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In order to deeply understand the specific patterns of volume, microstructure, and
functional changes in Multiple System Atrophy patients with cerebellar ataxia syndrome
(MSA-c), we perform the current study by simultaneously applying structural (T1-
weighted imaging), Diffusion tensor imaging (DTI), functional (BOLD fMRI) and extended
Network-Based Statistics (extended-NBS) analysis. Twenty-nine MSA-c type patients
and twenty-seven healthy controls (HCs) were involved in this study. First, we analyzed
the whole brain changes of volume, microstructure, and functional connectivity (FC)
in MSA-c patients. Then, we explored the correlations between significant multimodal
MRI features and the total Unified Multiple System Atrophy Rating Scale (UMSARS)
scores. Finally, we searched for sensitive imaging biomarkers for the diagnosis of MSA-
c using support vector machine (SVM) classifier. Results showed significant grey matter
atrophy in cerebellum and white matter microstructural abnormalities in cerebellum, left
fusiform gyrus, right precentral gyrus and lingual gyrus. Extended-NBS analysis found
two significant different connected components, featuring altered functional connectivity
related to left and right cerebellar sub-regions, respectively. Moreover, the reduced
fiber bundle counts at right Cerebellum_3 (Cbe3) and decreased fractional anisotropy
(FA) values at bilateral Cbe9 were negatively associated with total UMSARS scores.
Finally, the significant features at left Cbe9, Cbe1, and Cbe7b were found to be
useful as sensitive biomarkers to differentiate MSA-c from HCs according to the SVM
analysis. These findings advanced our understanding of the neural pathophysiological
mechanisms of MSA from the perspective of multimodal neuroimaging.

Keywords: multiple system atrophy, multimodal MRI, microstructure metrics, extended network-based statistics,
support vector machine

INTRODUCTION

Multiple system atrophy (MSA) is a progressive neurodegenerative disorder. Its pathological
feature is the deposition of alpha synuclein-positive glial cytoplasmic inclusions (GCIs) in some
specific regions, such as cerebellum, striatum and olivopontine structures (Brettschneider et al.,
2017; Krismer et al., 2019). MSA patients might be associated with autonomic dysfunction.

Frontiers in Aging Neuroscience | www.frontiersin.org 1 May 2022 | Volume 14 | Article 799251

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/journals/aging-neuroscience#editorial-board
https://www.frontiersin.org/journals/aging-neuroscience#editorial-board
https://doi.org/10.3389/fnagi.2022.799251
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fnagi.2022.799251
http://crossmark.crossref.org/dialog/?doi=10.3389/fnagi.2022.799251&domain=pdf&date_stamp=2022-05-19
https://www.frontiersin.org/articles/10.3389/fnagi.2022.799251/full
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/aging-neuroscience#articles


fnagi-14-799251 May 13, 2022 Time: 16:10 # 2

Ge et al. Altered Multimodal Imaging Indicators in MSA

It is further divided into two sub-types, according to whether
the patient shows cerebellar ataxia syndrome (MSA-c) or poor
levodopa-responsive parkinsonian syndrome (MSA-p) (Gilman
et al., 2008). Alpha synuclein-positive GCI has been shown to
be associated with the development of MSA in recent studies.
However, the pathological mechanism is not well understood,
and it remains to be a big challenge to accurately diagnose MSA.

Magnetic resonance imaging (MRI) has been applied to reveal
the structural patterns of MSA patients in previous researches
(Matsusue et al., 2009; Deguchi et al., 2015; Krismer and
Wenning, 2017; Chelban et al., 2019; Dash et al., 2019). As
a result, atrophy of the cerebellum, pons, middle cerebellar
peduncle (MCP) and putamen was found in MSA patients,
reflecting the pathological changes of the disease (Matsusue et al.,
2009; Deguchi et al., 2015). Furthermore, some MRI studies
reported the “putaminal slit” sign which was associated with the
accumulation of iron and gliosis and the “hot-cross bun” sign
which was associated with the selective depletion of myelinated
transverse pontocerebellar fibers and pontine neurons in different
types of MSA patients (Krismer and Wenning, 2017; Chelban
et al., 2019; Dash et al., 2019). In order to improve the diagnostic
accuracy, more detailed grey matter abnormality has been found
in research settings, among which the cerebellar volume atrophy
is widely observed (Yang et al., 2019; Lin et al., 2020). However,
some MSA patients might have no abnormal structure changes
on MRI (Chelban et al., 2019). It is therefore necessary to search
for more sensitive biomarkers from other MRI modalities to
accurately diagnose the disease.

Diffusion tensor imaging (DTI) is a noninvasive neuroimaging
technique that can provide quantitative information of the
diffusion characteristics of the water molecules in the brain. Using
DTI, white matter changes including a significant decrease in
fractional anisotropy (FA) and increase in mean diffusivity (MD)
was observed in corticospinal tracts, transverse pontocerebellar
fibers, pons, putamen, middle cerebellar peduncles (MCP) and
cerebellum in MSA patients (Loh et al., 2011; Rulseh et al., 2016;
Dash et al., 2019; Beliveau et al., 2021).

Besides the volumetric and microstructural changes of MSA,
resting state functional MRI (fMRI) has revealed abnormal
functional activity and connectivity patterns related to MSA.
Previous studies reported the disrupted default mode network
(DMN), striatal-thalamo-cortical network, cerebello-thalamo-
cortical network, sensorimotor network and visual associated
network in MSA patients (You et al., 2011; Wang et al., 2017; Yao
et al., 2017; Ren et al., 2019; Zheng et al., 2019). Furthermore,
researchers detected altered network topology and graph theory
attributes by resting state graph theoretical analysis (Morisi et al.,
2018; Sako et al., 2019). Previous studies provided evidence for
the hypothesis that MSA may be caused by the disconnection
syndrome, indicating that the accumulated alpha-synuclein may
destroy several specific networks, and result in the movement
disorder and other clinical symptoms (Rosskopf et al., 2018).

Most of previous studies focused on structural changes of
MSA. Only a few studies reported new functional findings,
which might improve diagnostic accuracy and provide
novel disease progression markers. However, structural or
functional analysis alone cannot provide all the necessary

information to accurately diagnose MSA. Thus, a multimodal
approach combining these innovative techniques seems likely
to offer the best biomarker for clinical diagnosis of MSA.
We speculate that a combination of structural grey matter
and white matter features, DTI microstructure metrics and
functional connectivity calculated from resting-state fMRI
might improve diagnostic accuracy of MSA. In order to
explore the patterns of brain volume, microstructural and
functional changes of MSA, we simultaneously applied structural
(T1-weighted imaging), DTI, functional (BOLD fMRI) and
extended Network-Based Statistics (extended-NBS) analysis in
this study. First of all, we analyzed the whole brain changes
of volume, microstructure, and functional connectivity in
MSA-c patients. Then, the correlations between multimodal
MRI features and clinical measurements were explored. Finally,
classification is performed using support vector machine (SVM),
in order to search for sensitive imaging biomarkers for the
diagnosis of MSA.

MATERIALS AND METHODS

Participants
The participant collection is similar as our previous study
(Zheng et al., 2020). Thirty-four right-handed MSA-c patients
and twenty-nine right-handed healthy controls (HCs) matched
in age and gender were recruited. All the participants were
from Dongfang Hospital of Beijing University of Chinese
Medicine. The recruitment criteria for MSA-c patients in
this study were based on the international diagnostic criteria,
which was defined by American Academy of Neurology and
American Autonomic Society (Gilman et al., 2008). The study
included patients diagnosed as probable MSA and without
hemorrhage, infarction, tumors, trauma, or severe white matter
hyperintensity. Each patient was assessed by the Unified Multiple
System Atrophy Rating Scale (UMSARS), Montreal Cognitive
Assessment (MoCA), Hamilton Anxiety Scale (HAMA) and
Hamilton Depression Scale (HAMD). The healthy control
group was included according to the following criteria: (1) no
neurological or psychiatric disorders; (2) no significant cognitive
decline; (3) no visual, auditory or other neurological dysfunction;
(4) had not received deep brain stimulation or surgical treatment;
(5) MRI scan showed no motor impairment, vascular brain
injury, brain tumor, and/or significant cortical and/or subcortical
atrophy. In accordance with the Declaration of Helsinki, each
of the subjects gave a written informed consent. The study
was approved by the Medical Research Ethical Committee of
Dongfang Hospital of Beijing University of Chinese Medicine.

Among the recruited thirty-four patients, one was later
identified as mis-diagnosed (patient 23) and excluded. Patient
32 did not finish clinical assessment and was discarded. During
MRI scanning, two patients (patient 26 and 34) and two controls
(subject 25 and 28) did not complete structural scanning and
were not included in further analysis. In correlation analysis, one
more subject (patient 21) was identified as an outlier and was
excluded. As a result, the experiment was conducted using data
collected from twenty-nine MSA-c patients and twenty-seven
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healthy controls. The data exclusion procedure was visualized in
Supplementary Figure 1.

Data Acquisition
The image dataset was acquired using a GE 3.0T Discovery 750
scanner. 3D T1-weighted sequence parameters were as follows:
repetition time (TR) = 8.2 ms, echo time (TE) = 3.17 ms,
inversion time (TI) = 450 ms, flip angle (FA) = 12◦, slices =
188, thickness = 1 mm, resolution = 256 × 256 matrix, voxel
size = 1 mm × 1 mm× 1 mm. Diffusion tensor imaging was
collected using the echo-planar imaging (EPI) sequence with 7
minutes scanning time. The imaging parameters were as follows:
TR = 6,000 ms, TE = minimum, FA=12◦, thickness = 3 mm,
gap = 0 mm, FOV = 25.6 × 25.6 cm2, slices = 50, bandwidth =
250 kHz, resolution = 128 × 128 matrix. 64 diffusion-sensitive
gradients in nonlinear directions were adopted, and the b values
of the diffusion gradients were 0 s/mm2 and 1,000 s/mm2. The
resting-state fMRI scanning lasted for 6 min with the following
parameters: TR = 2,000 ms, TE = 30 ms, FA = 90◦, FOV =
24 cm × 24 cm, resolution = 64 × 64 matrix, thickness = 3 mm,
slices = 36, gap = 1 mm, voxel size = 3.75 mm × 3.75 mm
× 3 mm, bandwidth = 2,232 Hz/pixel. During scanning, all
participants were instructed to keep their eyes closed, move as
little as possible, think of nothing in particular, and stay awake.
In total, 6,480 functional images were acquired for each subject,
corresponding to 180 volumes.

Data Processing
The method overview is shown in Figure 1. In order to
merge multimodal features, data from each modality was first
normalized to the standard Montreal Neurological Institute
(MNI) 152 space with isotropic spatial resolution. We utilized the
Automated Anatomical Labeling (AAL) atlas (Tzourio-Mazoyer
et al., 2002) which parceled the brain and cerebellum into 116
areas for further analysis. For volumetric features extracted from
T1 and DTI, values at voxels within each brain region volume
were averaged as the feature associated with this brain area,
and the whole brain feature was converted to a vector with 116
values, each corresponding to one brain region. For functional
data, we constructed whole brain networks with 116 nodes by
calculating functional connectivity between each pair of nodes. In
the following subsections, we describe data processing methods
for each modality.

T1-Weighted Imaging Analysis
T1-weighted images were preprocessed using Statistical
Parametric Mapping 12 (SPM12)1 software in MATLAB 2018b
(Math Works, Natick, MA, United States). First, the T1-weighted
images were segmented into three components, including grey
matter (GM), white matter (WM) and cerebrospinal fluid
(CSF). Second, we utilized the Diffeomorphic Anatomical
Registration through Exponentiated Lie algebra (DARTEL)
algorithm to normalize images into the standard MNI 152 space
with 1mm isotropic resolution. Finally, the normalized GM
and WM components were modulated for nonlinear change

1http://www.fil.ion.ucl.ac.uk/spm/

and smoothed using a Gaussian kernel of 8 mm full width at
half-maximum (FWHM).

We utilized GM and WM components for further analysis and
applied the AAL atlas to convert the raw data to feature space. The
weighted grey matter volume (GMV) and weighted white matter
volume (WMV) for each brain region was extracted by averaging
values at each voxel within each region. Since the grey matter
and white matter components produced by SPM segmentation
are probability maps, the average of values at voxels within each
region can be viewed as a weighted volume. As a result, the
whole-brain GMV and WMV of each subject was represented by
a feature vector.

Diffusion Tensor Imaging Analysis
The preprocessing of DTI data was based on FSL (Smith et al.,
2004). First, brain extraction was performed by bet2 and fslmaths.
Then we corrected the eddy currents and movements in diffusion
data. Finally, the DTI data was normalized to a 2mm-isotropic T1
template in the MNI 152 standard space.

We used an in-house software, Multi-Modal Data Processing
System (MMDPS) (Wang, 2018) and the Dipy package
(Garyfallidis et al., 2014) for DTI data processing. The
Constrained Spherical Deconvolution (CSD) model (Tournier
et al., 2007) was firstly fitted with the preprocessed DTI data.
Then the probabilistic tracking was performed by following
the possible trajectory pathway of neural fibers. Based on the
tracking results, we applied the AAL atlas (Tzourio-Mazoyer
et al., 2002) and calculated the number of fibers going through
each brain region. The tractography feature was represented
by a feature vector of number of fiber bundles crossing each
region (fiber bundle counts). Besides, we also calculated the
fractional anisotropy (FA) and mean diffusivity (MD) with Dipy,
and converted them into feature vectors using the AAL atlas by
averaging values at voxels within each region.

Resting-State fMRI Analysis
The preprocessing of fMRI data was similar as in our previous
research (Zheng et al., 2020). We used DPARSFA (V4.3) (Yan
and Zang, 2010) and SPM12 (V6906) to preprocess data. Firstly,
we discarded the first 10 time points and performed slice timing
correction. Then, head motion was corrected and the data was
normalized to the BOLD EPI template in the standard MNI 152
space with 2mm isotropic resolution. The image was resampled
to 3-mm isotropic voxels and spatially smoothed by a 4mm
full-width half-maximum (FWHM) Gaussian kernel. We further
removed the linear trend and nuisance covariates, including
head motions, cerebral fluid, white matter and the global signal.
Finally, the signal time series were filtered and signals within
0.01-0.08 Hz were kept.

We used an in-house software, Multi-Modal Data Processing
System (MMDPS) (Wang, 2018) for further data processing. The
brain network nodes were defined using the AAL atlas (Tzourio-
Mazoyer et al., 2002) with 116 areas. The BOLD time series was
averaged within each brain region and functional connectivity
was calculated as the Pearson correlation coefficient between each
pair of regions. The functional connectivity is defined as the edge
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FIGURE 1 | Method overview. Data from each modality was first preprocessed and normalized to the MNI152 standard space, producing a range of raw features.
The AAL atlas was utilized to convert the raw features to feature vectors and statistical analysis was performed. We selected significant features for each brain region
for further correlation as well as classification analysis. MNI, Montreal Neurological Institute; AAL, Automated Anatomical Labeling.

in the network. As a result, we built a brain network with 116
nodes for each subject.

Statistical Analysis
Two-sample t-tests were used to find significant different brain
regions for grey matter volume (GMV), white matter volume
(WMV), FA, MD as well as fiber bundle count results. The feature
values averaged at each region volume were extracted from the
two groups and group comparison was performed. All regions
across the whole brain were tested and the Benjamini - Hochberg
procedure was adopted to control the False Discovery Rate
(FDR). The feature at a specific region was declared significant if
the p-value is less than 0.001 (FDR corrected). Significant features
were identified for metrics extracted from each MRI modality.

In order to evaluate clinical relativity of imaging features,
we calculated Pearson correlation coefficients between significant
features (p < 0.001, FDR corrected) and UMSARS-total scores of
MSA-c patients. Features whose correlation p-value < 0.001 were
selected for further discussion. During correlation analysis, we
also inspected the distribution of significant features and clinical

measurements by drawing the quantile-quantile plot (Q-Q plot)
in order to examine for possible outliers in correlation. The
statistical analysis, including two-sample t-tests between groups
and correlation between features and clinical variables, was
performed using the SciPy module, while multiple comparison
correction was performed using the statsmodels module.

For functional network analysis, we utilized the extended
network-based statistics (extended-NBS) (Zalesky et al., 2010;
Ge et al., 2021) to evaluate functional connectivity changes in
MSA patients. Firstly, the same connection was selected from
the two groups and two-sample t-test was performed. This
comparison was repeated for each connection in the network.
As a result, each connection was associated with a t-statistic
and p-value. A difference network whose edges were p-values
obtained from the two-sample t-test was constructed. Then,
connections whose p-value is larger than or less than a pre-
defined p-value threshold were set to zero or one, respectively,
producing a binary difference network. Connected components
(CC) in the binary difference network were identified as a
set of inter-connected regions. In order to decide whether
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a CC is significant, permutation test was performed. During
each permutation, group label was randomly shuffled and the
same procedures were performed, including comparing each
connection, constructing binary difference networks, identifying
CCs and storing the maximal size of CCs. The size of a connected
component is defined as the number of regions within the
CC. The permutation was performed 5,000 times, yielding an
empirical distribution of the CC size. The empirical p-value of
the original CC was calculated as the ratio of the number of
permutations whose maximal CC size was larger than the original
CC size, against total permutation number. Formally, let CC_sizei
denote the maximal CC size at the i-th permutation, CC_size0
denote the original CC size. The empirical p-value is calculated as

Emp_pval =
∑

ind(CC_sizei)

5000

Where

ind (CC_sizei) =

{
1, if CC_sizei > CC_size0
0, otherwise

If the empirical p-value was less than 0.05, the original CC
was declared significant. During experiment, we varied the pre-
defined p-value threshold from 0.0001 to 0.001 with a step size of
0.0001. Results obtained at p-value threshold 0.0001 were taken
for further discussion.

Classification
We constructed classifiers based on the significant features of
each brain region in order to locate regions with biomarker
potentials. The significant results produced by statistical analysis
were taken as features for classification. In order to incorporate
as many features as possible, we used less strict significance
criteria compared to statistical analysis. Specifically, each region
was associated with a list of significant features obtained from
two-sample t-tests of features of each modality (p < 0.05, FDR
corrected). The functional connections related to this region was
also included if this region is involved in the significant CC
when p-value threshold equals 0.001. For example, if region A
is significant different in GMV, FA, and MD, then the feature
vector of region A would contain [GMV (A), FA (A), MD
(A)]. Moreover, if region A lies within the significant CC, the
feature vector would further contain functional connections in
the significant CC that directly related to region A. Before
classification, the feature was standardized by removing the mean
and scaling to unit variance.

x̂ =
x− µ

s

Where x stands for the feature vector, µ stands for the mean
and s stands for the standard deviation.

We utilized the linear Support Vector Machine (SVM) as
classifier and performed nested leave-one-out cross validation
(LOOCV) for parameter selection and testing. In the outer
LOOCV, one sample was left out as test sample and other samples
were fed into the inner LOOCV, where another sample was
selected as validation sample. The data left was used to train

a classifier with different parameters. The model parameter, C,
was varied in range [0.001, 0.01, 0.1, 1, 10, 100, 500, 1000, 5000,
10000]. After selecting the best parameter using the validation
sample, all samples in the inner LOOCV were utilized to train
the SVM with the selected parameter and the model was tested
by the left-out sample in the outer LOOCV. The leave-one-
out procedure was repeated until all samples have been left out
once. We calculated accuracy, sensitivity and specificity for model
comparison. Their definitions are as follows.

Accuracy =
TP + TN

TP + TN + FP + FN

Sensitivity =
TP

TP + FN

Specificity =
TN

TN + FP

Where TP stands for true positive, TN stands for true negative,
FP stands for false positive and FN stands for false negative.

We also plotted the Receiver Operating Characteristic (ROC)
curve and calculated the area under the curve (AUC) value for
the classifier trained at each region. The training procedure was
repeated for each brain region and the results were sorted by
classification accuracy.

RESULTS

Demographics
Twenty-nine MSA-c patients and twenty-seven healthy controls
were involved in the current study. Table 1 showed the

TABLE 1 | Clinical and demographical data.

MSA-c
(n = 29)

Control
(n = 27)

p-value

Age, years 57.62*±6.00# 57.37*±5.64# 0.875a

Gender, male/female 18/11 11/16 0.110b

UMSARS-I 17.34*±5.65# NAe

UMSARS-II 17.07*±5.66# NA

UMSARS- total 34.41*±10.42# NA

Disease duration, years 2.34*±1.49# NA

MoCA 24.17*±3.76# NA

HAMA 13.33*±6.43# NA

HAMD 13.94*±8.61# NA

Genetic history of MSA 28Yc/1Nd NA

Vertical gaze palsy 9Y/20N NA

UMSARS, Unified Multiple System Atrophy Rating Scale; MoCA, Montreal
Cognitive Assessment; HAMA, Hamilton Anxiety Scale; HAMD, Hamilton
Depression Scale; MSA, Multiple System Atrophy.
*represents average value;
#stands for standard deviation;
arepresents Independent Samples Test;
brepresents Chi-Square Tests;
crepresents Yes,
drepresents No;
erepresents Not Applicable.
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demographic and clinical information for these subjects. There
was no significant difference in age and gender between MSA-c
patients and healthy controls (p > 0.05).

Feature Differences and Correlations
Structural atrophy and white matter microstructural alterations
in cerebellar and cerebral regions was identified in MSA-
c patients. GMV at all subregions of the cerebellum were
significantly decreased (p < 0.001, FDR corrected) in MSA-
c patients (Figure 2A). WMV obtained from T1 showed
significant decrease at bilateral Cerebellum_3 (Cbe3) and
bilateral Cerebellum_10 (Cbe10) (Figure 2B). The right lingual
gyrus, however, showed increased WMV (Figure 2C). On the
other hand, features extracted from DTI reflected white matter
alteration related to MSA-c patients. We identified reduced FA,
fiber bundle count and increased MD at a range of cerebellar
regions (Figures 3A–C). Increased MD in the left fusiform
(FFG) and right precentral gyrus (PreCG) was also found in
MSA-c patients (Figure 3D). The detailed statistics as well
as significant region lists for each feature were reported in
Supplementary Tables 1–5.

We constructed functional brain networks and compared
between the two groups using extended-NBS. When varying
the p-value threshold from 0.0001 to 0.001, several significant
connected components whose empirical p-value was less than
0.05 were identified. The complete results were shown in
Supplementary Figure 2. The first component contained

increased connectivity alone, mainly consisting connections
related to the right cerebellum. The second component featured
connections related to the left cerebellum, and contained both
increased and decreased connectivity. Another component that
appeared at p-value threshold of 0.0002 contained decreased
connections related to the right cerebellum, and was further
merged into the second component as the p-value threshold
increased to 0.0004. The first component was also incorporated
into the second component when the p-value threshold increased
over 0.0009. Component at p-value threshold 0.0010 was used as
features for classification, which contained information provided
in all three significant different components (Figure 4C).

When p-value threshold equals 0.0001, two significant
different connected components were identified. The first
component contained both increased and decreased connections
related to sub-regions of the left cerebellum (Figure 4A).
Decreased connections include FC between right middle frontal
gyrus (MFG) and left Cerebellum_Crus1 (Cbe1), Cerebellum_2
(Cbe2), and FC between right inferior parietal lobe (IPL) and left
Cerebellum_7b (Cbe7b). Increased connections are FC between
left Cbe7b and bilateral heschl gyrus (HES), and FC between left
Cbe2 and left HES. The second component contained increased
connections related to sub-regions of the right cerebellum
(Figure 4B). The increased connections are FC between right
medial orbitofrontal cortex (mOFC) and right Cerebellum_6
(Cbe6), Cerebellum_8 (Cbe8), and FC between right anterior
cingulate cortex (ACC) and right Cbe6.

FIGURE 2 | Significant regions found from T1. The t-statistics of each significant region were visualized for each feature. (A) Decreased GMV in cerebellum;
(B) Decreased WMV in cerebellum; (C) Increased WMV in cerebrum area. GMV, gray matter volume; WMV, white matter volume.
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FIGURE 3 | Significant regions found from DTI. The t-statistics of each significant region were visualized for each feature. (A) Decreased FA in cerebellum;
(B) Increased MD in cerebellum; (C) Reduced fiber bundle counts in cerebellum; (D) Increased MD in cerebrum areas. DTI, Diffusion tensor imaging; FA, fractional
anisotropy; MD, mean diffusivity.

Among the identified significant features, we further
performed correlation analysis with UMSARS-total scores.
Patient 21 was identified as an outlier by using Q-Q plot, which
was excluded from all statistical and classification analysis.
The outlier identification procedures were reported in the
Supplementary Material. After excluding the outlier, we
identified that the fiber bundle count of right Cerebellum_3
(Cbe3) and FA values at bilateral Cerebellum_9 (Cbe9) had
negative significant correlation with clinical measurements
(p<0.001, Figure 5).

Classification Results
For each brain region, we selected significant different features
(p < 0.05, FDR corrected) from each modality, and combined
functional connectivity related to this region from extended-
NBS result at p-value threshold of 0.0010, forming the feature
vector for classification. The linear support vector machine
with embedded leave-one-out cross validation was performed
to evaluate the potential value of diagnosis. The SVM analysis
was repeated for each region and results were summarized
in Supplementary Table 6. Here we report regions whose
classification accuracy is higher than 0.90. By using significant
features from all modalities, we found left Cbe9 reached the

highest classification accuracy (0.928), with 1.000 sensitivity
and 0.852 specificity. We also identified left Cerebellum_Crus1
(Cbe1) and left Cbe7b with 0.911 accuracy when classifying
patients without white matter volume features. The classification
results of these regions as well as the modalities involved
were shown in Table 2. We also plotted the receiver operating
characteristics (ROC) curves of these regions in Figure 6.

DISCUSSION

Major Findings
By simultaneously applying structural (T1-weighted imaging),
DTI, functional (BOLD fMRI) and extended-NBS analysis, we
found significant grey matter atrophy in cerebellum and white
matter microstructural abnormalities in cerebellum, left FFG
and right PreCG and lingual gyrus. Extended-NBS analysis
revealed two significant connected components, featuring altered
functional connectivity related to left and right cerebellar sub-
regions, respectively. Moreover, the reduced fiber bundle counts
of right Cbe3 and decreased FA values of bilateral Cbe9 were
negatively associated with UMSARS-total scores. Finally, we
found that the significant features of left Cbe9, Cbe1 and Cbe7b
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FIGURE 4 | Extended-NBS results. (A,B) Significant different connected components obtained at p-value threshold of 0.0001 with empirical p-value of 0.0020 and
0.0230, respectively; (C) Significant different connected component obtained at p-value threshold of 0.0010 with empirical p-value less than 0.0001. Red and blue
lines stand for increased and decreased connectivity, respectively. Extended-NBS, Extended Network-Based Statistics.

could be used as sensitive biomarkers to differentiate MSA-c from
HCs according to the SVM analysis. The results of this study may
help us to understand the neural pathophysiological mechanism
of MSA from the perspective of multimodal neuroimaging.

Structural Atrophy, White Matter
Microstructural and Functional
Abnormalities in MSA-c Patients in the
Resting State
Significant grey matter atrophy and white matter microstructural
abnormalities were found in most of the cerebellum subregions
in MSA-c patients in the current study. It was shown that glial

cytoplasmic inclusion body associated oligodendrocyte disease is
the main pathological process of MSA (Wenning et al., 2008),
and the definitive histopathological manifestation of MSA-c is
mainly found in the cerebellum. In a recent study, the researchers
found grey matter atrophy and white matter degeneration of
cerebellum in MSA-c patients, which was consistent with the
current study (Dash et al., 2019). It has been reported that the
cerebellum plays an important role in the sensorimotor circuit
(Timmann and Daum, 2010). Morphological changes such as
structural atrophy may be caused by the primary disease process
induced by pathological deposition. Additionally, increased MD
in left FFG and right PreCG were found in this study. As
a part of the visual association cortex, the fusiform gyrus
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FIGURE 5 | Correlations between the MRI significant features and UMSARS-total scores in MSA-c patients. (A) FA values of left Cbe9; (B) FA values of right Cbe9;
(C) fiber bundle counts of right Cbe3. MRI, magnetic resonance imaging; UMSARS, Unified Multiple System Atrophy Rating Scale; MSA-c, cerebellum-type of
multiple system atrophy; Cbe, Cerebellum; FA, fractional anisotropy.

TABLE 2 | Classification results of selected regions. The features were significant results associated with each region.

Regions Features AUC Accuracy Sensitivity Specificity

Cbe9.L GMV, WMV, FA, MD, fiber bundle counts, FC 0.97 0.928 1.000 0.852

Cbe1.L GMV, FA, MD, fiber bundle counts, FC 0.89 0.911 1.000 0.815

Cbe7b.L GMV, FA, MD, fiber bundle counts, FC 0.94 0.911 0.966 0.852

Cbe, Cerebellum; GMV, grey matter volume; WMV, white matter volume; FA, fractional anisotropy; MD, mean diffusivity; FC, functional connectivity; AUC, area
under the curve.

FIGURE 6 | ROC curve of selected regions when classifying with significant features of each region. (A) left Cerebellum_9; (B) left Cerebellum_Crus1; (C) left
Cerebellum_7b. ROC, Receiver Operating Characteristic.

is mainly responsible for visual association, episodic memory
consolidation and visual image processing. It also participates
in the regional network supporting oral declarative memory
(Bremner et al., 2004; Malhi et al., 2007; Fusar-Poli et al., 2009;
Tao et al., 2013; Kukolja et al., 2016). Some previous studies have
shown that visual information is involved in regulating sensory
and motor function (Anguera et al., 2011; Seidler and Carson,
2017; Fisher et al., 2019). Functional changes in visual-related
areas have also been reported in one of our previous studies
(Zheng et al., 2019). The anatomical changes in the visual-related
region implied that the visual association cortex may be involved
in regulating motor function following MSA, although the exact
mechanism remains unclear.

Some early studies reported that the cerebellum’s main
function was motor control (Andermann et al., 1975; Takagi

et al., 1998), but recently many researchers reported that different
subregions of cerebellum are involved in the formation of
different functions, such as cognition, behavior and learning
(Strick et al., 2009; Reeber et al., 2013). Consistent with previous
studies, functional changes in cognitive-related cerebellar
subregions (Cbe1, Cbe7b and Cbe8) were observed in current
study (Desmond et al., 1997; Chen and Desmond, 2005a,b;
Kirschen et al., 2005; Hayter et al., 2007). MFG and IPL as the
primary hubs of the DMN (Buckner et al., 2008; Ward et al.,
2014), are responsible for cognitive functions. The decreased
FC between right MFG and left Cbe1, Cbe2, as well as between
right IPL and left Cbe7b in the present study may suggest
the cognitive dysfunction in MSA-c patients, which is partly
consistent with one of our previous studies (Zheng et al., 2019).
In a previous study, researchers found reduced activity in the
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mid-prefrontal cortex and altered functional connections to the
insula, precuneus and inferior parietal in MSA patients (Yang
et al., 2020). By using independent component analysis (ICA)
and dual-regression analysis, researchers found the cognitive
deficits may be caused by reduced cerebello-prefrontal and
cerebello-amygdala functional connections in MSA (Kawabata
et al., 2019). Our findings provide further evidence of cognitive
impairment in MSA-c patients.

On the other hand, increased functional connectivity between
left Cbe7b and bilateral HES, as well as between right mOFC
and right Cbe6, Cbe8, and between right ACC and right Cbe6
were also found in the present study. Previous researches show
that the ACC plays an important role in the processing of
emotions (Albert et al., 2012) and is linked to mood disorders,
including anxiety and depression associated with chronic pain
(Barthas et al., 2015). In this study, more than 90% of the
MSA patients had anxiety and depression, which may be the
reason for the increased FC related to ACC. Additionally,
studies have shown that individuals with non-suicidal self-injury
behavior show hyperactivation in frontal areas, including the
mOFC (Osuch et al., 2014). This indicates that psychological
changes of MSA patients might cause functional alterations.
In addition, HES belongs to the auditory cortex in humans.
Studies have reported that MSA patients have a tendency
to increase high-frequency auditory thresholds (Scarpa et al.,
2020) and low-frequency auditory thresholds (Omichi et al.,
2016; Scarpa et al., 2020), although it has also been reported
that MSA patients do not experience significant auditory
changes (Ikeda et al., 2013). As participants in this study
did not receive audio-vestibular examination, we can only
speculate that the increased functional connectivity is due to
functional compensation. Further researches on auditory and
vision function in MSA are needed.

Relationships Between the Multimodal
Magnetic Resonance Features and
Clinical Performances
In current study, negative associations were found between
clinical measurements (UMSARS-total scores) and the reduced
fiber bundle counts of right Cbe3 and decreased FA values
of bilateral Cbe9, suggesting clinical relevance of white
matter microstructural abnormalities in MSA-c. The white
matter microstructural abnormalities in these regions might
be used as significant imaging markers for assessing the
movement disorders.

The Biomarkers to Differentiate MSA-c
Patients From Healthy Controls Using
Support Vector Machine Analysis
In current study, we first simultaneous applied the structural, DTI
and extended-NBS analysis on MSA-c patients and HCs, and then
used all significant features of each of the 116 regions to classify
the two groups. Methods such as multilayer graph analysis and
fusion ICA have been proposed to merge multimodal MRI data.
However, multilayer graph analysis mainly works for merging
brain networks constructed from different modalities (Battiston

et al., 2017; Mandke et al., 2018). And fusion ICA is useful
in combining contrast maps obtained from task fMRI data
(Calhoun et al., 2006; Sui et al., 2013). In this work, we collected
resting-state fMRI and constructed brain networks to model
functional activities. Moreover, the features used in this work
are not limited to networks. We consider regional features
extracted from T1-weighted and DTI data, which lacks pairwise
interaction information between regions. As a result, the AAL
atlas was utilized to convert features from different modalities
to the atlas space or the feature space. Regional features and
networks were represented as feature vectors and matrices. And
significant features identified from statistical analysis were used
for classification training.

Results showed that the significant features of left Cbe9, Cbe1
and Cbe7b could distinguish MSA-c from HC with relative high
accuracy. As previous studies reported, Cbe9 is thought to be
crucial for visual guidance of movement (Glickstein et al., 1994).
The function of Cbe1 is predominantly sensorimotor, whereas
Cbe7b contributes to higher-level processes (Schmahmann, 1991,
1996, 2004; Schmahmann et al., 2009). Current result has
an important implication since these regions could be used
as valuable imaging biomarkers for the early diagnosis and
prognosis assessment of MSA-c patients.

Future Considerations
This work has several limitations. First, the present study
showed alterations in visual, auditory and cognitive related
regions in MSA patients. However, in this study, we only
focused on changes in motor function. A study including more
subjects with visual and cognitive function evaluations will
be conducted in the future. Next, we have only incorporated
one subtype of MSA in this study. In the future, exploring
MSA of different subtypes (parkinsonian and cerebellar variants)
would be helpful to deepen the understanding of pathological
mechanism of MSA. Moreover, a longitudinal design including
the pre-symptomatic patients is of great significance to elucidate
the progression of MSA. Also, it would be more clinically
meaningful to consider a dynamic and longitudinal context in
future studies, including the neuroplasticity mechanisms in MSA
and other neurodegenerative diseases (NDDs) (Gatto et al., 2019,
2021; Gatto, 2020). We also note that novel multimodal fusion
methods that combine regional features and brain networks
at the same time could possibly further help to improve
classification accuracy.

CONCLUSION

In conclusion, by simultaneously applying structural (T1-
weighted imaging), DTI, functional (BOLD fMRI) and extended-
NBS analysis to differentiate MSA-c from HCs, we observed
significant grey matter atrophy in cerebellum and white
matter microstructural abnormalities in cerebellum and several
cerebrum regions, as well as altered functional connectivity
between several cerebellum subregions and cerebrum regions
in MSA-c patients. In addition, significant negative correlations
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were found between the UMSARS scores and white matter
microstructural abnormalities in several cerebellum subregions
of MSA-c patients. Finally, we found the significant features
of left Cbe9, Cbe1 and Cbe7b could be used as useful
imaging biomarkers to distinguish MSA-c from HCs according
to the SVM analysis. The results of this study added new
evidence for the structural atrophy, white matter microstructural
and functional abnormalities of MSA, which may help us
to understand the neural pathophysiological mechanism and
provide potential biomarkers and new ideas for the accurate
diagnosis and treatment of MSA in the future.
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