neuron, which likewise

retains its activation through the neuron’s self-excitation. In the

trials early during IR training, a salient target cue then appears at

the desired reach goal location. This new stimulus also drives

activation in the motor preparation field via the direct pathway –

for inferred trials at a location shifted by 180u from the original

spatial cue location – and overrides the default reach plan which

was induced by the first cue. In contrast, the memory peak in the

association field remains largely unchanged, as it is stabilized by

the lateral interactions, and suppresses the formation of new peaks.

The movement onset is triggered at the end of the target cue

presentation by a general disinhibition of the motor field (reflecting

the disappearance of the central fixation stimulus in the monkey

study). This forces the selection (activation) of a single location due

to the strong inhibitory interactions in the motor field. In correct

trials, i.e. when the surviving peak in the motor field ( = the

selected reach) matches the goal location, the projections between

active context nodes and active regions in the association field, as

well as between active regions in the association and the motor

preparation field, are strengthened, while others are weakened.

Over the course of learning, the initially random connections from

the context neurons to the association field (Figure 3A) are

replaced by a more specific connection pattern: Early during

training, patches with a preference for the inferred context form

for the trained cue directions in the association field, dominating

the central part of the context dimension due to the high

proportion of inferred training trials (Figure 3C). For these

patches, the connection weights to the motor preparation field are
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changed accordingly, such that the original topological projections

to the motor preparation field (Figure 3B) have shifted by 180u to

implement the inferred reach response (Figure 3D). Subsequently,

patches with a preference for the direct context also appear, which

retain the original topological projections to the motor preparation

field. Through repeated reinforcement of initially random

variations in the association peak positions, and under the

influence of the lateral interactions in the fields, these coherent

patches self-organize along the context dimension for each of the

trained cue directions (Figures 3E, G). The projections to the

motor preparation field keep adapting to reflect the context

preferences of different regions in the association field (Figures 3F,

H). The spatial positions that had not been trained (i.e. spatial

locations at which cues had never appeared) do neither show a

shift of their projections to the motor preparation field, nor do they

show sensitivity for one of the context inputs.

The IR trained model was then tested in the DMG task. It

reached a performance of 99% (n = 4000). This successful training

confirms that the model can perform both the direct and inferred

reach in a flexible context-depending manner, by re-learning local

associations. To test whether this architecture and its integrated

learning mechanism can solve a more general class of tasks, we

also tested the system with a larger number of different contexts,

all indicating different mapping rules. For three different contexts

(with associated rotations of 0u, 180u, and 90u), the model still

reached a performance of 94% in the DMG task after an

analogous training procedure. For four contexts (indicating

required rotations of 0u, 180u, 90u and 270u), a performance of

90% was reached (n = 4000). The decrease in performance for a

higher number of different contexts is a consequence of

interference between different context preferences in the associ-

ation field: If the number of contexts becomes too high, the

context specific regions that form during learning are no longer

cleanly separated, and the corresponding projections to the motor

preparation field do not form correctly. This limitation could be

overcome in the model either by making the interactions in the

associations field sharper (decreasing the kernel width in the

context dimension) or by increasing the field size along the context

dimension. In a biological system, the former would correspond to

a sharpening of tuning properties of the neurons and the latter

would correspond to the recruitment of a larger number of

neurons for the association task.

Selectively impaired generalization in monkey and model
A mechanism which learns spatial transformations via local

associations instead of global geometrical rules is limited in its

ability to generalize to new cue locations. We tested the

generalization limits of our model and compared it to that of a

monkey that performed the same task. The model was IR-trained

with four spatial cue locations (e.g. the four cardinal directions) as

described before. The model was then tested with four novel cue

locations at positions between the trained locations (oblique

directions). The model was unable to fully generalize and perform

the task to the new locations. Importantly, the model made specific

goal selection errors (Figure 4). Trials with a direct context cue to

trained cardinal directions were not impaired (Figure 4a), and

generalized to oblique goals with little performance deficits

(Figure 4c). This is not surprising, given the pre-existing default

mapping via the direct pathway. Inferred generalization trials,

instead, showed a particular error pattern: In inferred trials to the

trained cardinal directions the model also showed errorless

performance (Figure 4b). Yet, in trials to an oblique inferred goal,

the model either performed reaches to the direct reach goal

(context error, approx. 40% of trials), or to a learned inferred

reach goal at an adjacent cardinal direction (adjacent direction

error, approx. 60%; Figure 4d).

The monkey control experiment was performed accordingly

(previously unpublished data from one monkey). After learning

context-specific direct and inferred reaches (as described in

Methods) to four cardinal directions over the extended period of

several weeks, the monkey was then tested with four oblique cue

positions. Our reasoning was that the monkey should be able to

generalize to the new locations with relative ease if the behavior

was learned as a general, abstract rule. Conversely, if the inferred

mapping was learned through local associations, proper perfor-

mance should be restricted to the trained locations. The result was

that the monkey performance remained high in blocks of trials in

which the cardinal directions were used in either context (.90%,

Figure 4A, B), or the oblique directions were used in the direct

context (.95%, Figure 4C). But performance was clearly reduced

in blocks in which the oblique directions were used in an inferred

context (Figure 4D). The same two dominant types of errors as in

the model could be observed in the monkey: .20% context errors

and approx. 60% adjacent direction errors.

In summary, in the way we implemented a context-specific

mapping task via local association learning in our model, it

predicted specific spatial generalization errors which we could

confirm in the monkey behavior. The model provides a

mechanistic explanation for these particular error types. As

detailed in the previous section, the association field has formed

two context-specific regions for each trained spatial cue direction.

This is the result of the Hebbian learning. The regions which are

specific for the inferred context project to the reach field at a

position opposite to the spatial cue direction. If spatial input

arrives from the spatial input layer for an untrained direction,

together with an inferred-context signal from the context input

nodes, it will create a peak between two of the context specific

sub-regions in the association field (Figure 5A). This peak, which

is self-sustained without exogenous input, may remain stable at

this location. In this case, its projection to the motor preparation

field will be centered on the position at which the spatial cue was

presented (since the direct projection is the default before

learning). This will result in a direct reach instead of the

instructed inferred reach (context error). Alternatively, the peak

in the association field may shift during the memory period to

one of the regions that are selective for the ‘inferred’ context.

These regions are moderately activated by the input from the

context node, and if the activation peak slightly overlaps with one

of them, it can get pulled towards it (Figure 5B). These regions

implement the ‘inferred’ projection to the opposite direction in

the motor preparation field, but only for the trained cardinal

directions. The result will therefore be a reach in an inferred

direction that is adjacent to the goal direction (adjacent direction

error). The ratio of these two types of errors is determined by the

ratio between the size of the field and the width of the lateral

interactions.

We note that the adjacent direction error can also occur in

oblique trials with the ‘direct’ context signal, and does appear in

the simulation results in a small proportion of trials (Figure 4C,

approx. 3% of trials). As in the inferred trials, this error is caused

by a shifting of the peak in the association field from the untrained

oblique direction to a trained cardinal direction under the

influence of the input from the context nodes. However, the

regions in the association field with a ‘direct’ preference are

smaller than those with an ‘inferred’ preference, and typically

situated at the borders of the field. They are therefore much less

likely to overlap with the peaks that form in the oblique trials.

Nonetheless, this type of error cannot be completely precluded.
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Adapting choice preferences to reward schedules
A core idea of our approach is that the mechanisms which are

implemented for learning sensorimotor associations allow the

network to also adapt its reward-based choice behavior. We tested

this by confronting an IR-trained model with different reward

schedules. To emulate the scenario of the previous monkey

experiment [5], we picked a specific constellation of reward

schedules, but the results are not restricted to this case.

After IR-training, the model is capable not only of correctly

performing DMG trials, but also instructed trials in which the

context cue appears later than the spatial cue (PMG-CI trials). In

these trials, the model achieved 92% (n = 4000) correct choices

(monkey performance in electrophysiological study was .98%).

We then probed the model’s free-choice behavior by presenting a

spatial cue but no context cue (PMG-NC trials). Results show that

our training procedure induces an inherent bias (93%) for inferred

choices in free-choice situations (see below for systematic analysis

of this effect), like was the case in the monkeys (85%62% inferred

trials; Figure 6A). For probing the inherent bias we used the equal-

probability reward schedule (EPRS, see Methods), which creates

no incentive to change the choice behavior.

The bias for selecting inferred reaches is also apparent in the

output pattern of the motor preparation field in the model (Figure 7A),

which qualitatively reproduces the observed neural activity in

monkeys’ PRR (Figure 7B): When the spatial cue is presented,

activation initially rises for the direction of this cue (corresponding to

the preparation of a direct reach). In the model, this is the result of the

direct pathway from the spatial input field to the motor preparation

field. However, this direct plan is quickly replaced by activation for

the inferred reach (in the opposite direction), and this activation

remains throughout the memory period. If a context cue is given at

the end of the memory period (PMG-CI trials), the activation in the

motor preparation field can undergo another change: If the cue for

the direct context is given, the field activation rises strongly for the

Figure 4. Generalization performance in monkey and model. Reaches performed by monkey (black) and model (white) were analyzed when
generalizing from cardinal to oblique spatial cue directions. Bars show proportion of reaches in a direction relative to the rewarded goal (this means,
0u reaches are directed towards the correct goal, all others are failed reaches). Direct reaches to cardinal (A) and oblique (C) goals are almost always
performed correctly. Inferred reaches to trained (cardinal) goals (B) are also almost always performed correctly, as was to be expected. If inferred
reaches were required to oblique positions (D), both monkey and model show a similar pattern of failed reaches, illustrated in the inset of panel (D):
Most reaches were made either in a previously trained cardinal direction adjacent to the goal direction (red, deviation of 45u) or in the direction of the
spatial cue, meaning that a direct reach was performed (green, deviation of 180u from the goal direction).
doi:10.1371/journal.pcbi.1002774.g004
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direction of the spatial cue (the rewarded goal direction for this case),

and the activation supporting the inferred reach ceases. If the cue for

the inferred context is presented, the peak of activation retains its

position, and rises further when the motor response is selected. We

will further investigate the underlying mechanism for the bias in the

following section.

We then switched to a bias-minimizing reward schedule

(BMRS). The model parameters (connection weights) that had

developed in the previous testing phase were taken as starting

conditions. The model developed a balanced choice behavior

under the new reward schedule (Figure 6B; model: 41% direct

reaches, n = 4000; monkeys: 46%63% direct reaches), and,

correspondingly, the two potential motor goals are equally

represented in the motor preparation field during the memory

period (Figure 7C). These two effects were also seen in the monkey

data (Figure 7D). The adaptation to the new reward schedule

confirms – as we expected based on the reward-dependent

learning rule that is used – that the DNF model is capable of

adapting its choice behavior to increase its overall reward

probability, in a fashion that is consistent with the experimental

data.

Input statistics during association learning bias free-
choice behavior

A major implication of an overlapping neural substrate and

shared learning mechanism for sensorimotor association learning

and reward-based action selection is that the learning history must

inevitably influence the choice behavior. A surprising finding in

our previous monkey study was the strong bias of the well-trained

monkeys to almost exclusively prepare and execute the inferred

reach in free-choice situations with EPRS reward. We hypothe-

sized that this bias arose from the higher number of inferred reach

trials during early training [5]. Similar effects can also be observed

in human behavior [47]. We used our adaptive DNF model to

show how the reward-dependent Hebbian-type learning can

reproduce this bias in the decision process as an effect of the

input statistics during training.

In the model, the initial presentation of the spatial cue induces

the formation of a sustained activation peak in the association field

(Figure 8A). In the absence of context input, e.g. in the memory

period of PMG trials, the separate regions with different context

preferences do not influence the activation distribution in the

DNF, and the peak typically spans both regions. In trials with later

context instruction (PMG-CI), the subsequent presentation of a

context input changes the attractor states of the DNF, and the

activation peak shifts towards the region that has a preference for

the given context (Figure 8B). The projections from that region to

the motor preparation field then select the appropriate action. In

free-choice trials without context instruction (PMG-NC), the

choice behavior depends on the connectivity structure which was

imposed by the earlier training.

As presented above, when the model is trained with a ratio of

80% inferred trials to emulate the intense inferred reach training

procedure in the electrophysiological study, it develops a bias to

prepare the inferred reach in PMG trials, with a time course of

activation in the motor preparation field that qualitatively

Figure 5. Origin of generalization errors in the model. Two snapshots of the activation patterns in the model during the memory period are
shown, taken from different trials that developed different movement plans due to random noise in the model. In both cases, the spatial cue was
located at 225u (an oblique direction not used during training), the blue context input indicates that an inferred reach should be performed. The
model is depicted in the same form as in Figure 1. Arrows show the dominant active projections between fields that arise from the current activation
patterns. Regions with pronounced preference for one context are outlined in the association field (green for direct context, white for inferred). (A)
When the spatial cue was presented at the beginning of the trial (white arrow), it created an activation peak in the association field at the untrained
oblique direction. This active region in the association field projects topologically to the motor preparation field, therefore preparing a reach to the
spatial cue direction. This corresponds to a deviation of 180u from the goal direction, since the context cue indicates that an inferred reach should be
performed. (B) If the activation peak in the association overlaps partly with a region that is selective for the inferred context, the activation peak may
shift over to that region (the figure shows an intermediate step of this shift). This is driven by the input from the context node. The region of the
association field that is now active has adapted its projection to the motor preparation field during training, and induces a new activation peak in the
motor preparation field around 360u. This yields a deviation of 45u from the goal location, since the model now prepares one of the trained reaches in
a cardinal direction.
doi:10.1371/journal.pcbi.1002774.g005

Figure 6. Choice behavior of monkeys and model in PMG-NC trials. If no context instruction is given in a trial, both model and monkeys
show an inherent bias to perform the inferred reach after training (A). A balanced choice behavior (B) can be achieved by application of an
appropriate reward schedule (BRMS).
doi:10.1371/journal.pcbi.1002774.g006
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reproduces the recorded neural activity in monkeys (Figure 7A, B).

The cause for this bias in the model is that the regions in the

association field that have developed a preference for the inferred

context are substantially larger than those for the direct context, as

a result of the inferred reach being performed more frequently

during training (see Figure 3b). When the activation peak in this

field forms before the presentation of the context cue, it typically

covers a larger area of the inferred-context region (Figure 8A),

resulting in a stronger projection to the opposite reach direction in

the motor preparation field. The competitive interactions in the

motor preparation field then suppress the activation for the weakly

excited direct reach direction.

We systematically varied the ratio of direct to inferred trials

during the IR training in the model and tested the resulting spatial

response profiles in the motor preparation field and the choice

behavior in PMG-NC trials (Figure 9). The number of inferred

choices increases continuously with the ratio of inferred trials during

IR training (Figure 9A), in an approximately sigmoid fashion

(logistic function fit: m = 0.633, b= 23.4; MSE = 2.19 * 1024). Note

that the sigmoid curve is not centered at 50% inferred training trials,

but at close to 60%. This is an effect of the direct reaches being the

default action before training, implemented by the initial connection

pattern from the association field to the motor preparation field.

The difference in the underlying activation strength for inferred

versus direct goal representations in the motor preparation field

during the memory period also increases monotonically and in an

approximately sigmoid fashion with the fraction of inferred trials

during IR learning (Figure 9B, fit with a scaled and shifted sigmoid

Figure 7. Comparison of population activation in model and electrophysiological data. Plots show the averaged and normalized field
output from the motor preparation field in the model (A, C) and from electrophysiological recordings in PRR (B, D) during the PMG task. Prior to
averaging and normalizing, the real and model neurons’ selectivity profiles were aligned according to their preferred directions in DMG trials (PD:
preferred direction, OD: opposite-to-preferred direction). The averaged and normalized activity of real neurons during the PMG task in the biased (B)
and balanced (D) datasets is shown for three epochs, aligned to cue onset, ‘go’-signal, and movement onset, since the length of the epochs was
variable. The model neurons were aligned accordingly even though the epochs had fixed lengths. It can be seen that during the memory period in
the model and in the real data plots, only one activation ridge is stable throughout the memory period, before a bias minimizing reward schedule
(BMRS; see Methods) was introduced (A, B). After application of the BMRS, two stable ridges with a lower activation remain during the memory period
(C, D).
doi:10.1371/journal.pcbi.1002774.g007
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curve, y~a= 1zexp {b(x{m)ð Þð Þzb: m = 0.664, b= 7.22,

a = 13.2, b = 27.20, MSE = 0.0897).

Note that this result is indeed an effect of the input statistics, not

of the expected reward for different choices. Even in training sets

with 100% reward rate for both direct and inferred reaches the

described biases still developed in the model (data not shown).

Discussion

Neurophysiological data suggests that learning of sensorimotor

associations, decision making, and movement planning share a

common neural substrate, that includes frontoparietal sensorimotor

areas [2,4–6,15,21,48–53]. If this is the case, the competitive

interactions that underlie the selection between alternative action

plans (and thereby decision making) are no longer independent

from the process of learning sensorimotor associations. With our

DNF model we demonstrate how learning of new spatial

visuomotor mappings and adaptation to changing reward schedules

in decision making can be achieved via a reward-driven Hebbian

learning rule within the same substrate. In a free-choice task, our

learning model adapted its choice behavior to two distinct reward

schedules. In a generalization task, it predicted specific patterns of

instructed choice errors, as we could confirm in a behavioral

monkey control experiment. When the reward was independent of

the choice, the input statistics during the initial learning of the

different sensorimotor mappings determined the behavioral choice

preferences in later free-choice situations. In summary, the long-

term sensorimotor learning history and the short-term reward

history are both critical variables which determine behavioral

choice preferences in motor-goal selection tasks and which are

linked by the same underlying neural mechanisms.

Relationship to neurophysiology
Delineating a 1-to-1 correspondence between our model and

the neurophysiological functional architecture of the primate brain

can obviously only be coarse for several reasons. For example, it is

yet unclear to a large extent, how many, which and in which way

brain areas (cortical and subcortical) contribute to such high-level

tasks as context-dependent, rule-based, and reward-driven visuo-

motor reach-goal selection. For example, similar task-related

neural activation patterns during spatial goal selection tasks can be

found in parietal and in premotor areas (e.g. [5,10]), with the

mutual roles of these areas not being clear yet. Also, similarity in

neural activation patterns during manual and ocular selection tasks

suggests that equivalent mechanisms are implemented in the

oculomotor systems [21,54,55], yet both systems comprise

different cortical and subcortical structures. The intra- or

interareal connectivity pattern of the recorded neurons is typically

Figure 8. Emergence of bias for inferred reaches in the DNF model. The figure shows two snapshots of the activation patterns in the model
during a single PMG trial. (A) During the memory period, after the presentation of a spatial cue, an activation peak has formed in the association field.
Its position along the spatial axis reflects the direction of the spatial cue, while its location along the second dimension is unspecific and spans both
context-sensitive regions (shown as outlines in the association field, green for direct, white for inferred context). The region that shows preference for
the inferred context is substantially larger than the direct-context region, due to the high proportion of inferred trials during training. This region
projects to the location in the motor preparation field which codes for a reach in the direction opposite to the spatial cue. The competitive
interactions in the motor preparation field further amplify this stronger input that supports the inferred reach. (B) When a context signal for a direct
trial is given at the end of the memory period, the context input induces a shift of the peak in the association field: It is pulled almost completely onto
the region specific for the direct context with which it partly overlapped. The input to the motor preparation field changes accordingly, leading to a
switch in that field’s activation pattern and a stronger activation of the ‘direct’ reach direction.
doi:10.1371/journal.pcbi.1002774.g008

Figure 9. Influence of input statistics on model behavior and activation pattern during the memory period. (A) The behavioral bias for
inferred reaches in the free-choice trials depends on the percentage of inferred trials during IR training and rises continuously in a sigmoidal fashion
(logistic fit function; black curve). (B) The difference of the mean activation of the motor preparation field at the preferred and opposite-to-preferred
position during the memory period shows a softer, but also approximately sigmoid increase when the number of inferred trials is increased.
doi:10.1371/journal.pcbi.1002774.g009
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not available with the currently available recording techniques,

and many other areas in the cerebral cortex are not explored yet at

the required level of detail provided by single cell electrophysiol-

ogy. These factors impair model validation.

Yet, the model should be seen as a rough sketch of cortical

frontoparietal visuomotor processing. The spatial input field is

retinocentrically organized, and mimics the organization of

extrastriatal visual cortex and the available dorsal-stream visual

input to the frontoparietal reach network via areas V6/V6a in the

parieto-occipital sulcus [56,57]. The context input field provides a

simplified color/rule representation. This input reflects the

currently valid mapping rule and could originate in frontal lobe

areas (e.g., dorsolateral prefrontal cortex, PFC) in which the task-

relevant stimulus features have already been extracted, and the

task rule rather than the actual color of the stimulus is represented

[58,59]. On the output side of the model, the motor preparation

and the motor field employ a population code over possible

movement directions. Such encoding of a movement plan or

motor preparatory signals is based on neural population activity

patterns during reach preparation in cortical motor areas [60,61].

The direct pathway in our model can be seen as reflection of the

forward projection along the dorsal visual stream and via dorsal

premotor cortex to the primary motor cortex. Alternatively, the

direct pathway could be motivated by low-level integration paths

[62], e.g., the retinotectal visual pathway in case of saccadic tasks,

which can bypass cerebrocortical processing especially during

stimulus-triggered oculomotor behavior (for review see [63]). To

draw connections to empirical findings in our specific task, we

compare the field output of the motor preparation field to

electrophysiological data from the posterior parietal cortex [5], but

we note that the premotor cortex shows very similar activity

patterns [5,10]. We assume that the motor preparation field

provides a functional representation that might be anatomically

distributed over the frontoparietal sensorimotor cortex. The motor

field could be equated to parts of the primary motor cortex (M1)

and caudal parts of PMd. The implemented gating mechanism in

the motor field (gain change as result of ‘go’ cue processing), might

be a function provided by subcortical structures. It has been

suggested that modulation of motor activity similar to a gating

mechanism, i.e. facilitation or inhibition, could be provided by the

basal ganglia via the so called ‘direct’ or ‘indirect’ pathway (not to

be confused with our use of the terms); for review see [64].

The indirect pathway in our model allows for flexible, context-

specific, goal-directed behavior. The two-dimensional association

field, which implements the working memory and the actual rule

learning, is reminiscent of processing in the cortico-basal loops

between PFC and the premotor cortex (PMC) with the basal

ganglia [65–68]. Certain aspects of the association field could also

be localized in the frontoparietal loop, since especially PMd was

shown to be relevant for learning abstract visuomotor associations

(for example see [6,48–52]). Also, the development of a combined

selectivity for reach direction and context input is consistent with a

gain modulation by context described for neurons in PMC and

posterior parietal cortex (PPC) areas [26]. We note that the second

(context) dimension of the association field in the model is initially

simply providing redundancy in the representation, and only

through the learning process it takes on the role of separating

different context preferences. Corresponding redundancies may

well exist in pre-motor areas in the cortex, such that the combined

direction/context selectivity can develop through specialization of

neural response properties. We assume that similar redundancies

would also exist in the other representations in the model, but are

not made explicit since they are not critical for the model’s

behavior.

Learning arbitrary remapping rules through local
associations

When we designed the adaptive DNF architecture, we assumed

that the behavior of the monkeys in the experiment did not rely on

an explicit representation of a geometrical transformation rule to

achieve the visuomotor mapping, but rather on specific associa-

tions between individual stimulus combinations and the rewarded

motor response. This may at first seem counterintuitive for a task

that can be described unambiguously through a simple rule. It

should be noted, however, that from a computational perspective

the forming of concrete associations (which can be achieved by

established mechanisms like Hebbian learning) is much more

straightforward than the recognition and implementation of a

general rule.

Our assumption was supported by the control experiment, in

which the monkey had to generalize the learned mapping ‘‘rule’’

to untrained positions. If the monkey applied a geometric

transformation rule, one would have expected easy generalizing

to novel goal directions. Instead, the monkey showed a highly

specific pattern of errors that the model was able to predict, and

which in the model was an emergent effect of the local association

learning. Note that the observed failed reaches could not be

explained by a failure of the monkeys to identify the proper

context, since direct trials in all directions and inferred trials in

cardinal directions were conducted correctly. Instead, the associ-

ated motor responses to the untrained oblique goal positions in the

inferred context were undefined. This led to responses which were

either guided by the default behavior (a seeming ‘context’ error),

or which resulted in the selection of a neighboring trained motor

association (adjacent direction error). These observations suggest

that the context-dependent reach task in monkeys was not learned

through the application of a general mapping rule to the spatial

cue positions, but rather by individual, local associations between

the spatial and context cue and the rewarded reach location.

The adaptable DNF model implements such association

learning in that it develops specialized attractor states in the

association field, with dedicated sub-regions which prefer different

mapping ‘‘rules’’. In this implementation the context errors

originate in the initial topological connection pattern from the

association field to the motor preparation field, which is still

prevailing after the IR-training for those spatial cue directions that

have not been trained. The adjacent direction errors can be

explained by a spread of activation from such untrained regions in

the association field to neighboring sub-regions which were

affected by the IR training and are now associated with the

inferred context.

In the model, the adjacent direction error also occurs in small

percentage of the oblique direct trials, due to the same mechanism.

The fact that this error is not observed in the experimental data

may indicate that some aspect of the task is not fully captured by

the computational model. For instance, the representation and

processing of the direct and inferred context signals may not be as

symmetrical in the biological system as it is in the model. In

particular, the context signal might affect the processing more

globally, e.g. by strengthening the direct pathway for the ‘direct’

context cue and the indirect pathway for the ‘inferred’ context cue.

This would decrease the impact of training certain directions on

the behavior in direct trials. Such a mechanism of executive

control has previously been employed in a DNF model of task

switching [69].

We note that this implementation of the spatial mapping rule in

the association field does in principle not have to be locally

restricted. If the sub-regions that implement the ‘inferred’

mapping were expanded over the whole spatial dimension, and
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if their projections to the motor preparation field were changing in

a more continuous fashion, they could implement the general

mapping rule for arbitrary spatial cue directions. Forming such a

connection pattern would require a sufficiently large number of

training directions, which would provide the necessary fine

sampling of the directional space to generalize the mapping rule

to all directions through averaging. Conversely, the model in its

current state is not capable of generalization in a stricter sense,

such as the transfer of a rule to completely novel stimuli.

Introducing such capabilities would require a substantial extension

of the current architecture.

This does not mean that the mechanism we presented cannot

also be involved in the learning of abstract rules. It is conceivable

(e.g. in the case of humans performing this task) that generalized

connection patterns as described above for different mapping rules

accumulate and prevail in the system. Learning a specific variation

of a mapping task then only requires the association of the context

cue with the appropriate known mapping. This would allow a fast

generalization from few examples. In general, however, we

propose that the learning via local associations may be the default

case, and that forming of true generalizations is an extension that

builds on previously learned associations and additional neural

structures.

Integration of learning and action selection
With the adaptive DNF model, we integrate two behavioral

functions in a single neural architecture. On the one hand, we

provide a process model of movement plan formation and action

selection. It is in this respect similar to another recent modeling

study of decision making in the fronto-parietal cortex [2]. It

extends this previous approach to allow the selection of motor

goals that were not explicitly spatially cued (inferred reaches) in a

context-dependent manner. On the other hand, the model also

incorporates a learning mechanism that allows it to acquire new

visuomotor associations and thereby at the same time become

adaptable to different reward schedules in ambiguous choice

situations. The learning mechanism allows a close emulation of

the training procedure in the monkeys. In particular, it does not

require an explicit teaching signal for the desired motor response,

as has been used in neural network models of the same task [22].

Instead, the desired behavioral response is shaped by using a

second visual cue (which is processed by the system in the same

way as other visual cues in the task) and reinforced through

reward. Other theoretical accounts that focus on the learning

process deal only with a small number (typically just two) of

possible response choices, represented by discrete nodes

[24,40,70,71]. They are therefore less suited to capture the

process of action selection from a continuous space of motor acts

in the fronto-parietal network, and could not possibly explain the

resulting consequences for the generalization behavior that we

found. Most of these models also do not investigate behavioral

biases and free choice tasks, although Soltani and Wang [72]

showed how the posterior probability for a choice alternative

being rewarded, given a set of cues, could be computed by

synapses trained with a reward-dependent learning rule compa-

rable to the one used in our system. Again, this model dealt only

with a two-alternative choice and the cues independently

predicted the rewarded choice, whereas in our task two different

types of cues must be combined to determine the rewarded

response.

Influence of reward contingencies and input statistics
A reward-driven Hebbian learning algorithm enables the

model to adapt to changes in the reward schedule in a manner

similar to what is called the ‘matching law’. This means, biases

in the reward schedule can produce biases in choice behavior

and thereby adapt the choice to the reward probabilities

[11,73,74]. Since the model learns the sensorimotor associa-

tions and the reward contingencies via the same projections,

the model’s sensitivity to the reward history in free-choice trials

interacts with its learned associations, and vice versa. For

example, if the ratio of free-choice trials is very high, it can

happen that the model ‘unlearns’ the initially trained mapping

because the context-sensitivity of the association field and the

conjunction of the context with specific projections to the

motor preparation field slowly decay in the free-choice trials

(data not shown). The observation that errors can cancel the

learned mapping has similarly been made in a model by Fusi et

al. [24]. Reducing the learning rates after initial learning of

multiple associations would slow such unlearning process but

also decrease the sensitivity to changing reward schedules. If

the susceptibility to changing reward schedules in free-choice

should stay high, then it is necessary to also present regular

instructed trials along with the free-choice trials to preserve the

learned associations, which is what we did here and in our

previous monkey experiments.

Interestingly, in free-choice tasks which do not encourage

balanced behavior (i.e., choice-independent reward schedules like

our EPRS), the learning algorithm can easily lead to a biased

behavior. Even small imbalances in the probabilities of either

choice can self-enhance the probability of the same choice in later

trials. This is especially true if the reward probability is high (e.g.

100%), in which case an initially randomly chosen option will be

more likely to be chosen again. Such a behavioral bias in free-

choice trials is evident in our electrophysiological study [5] and has

also been reported in other studies [16,75].

Not only does the free-choice reward learning affect the learned

associations, but, vice versa, the input statistics during learning of

the stimulus-response associations also have an impact on the free-

choice behavior, as our model results show. For example, the

model’s free-choice behavior can be biased even if the model is

perfectly able to solve the instructed tasks. Humans rely on prior

probabilities if they have to base their decision on lacking or

ambiguous evidence [47,76–78]. From a Bayesian point of view,

the activation distribution in our model during the memory period

of PMG trials can be interpreted as a representation of the prior

distribution. If in a potential motor goal trial no further

information is provided, the model decides according to this prior

distribution. If further evidence is provided, as is the case at the

end of the memory period in our instructed trials, then the prior

distribution is over-ruled (Figure 7). Since the probabilities for

direct and inferred trials were equal during the recording

experiments in the electrophysiological study, but the monkeys

still both showed the same strong bias in favor of inferred reaches,

we assume that the inferred bias was acquired during the training

of the task, when more inferred than direct trials were presented

(unpublished observation).

Conclusions and predictions
Our model successfully integrates sensorimotor processing and

working memory formation with decision making. The reward-

driven Hebbian learning mechanism which we use for learning

context dependent visuomotor mappings is sufficient to also

explain adaptation to probabilistic reward contingencies and at the

same time creates susceptibility for input statistics during learning.

With our model we could reproduce the electrophysiological

results from a previous study [5], which showed a similar

dependency on reward contingencies. Since continuous reward-
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driven neuronal weight adaptations change the behavior in free-

choice trials, we can also explain how manipulations of the reward

schedule produce any ratio of biased behavior, as has been

observed in other physiological studies [11,73,74] and could be the

source of matching behavior in foraging tasks. From this

integrated approach, we can also provide a concept for how

biased behaviors in decision tasks can emerge from the learning

history of the system.
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