
Using machine learning to detect 
the differential usage of novel gene isoforms
Xiaopu Zhang*, Musa A. Hassan† and James G. D. Prendergast*† 

Introduction
The number of unique mRNA isoforms encoded by the human genome is estimated to 
be 3–10 times higher than the number of genes [1, 2]. This transcript diversity enables 
increased downstream phenotypic complexity through the expansion of the set of pro-
teins encoded by a comparatively small set of genes [3, 4].  Precursor messenger RNA 
(pre-mRNA) splicing is an important driver of this isoform diversity where the canonical 
exon, intron and other untranslated regions (such as  the 5′ untranslated region, UTR) 
can be rearranged to generate different transcripts  via alternative splicing (AS) [5, 6]. 
Although AS is often condition- and/or tissue-specific, high-throughput RNA sequenc-
ing has revealed that AS occurs in almost all human pre-mRNAs.  Further drivers of 
isoform diversity include the use of alternative transcription start and polyadenylation 
sites, with these processes often co-occurring to further expand isoform variety [7].
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Differential isoform usage  between groups  has been linked to a wide range of dis-
eases [8–10]. For  example,  changes in the relative ratios of expressed isoforms of the 
microtubule associated protein tau (MAPT) gene have been linked to tauopathies such 
as dementia [10]. Likewise, differential isoform usage is a characteristic feature of many 
cancers. For example, the preferential usage of an isoform of the epidermal growth fac-
tor receptor (EGFR) gene lacking exon 4 [9].  Consequently,  the study of differential 
isoform usage has the potential to provide important insights into the biological mecha-
nisms underlying diseases and phenotypic differences between groups.

RNA sequencing (RNA-seq) is  commonly  used to  compare the transcriptional pro-
files of cells and tissues. Although the primary focus of RNA-seq studies is commonly 
the  comparison of  absolute expression levels of genes or individual transcripts, it can 
also be used to study differential isoform usage across populations, tissues or disease 
states [11–14]. However,  these studies can be impeded by a lack of knowledge on  the 
total set of different isoforms produced by a gene, particularly when working with non-
model organisms. Although  several  approaches and tools  are  currently available for 
studying differential isoform usage, they often depend on the quality of transcript struc-
ture  annotation. For example,  the GEUVADIS  consortium [13] used  the ratio of the 
expression of each annotated transcript to the gene’s total expression level to compare 
isoform usage between populations. This approach,  therefore,  relies  on the quality of 
the transcript annotation, with any unannotated transcripts not being tested. The DEX-
Seq and edgeR software test the relative usage of each individual exon, but again depend 
on the quality of isoform annotation [15, 16]. To overcome the limitation of poor tran-
script  models,  some approaches attempt to derive novel annotation data from the 
sequencing data itself. For example,  DIEGO [11]  detects differential isoform usage by 
first identifying the locations of splice sites using split RNA-seq reads, i.e. reads that map 
across a splice junction. Cufflinks [12] and Stringtie [14] take this further and attempt to 
assemble whole transcripts from the RNA-sequencing data to generate a new annota-
tion set that can then be used in downstream differential analyses. However, the genera-
tion of high-quality annotations using these approaches has been shown to often require 
extensive sequencing data to accurately reconstruct all the isoforms of a gene.

The use of machine  learning (ML) approaches  is  becoming increasingly popular in 
the biological sciences [17, 18]. The scale and complexity of biological data makes it 
well suited to ML techniques including for the detection of  AS.  For example,  Jagana-
than et al. [17] used a deep neural network trained on annotated pre-mRNA sequences 
to predict splice junctions in other pre-mRNA  sequences, showing that many sites of 
AS were driven by genetic variants linked to autism and intellectual disability. Zhang 
et al. [18] developed DARTS, which can infer differential isoform usage between sam-
ples, by using deep learning trained on specific RNA-seq libraries where RNA bind-
ing proteins involved in splicing had been knocked down.  A limitation of such ML 
approaches  is  that  they are also dependent on high quality annotation and/or specific 
training datasets.

In this study we  explored  the effectiveness of ML approaches to detect putative 
differential isoform usage between Europeans and Africans in the absence of high-
quality isoform annotation or specific forms of RNA sequencing data. In its simplest 
form, differential isoform usage is characterized by differences in the relative rate of 
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transcription of different parts of the gene. For example, exon skipping in one group 
versus another will lead to differences in the proportion of reads mapping to this exon 
between the groups.  By dividing each gene region into windows,  we investigate the 
ability to differentiate groups by the proportion of reads mapping to each window in 
both simulated and real RNA-seq data.

We hypothesized that due to the relatively small number of samples available in 
most RNA-seq datasets compared to the number of potential windows in a gene, 
penalized regression approaches such as elastic net regression may be most appro-
priate for this kind of problem. As has been shown in the related problem of predict-
ing gene expression levels from genetic variants [19]. However, we also contrast this 
approach to other ML methods to identify which are best suited to this problem and 
illustrate how our results compare favourably to previous non-ML methods.

Methods
Real RNA‑seq dataset and data preprocessing

The real RNA-seq data used in this study was previously described in Lappalainen et 
al. [13]. Briefly, stranded RNA-seq data was obtained from lymphoblastoid cell lines 
(LCL), a commonly used biological material generated by in vitro infection of B cells 
from peripheral blood with the Epstein–Barr virus. The dataset contains 91 Ameri-
cans of European descent (CEU), 95 Finns (FIN), 94 British (GBR), 93 Toscani (TSI) 
and 89  Yorubans  (YRI).  The 373 samples of  European  origin were combined into 
one group (EUR), meaning in total there were 462 samples available for downstream 
analyses. The pre-aligned BAM files for all samples were obtained from the EBI data-
base (https:// www. ebi. ac. uk/ array expre ss/ files/E- GEUV-1/ proce ssed/).

Simulated RNA‑seq dataset

We simulated different sample sizes, reads depths, and the ratio of samples affected 
and unaffected by AS across 513 multi-exon genes located on chromosome 21 using 
the R package ASimulatoR [20]. We tested groups of 250, 500, and 1000 individuals 
with 3 different chromosomal reads counts (100,000, 400,000 and 1,000,000). For each 
gene, 80%, 70%, and 60% of  samples affected by AS were labelled as group 1, while 
the remaining unaffected samples made up group 2, leading to a total of 27 simu-
lated datasets. We set an equal frequency of the 9 different forms of alternative splic-
ing events supported by ASimulatoR (exon skipping, multiple exon skipping, intron 
retention, alternative 3′-splice site, alternative 5′-splice site, mutually exclusive exons, 
alternative first exon, alternative last exon and combinations of each) across the 513 
genes (Additional file  3: Figure S2), with the same gene influenced by the same AS 
event across all 27 datasets. To estimate the false positive rate of differential isoform 
usage detection, we also simulated the same 3 sample sizes and read counts again 
but with no genes with an AS event. In these cases, samples were simply randomly 
labelled as group1 and group2 with the same splits as before. We set the number of 
windows per region  (nw see below) to 3 and flanking length to 1.5  kb across these 
analyses.

https://www.ebi.ac.uk/arrayexpress/files/E-GEUV-1/processed/
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Windowing approach

For both the simulated and real GEUVADIS RNA-seq data the exact same data prep-
aration and modelling approaches were used. To define the windows to be used as 
features in the models, we first used Bedtools [21] to merge overlapping exons of 
each Ensembl gene (GRCh37.87), analogous to the flattening approach adopted 
by DEXSeq [15]. This reduced each gene to a single model. Introns and up/down-
stream regions before the first and after the last exon were included as well. Each 
exon, intron, and flanking region in this model was then divided into an equal num-
ber of windows  (nw), meaning the total number of windows/features for a given gene 
was  (numexons +  (numexons − 1) + 2) ×  nw or more simply (2 *  numexons + 1) ×  nw where 
 numexons is the number of exons in that gene following merging. We set  nw to 3, 4, 
and 5, and flanking region lengths to 1 kb, 1.5 kb, and 2 kb to construct 9 candidate 
input datasets for each gene when characterizing the importance of these parame-
ters. When evaluating windowing numbers, we utilized all 57,736 genes annotated in 
Ensembl.

Next, Bedtools [21] was used to count the number of RNA-seq reads from each 
individual in the RNA-seq datasets that overlapped each window. Where a read over-
lapped multiple windows, it was added to the count for each. If the total read count 
across a gene was less than 10 for a sample, this sample was excluded when evaluating 
the gene. Equation 1 below, was used to calculate the normalised proportion of reads 
mapping to each window, accounting for the window’s length.

Model fitting and variable importance

Using the approach above we constructed an individual matrix of normalized read 
counts for each gene as input data for the machine learning models. Each row was a 
sample/individual and each column a feature/window. The windows and the popula-
tion codes (group1/group2 in the simulated datasets and EUR/YRI in the real dataset) 
were designated as the features and sample labels, respectively.

For each gene, we randomly split all samples into training and testing sets with an 
80%:20% ratio. Before fitting the models to the input matrix, for each variable (i.e. 
window) we subtracted the mean and divided by its standard deviation using the 
“center” and “scale” methods in the preProcess function of the caret R package. To 
remove uninformative predictors, variables identified with constant or almost con-
stant value across samples were excluded using the nearZeroVar function in caret 
with its default settings. Tenfold cross-validation with 5 repeats was used in all down-
stream model fitting. We compared the performance of four model types using the 
R package caret: logistic regression, elastic net, random forest, and gradient boost-
ing (xgboost). Logistic regression was treated as the baseline model to investigate the 
effect of changing the flanking length and  nw parameters discussed above. Variable 
importance was evaluated through specific model-based approaches, as implemented 
by caret. The corresponding R code, specific details on hyperparameter tuning, and 

(1)Normalised Proportion =

win reads/gene reads

win length
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parameters used for model fitting are available in the 00.runCaret.R script available at 
https:// github. com/ ZXiao pu/ Isofo rmUsa ge/ tree/ main/ dataA nalys is.

Permutations and FDR calculations

To assess the number of gene models expected to show evidence of differential isoform 
usage between the two populations by chance in the GEUVADIS data, we permuted the 
population labels in the training set between the samples ten times. We then repeated 
the model fitting  and  assessed model performance as with the unpermuted  testing 
data. By permuting the training data population labels in this way, we could assess the 
number of significant gene models that were returned even when the link between pop-
ulation labels and underlying windowed read proportion data had been broken.  This 
provided an estimate of the  proportion  of  results at different P value thresholds  that 
were likely false positives, from which we could derive false discovery rate estimates.

To characterize the potential impact of gene expression levels on the number of false 
positives, we broke the genes down into three approximately equal sized groups based 
on their expression levels in the European population. Those with an RPKM ≤ 0.005, 
RPKM > 0.005 and < 1, and those with an RPKM ≥ 1 (RPKM: reads per kilobase per mil-
lion mapped reads). The gene expression level information was provided by GEUVADIS 
and available at https:// www. ebi. ac. uk/ array expre ss/ files/E- GEUV-1/ analy sis_ resul ts/. 
We then counted the number of genes in each of these categories in each P value bin and 
repeated the enrichment analysis comparing the numbers in the real versus permuted 
results.

Comparison with GEUVADIS consortium and edgeR

We compared this windowing approach to two existing methods. The approach origi-
nally adopted by the GEUVADIS consortium [13] and that implemented in the R pack-
age edgeR [16]. The GEUVADIS consortium had identified potential differential isoform 
usage by comparing each transcript’s expression level to the whole expression level of its 
cognate gene using a Mann–Whitney test. These P values were then corrected using the 
Benjamini–Hochberg FDR method. Where this ratio is different between the two popu-
lations, this suggests the relative usage of the particular isoform has changed. To imple-
ment this method, we downloaded the transcripts and gene expression level files from 
https:// www. ebi. ac. uk/ array expre ss/ files/E- GEUV-1/ analy sis_ resul ts/. The gene annota-
tion was from Gencode v12 and transcript annotations from a combination of both Gen-
code v12 and FluxCapacitor. After repeating this process, we selected only genes with at 
least one transcript with a corrected P value less than 0.05 for downstream analyses.

edgeR tests for differential isoform usage by comparing the log-fold change of indi-
vidual exons between populations within a gene. To convert the exon level results into 
gene-level P values, the F test and Simes method implemented in edgeR were used. To 
generate the input read counts from the same BAM files used for the other methods we 
used HTSeq [22]. Lowly expressed genes (less than 15 reads across all samples) were 
removed using edgeR’s filterByExpr function with its default settings. When evaluating 
the outcome, we corrected P values using the Benjamini–Hochberg FDR method and 
only selected genes with a corrected P value less than 0.05 for both the F test and Simes 

https://github.com/ZXiaopu/IsoformUsage/tree/main/dataAnalysis
https://www.ebi.ac.uk/arrayexpress/files/E-GEUV-1/analysis_results/
https://www.ebi.ac.uk/arrayexpress/files/E-GEUV-1/analysis_results/


Page 6 of 16Zhang et al. BMC Bioinformatics           (2022) 23:45 

gene level results. All code is available at https:// github. com/ ZXiao pu/ Isofo rmUsa ge/ 
tree/ main/ dataA nalys is.

The number of genes found by each set of approaches was plotted using the SuperEx-
actTest R package [23] which also tests for enrichment of any overlaps between groups.

In the downstream analysis, we only evaluated the 50,408 genes which were tested 
across all ML methods, the original GEUVADIS approach, and edgeR.

Pathway enrichment analyses

Pathway enrichment analyses were performed using FUMA [24].  The  background list 
was the 50,408 genes described above. To compare approaches, the unadjusted P values 
from across terms and annotation groups tested by FUMA were first log transformed 
and then compared using a Pearson’s correlation.

Results
Population RNA‑seq datasets

To investigate the ability of ML approaches to detect differential isoform usage from 
windowed read proportions  we used the GEUVADIS RNA-seq  dataset generated 
by Lappalainen et al. [13]. This study generated stranded lymphoblastoid cell line RNA-
seq data across 373 Europeans and 89 Africans. This dataset is not only one of the larg-
est RNA-seq studies spanning multiple groups, but it has also previously been used to 
investigate differential isoform usage, providing a benchmark for this study.

Using machine learning models to detect differential isoform usage in the GEUVADIS 

dataset

As discussed above, a characteristic of differential isoform usage is a change in the pro-
portions of reads mapping to different areas of a gene. Where an isoform is previously 
uncharacterised, these changes can occur not only at known exons, but also in intronic 
or flanking regions.  To detect  potential  differential isoform usage between popula-
tions, we first divided each Ensembl gene region (GRCh37.87) into windows and calcu-
lated  the  normalized proportion of reads mapping to each,  as  illustrated  in Fig.  1.  By 
including  windows in the  upstream and downstream flanking regions as well as 
introns, we ensured that unannotated isoforms could be captured. All sub-regions were 
divided into an equal number of windows  (nw), so that longer regions, such as introns, 
did not have a disproportionate contribution to the total window number. Consequently, 
in downstream model fitting, the normalized proportion of reads mapping to each win-
dow of a given gene were the set of features, with the population of origin of the indi-
vidual (EUR or YRI) being the group labels.

The  nW variable is likely to be important as too many windows will increase the poten-
tial  for  overfitting,  and lead to too few reads per window to accurately calculate read 
proportions. In contrast, too few windows will reduce resolution and the ability to 
capture novel isoforms. Thus, we examined all the 57,736 genes annotated in Ensembl 
(GRCh37.87) to identify a reasonable value for  nW. As shown in Fig. 2A, when n is set 
to 3, 4 and 5 the average total number of windows per gene was 36, 48 and 60, respec-
tively. However, there is large variation around these values with 5% of genes having 
more than  135,  180,  and  225  windows  at each of these thresholds.  Using a baseline 

https://github.com/ZXiaopu/IsoformUsage/tree/main/dataAnalysis
https://github.com/ZXiaopu/IsoformUsage/tree/main/dataAnalysis
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logistic regression model, we compared the impact of varying  nw and the length of the 
flanking regions on the estimation of model accuracies. In general, a window number of 
3 and a flanking region length of 1.5 kb identified the relatively highest number of genes 
showing differential isoform usage in both the training and testing datasets with less evi-
dence of substantial overfitting across models (Additional file 3: Table S1, Fig. S1). We 
therefore used these parameters in downstream analyses.

Using machine learning to identify genes showing differential isoform usage

We used  four different modelling approaches to investigate whether ML could effec-
tively detect differential isoform usage between Europeans and Africans from the nor-
malized windowed read proportions. As discussed above, we chose elastic net penalised 
regression due to the  relatively small number of samples relative to  the total number 
of windows for some genes, but also compared the performance of a baseline logistic 
regression model, random forest, and gradient boosting methods (see Methods).

For each gene, we divided the samples into  the same 80% training and 20% testing 
data and trained models to predict an individual’s population from the distribution of 
reads across each gene region.  If  a gene’s model predicts an individual’s population of 
origin from windowed read proportions better than expected by chance, this suggests 
the populations display differential isoform usage at the given gene. The number of genes 
with small P values was substantially higher than when the population labels in the train-
ing dataset were permuted between the samples prior to model fitting (Fig. 2B), suggest-
ing an enrichment of true positives across all models. However, the greatest enrichment 
was observed for the gradient boosting model with 8978 genes with an FDR estimated 

1 Sample RNA-seq read depth

Known isoforms

Unannotated exon

0 0 0 0 0 0.04 0.1 0.03 0.11

0 0 0 0 0 0.05 0.12 0 0

Individual 1

Individual 2

For each individual 
calculated proportion of 
reads mapping to each 
window

Individual 1 preferentially expresses this unannotated exon

Input to 
ML models

Fig. 1 An outline of the windowing approach adopted in this study. For each gene all known transcripts 
were first merged. Each region (upstream/downstream flanking sequence, introns, and exons) was then 
divided into a set number of windows. The proportion of reads mapping to each window was then 
calculated as described in the methods and used as input to the ML approaches
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from these permutations of < 0.05. The baseline logistic regression model performed the 
worst with a comparatively small number of genes with a significant accuracy in the test-
ing data beyond what would be expected by chance.

To further assess the performance of this approach, we estimated potential true posi-
tive and false positive rates by simulating reads from genes with and without splicing 
events using the ASimulatoR R package [20] (see Methods). At a similar chromosomal 
read count (400,000) and cohort size and split (400 vs 100 individuals) as the real data, 
the gradient boosting model again performed the best, peaking at an estimated sensitiv-
ity of 78% with a specificity of 99.5% (Additional file 3: Figure S2B). Note it is difficult to 
achieve a sensitivity of 100% in these simulations due to the low expression level of some 
genes, but these simulations suggest that all approaches can identify the majority of true 
positives while, importantly, maintaining a low false positive rate.

Although lowly expressed genes are expected to show more noise in their estimated 
windowed read proportions, with small fluctuations in read counts leading to bigger 
changes in the estimated values, consistent with the simulations, there is little evidence 
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Fig. 2 A Total window number of genes for different  nw. B To assess the number of significant gene 
models we would expect to get by chance, we repeated the model fitting ten times but first permuting the 
population labels in the training set between samples each time. The test dataset was left unchanged. The 
number of models with P values within the given thresholds was then divided by the number observed in 
each permutation run to see how many more significant results were obtained than expected by chance. As 
can be seen there is an enrichment specifically of smaller P values in the unpermuted data
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to suggest this is leading to a large number of false positives in the real data. Few lowly 
expressed genes were associated with a small P value, likely due to the difficulty of 
detecting consistent differences because of these random fluctuations, as in standard 
differential gene expression analyses. For example, although 581 of the top third most 
highly expressed genes had a P value less than 0.1 in the unpermuted data in the gradient 
boosting model, this number was just 17 for the genes in the bottom third of expression 
levels. These numbers were also still higher than those observed among the permuted 
data (Additional file 3: Figure S3) suggesting there are few false positives arising purely 
due to inaccurate estimates of windowed read proportions at lowly expressed genes.

Comparison to other methods for detecting differential isoform usage

To further assess the performance of these models, we first compared the genes identi-
fied by each model to those displaying differential isoform usage when using the method 
implemented in the original GEUVADIS  paper.  The  GEUVADIS approach  relied on 
transcript annotations and calculated  the  expression  levels  of each known transcript 
relative to the total expression level of its gene and compared these values across popula-
tions using a Mann–Whitney test [13].

The leading ML approaches by FDR identified 25% (elastic net), and 70% (gradi-
ent boosting) more genes as potentially linked to differential isoform usage  than the 
GEUVADIS approach (Fig.  3A, Additional file  1: Supplementary Data 1). This is in 
large part because for many genes there is only one annotated transcript, which limits 
the number of genes that can be identified as exhibiting differential isoform usage by the 
GEUVADIS approach. In contrast the ML windowing approach, which relies on read 
density within a window,  can still detect potential differential isoform usage between 
populations at these genes despite their lack of multiple annotated isoforms. In total 33% 
and 26% of the genes identified as displaying potential differential isoform usage using 

Fig. 3 Concordance between methods for identifying differential isoform usage. A The number of genes 
identified by or across approaches. The outer numbers represent the number of genes in each set indicated 
by the green shading. The red outer shading indicates that set shows greater overlap among the indicated 
approaches than expected by chance as calculated by the SuperExactTest R package. B The concordance of 
gene enrichment results from FUMA. The log transformed enrichment unadjusted P values for tested terms 
were correlated between approaches. The histogram indicates the distribution of the corresponding log 
transformed P values
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the gradient boosting, and elastic net models only had one annotated isoform and could 
not therefore be detected using the original GEUVADIS approach.  In total 57% of the 
genes identified as showing potential differential isoform using the GEUVADIS approach 
were detected by either the elastic net or gradient boosting approaches (Fig. 3A).

We further compared the results from our methods and edgeR, which compares the 
log fold-change of exons across a gene to see where they are inconsistent, suggestive of 
differential isoform usage [16]. In contrast to the GEUVADIS approach this method is 
not restricted to analysing genes with multiple known isoforms, though does rely on 
known exon annotations. 9137 genes were identified as showing potential differential 
isoform usage with this counts-based method. Highly significant overlaps were observed 
between the genes identified by all approaches (Additional file 3: Table S2), with 66% of 
genes (3976) identified using the elastic net approach also identified either by the GEU-
VADIS or edgeR approaches, with 25% identified by both (1527 genes, 12.8-fold more 
overlap between the approaches than expected by chance). The corresponding numbers 
for the gradient boosting model were 58 and 21% respectively. 38% and 45% of the genes 
predicted to show differential isoform usage by edgeR were also detected by the elastic 
net and gradient boosting approaches respectively, both higher than the 32% detected 
by the GEUVADIS approach. Consequently, although all approaches show incomplete 
overlap due to their different methodologies, each shows a considerably higher overlap 
than expected by chance, and the elastic net and xgboost models showed better overlap 
with the edgeR results than the original approach adopted by GEUVADIS.
ARMC10  is an example of a gene that had an FDR < 0.05  in all four ML models and 

GEUVADIS but not edgeR. Closer examination of the windowed read proportions 
across this gene identified the final exon (exon 10) to be particularly informative at dis-
criminating European and African individuals (Fig.  4A–D), with the second window 
of exon10 ranked top when identifying the most important window to classify the two 
groups. Differences in the proportion of reads mapping to this final exon was confirmed 
by visualizing the read depth profiles across this exon in rmat2sashimiplot (Fig.  4E). 
These results are consistent with the potential preferential use of differential transcrip-
tional end sites (TES) between populations at this gene. In agreement with this, a tran-
script displaying an earlier TES, ENST00000323735, was the only transcript of ARMC10 
showing significantly different expression level between the two groups (P = 0.003) when 
using the GEUVADIS approach.

In contrast the PSPH gene was estimated to display differential isoform usage across all 
four machine learning models and edgeR but not GEUVADIS. Exon 5 showed the larg-
est estimated importance in our analysis (Additional file 3: Fig S4). which corresponded 
to three overlapping exons (exons 13, 14, and 15) in the edgeR analysis, where they were 
also the 3 most significantly differentially expressed exons (exon13 P: 1.91e−116, exon14 
P: 2.86e−102, exon15 P: 2.14e−43).

Many genes only identified by our method but not edgeR can be explained by the 
reads distributed in introns and flanking regions that were considered in our method but 
not edgeR. For example, among the genes also detected by edgeR the most important 
window of 60% (2543 out of 4269) and 46% (1675 out of 3604) of genes identified by the 
xgboost and elastic net approaches were exonic. In contrast among the genes detected 
by these models but not edgeR these numbers were 34% (1343 out of 3969) and 33% (803 
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out of 2436) respectively. Consequently, among the genes not also detected by edgeR 
the most important window is significantly more likely to be intronic or in a flanking 
region (Fisher’s exact test P < 2.2 ×  10–16), providing a potential explanation as to why 
many were not also detected by edgeR, that focuses exclusively on known exons.

Pathway enrichment among genes showing differential isoform usage

A common downstream analysis in gene expression studies is the characterisa-
tion of biological pathways enriched among genes identified as showing differ-
ences between the groups. Observation of relevant pathways can add support to 
the validity of the results. We  consequently investigated  the consistency of  func-
tional  enrichment  among  the genes identified by each  approach  using  FUMA [24], 
and the pathways showing differences between the populations. All FUMA results are 
provided in Additional file 2: Supplementary Data 2. As shown in Fig. 3B there was a 
very high correlation between the enrichment results from all of the methods, with 
the exception of those when using logistic regression. The strongest correlation was 
between the edgeR and gradient boosting results with a correlation between the log 
transformed term enrichment P values from these approaches of 0.93. Consequently, 
the enrichment results are highly consistent between methods. 

Fig. 4 Evidence for differential isoform usage at the ARMC10 gene. A The read proportions 
by window and population. Exons (in blue) and introns (white) are shown in their genomic order from 
bottom to top. For each window, read proportions were first divided by the window’s length to account for 
region size before being log transformed to enable their comparison. B The second window (win2) of exon 
10 shows one of the largest differences in the proportion of reads mapping to it between the European 
and Yoruban populations. C + D The relative importance of the top ranked windows in the elastic net and 
xgboost models. The windows of exon 10 are indicated in orange. E Sashimi plots of two individuals (a 
Yoruban in purple and European in red) confirming the different read profiles in the final exon. Highlighted 
region is the exon 10 window 2 region of ARMC10. The plot is generated by rmat2sashimiplot
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Enriched terms identified included those likely associated with the different latitudes 
of the two populations. For example, genes downregulated in fibroblasts in response to 
UVB  irradiation were enriched among all models except the logistic regression model 
(Additional file  1: Supplementary Data 1). This  potentially  reflects  differential isoform 
usage linked to the differences in UVB amounts between the two continents. Likewise, 
chronotype, which is linked to latitude and day lengths was enriched among both the 
elastic net and gradient boosting results. Genes involved in breast cancer, which have 
been reported to have a higher incidence in Europeans than Africans, were also enriched 
among the results of all models [25].

The relative importance of different gene regions

Elastic net and gradient boosting identified 6504 and 8978 genes displaying potential dif-
ferential isoform usage at an FDR of 0.05, respectively. Of these a total of 3917 genes 
(60% and 44% respectively) were detected by both approaches, a significantly higher 
overlap than expected by chance (P < 2.2e−16, Fishers Exact test).

To better understand the patterns of differential isoform usage across genes we identi-
fied which gene regions generally exhibited the highest relative importance across these 
two model types. This provides an indication of which regions are more likely to show 
larger differences between their relative read counts between the two populations, and 
therefore the location of putative isoform differences.

As shown in Fig. 5, the regions with the largest relative importance were the flanking 
regions and starts and ends of genes. This suggests primary drivers of isoform differ-
ences are likely alternative start and termination sites, consistent with the conclusion 
from Reyes and Huber [15]. Within introns, the first and last windows showed higher 
importance than the internal window, consistent with the importance of splice sites. 
Interestingly, for exons, the last windows generally showed the least importance. Besides 
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Fig. 5 The relative importance of each gene region across multi-exonic genes in gradient boosting models. 
Relative importance metrics for each gene were converted to deciles, with higher deciles corresponding to 
higher relative importances within a gene. The mean of each of these for each window was then calculated. 
Only the first and last eight exons in each gene are shown, along with their corresponding neighbouring 
introns (green) and flanking regions (red). The dashed lines correspond to the overall means
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the first and last exon, no obvious difference between the importance of the exons and 
introns of significant genes detected by xgboost (Fig. 5) and elastic net (Additional file 3: 
Fig. S5) was identified. Within exons or introns there was a low but significant correla-
tion between window length and importance rank (Pearson’s correlation between win-
dow length and decile rank among exons was 0.18 and 0.14 in xgboost and elastic net 
respectively. Corresponding values for introns were 0.13 and 0.09. All P values < 2.2e−16).

To more specifically investigate any role of alternative splicing, for each gene we iden-
tified windows containing a known splice site. These windows were more likely to show 
a higher variable importance than those that did not overlap a known splice site (P 
value < 2.2e−16 for both models, t test). Consequently, despite the importance of alterna-
tive transcriptional start and end sites, it is also possible to quantify the potential impor-
tance of splice site to driving differences between these populations.

Discussion
In this study we aimed to investigate whether ML approaches may have utility in detect-
ing differential isoform usage  based purely on the distribution of reads across a gene 
region, even when the precise isoforms are unknown. We illustrated that in the GEU-
VADIS dataset, gradient boosting can not only identity substantially more genes than 
expected by chance,  but  those identified  are  enriched  in relevant biological  pathways, 
consistent with the findings not just being noise.

A major concern for using ML for this type of study is the dimensions of most RNA-
seq datasets, in that the number of samples is usually at most measured in the hundreds, 
substantially less than what would be ideal for employing ML approaches. However, we 
show that  these approaches are picking up many of the genes detected by edgeR and 
in the original GEUVADIS analysis  in a test dataset separate to the training data, and 
more than expected by chance. Likely due to the dimensions of the data in the GEU-
VADIS dataset, gradient boosting which is reasonably good at controlling overfitting, 
showed perhaps the best performance across analyses. Penalized regression was also 
an effective ML approach in the real GEUVADIS data, consistent with its effectiveness 
in gene expression imputation analyses where the same restrictions are also present, 
However, in the simulated dataset elastic net displayed a lower true positive rate though 
maintained a false positive rate near zero. It is possible any advantages of the elastic net 
approach are not fully captured using simulated data, for example at longer genes across 
the genome, or that the false positive rate of this method is higher amongst the real data 
than predicted. Together these results suggest that ML approaches are indeed likely to 
have utility  in detecting differential isoform usage but the optimal choice for a model 
may depend on the target dataset and species.

Previous studies have highlighted how RNA-seq can have various biases that can affect 
the distribution of reads across the gene. For example, read depth is known to be corre-
lated to GC content. However, as the GC content and other sequence features of a given 
window will be largely the same across groups/populations any such biases should be the 
same for both, minimizing their impacts.

However,  there are  a number of  caveats to this study.  Many of the limitations of 
standard differential expression  analyses will carry over to these analyses in terms 
of  their susceptibility to batch effects etc.,  but these problems may  become amplified 
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when using certain ML approaches. ML approaches are effective at finding differences 
between groups, though these may not always be biological,  and consequently  they 
need to be run with caution. Likewise, although such approaches have the potential to 
detect differential isoform usage even when the precise isoform is unknown, this likely 
comes at the potential for increasing the false positive rate. For example, an unknown 
gene residing in the intron of the gene being studied, will lead to a potential false posi-
tive if its expression level is different between the groups being compared. Other cur-
rent methods based on transcript assembly are also partly susceptible to such issues, but 
these limitations could be mitigated by using this ML approach as a preliminary screen 
of genes potentially showing differential isoform usage.  Further  analysis of  paired end 
and split reads at the identified regions could then be used to confirm the signal is from 
the gene in question. Further to this, these approaches do not define the actual isoforms 
showing differential isoform usage  and further analyses would be required to  charac-
terise these. However, constructing full length isoforms and accurately measuring their 
expression levels from short-read sequencing data alone is difficult, and often just know-
ing the gene showing differences is sufficient for many studies to complement the study 
of differential gene expression. This is the principal that underlies software such as DEX-
seq [15] that focuses on the differential usage of individual exons. Although in our study 
we only evaluated differential isoform usage between two groups, it would, in theory, be 
possible to extend these approaches to comparisons between larger numbers of groups 
(for example more populations) using multi-class ML models.

Although variable importance metrics need to sometimes be interpreted with caution 
[26], the data presented here doesn’t suffer from some of the most serious confounders, 
such as input data of different types. Overall we saw a consistent pattern of the terminal 
windows being among the most important, supporting the idea that most differential 
isoform usage is mediated by the use of alternative 5′ and 3′ ends of transcripts. How-
ever, we also identified that windows spanning splice sites are also likely to be ranked 
higher in terms of their importance. Consequently, the results are consistent with under-
lying biology.

It is notable that whereas there was a significant overlap between the genes identified 
as showing differential isoform usage using the gradient boosting and elastic net meth-
ods, on average half of the genes were specific to each method in each case. This may not 
be surprising given the very different assumptions and underlying approaches adopted 
by these ML techniques. It should also be noted that there was an incomplete overlap 
observed between the results from the previously published edgeR and GEUVADIS 
approaches. Only 32% of the genes predicted to show differential isoform usage by 
edgeR were also detected using the GEUVADIS approach. In contrast, 38 and 45% of the 
genes predicted to show differential isoform usage by edgeR were detected by the elastic 
net and gradient boosting approaches respectively. There is also often a similar incom-
plete overlap among the genes identified  using different  differential expression  meth-
ods [27], but does mean that the list of genes returned is to some extent dependent on 
the model and approach used. Integrating different approaches, each with complemen-
tary advantages, may prove to be the best strategy for identifying high-confidence genes 
showing differential isoform usage. Despite this,  there were very strong correlations 
observed among the gene pathways identified across approaches. Reassuringly a number 
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of relevant pathways were consistently identified, including those linked to latitude (UV 
response and chronotype) and disease (breast cancer) [25].

In summary we demonstrate the potential utility of ML approaches for detecting differ-
ential isoform usage. With the ever-decreasing cost of sequencing such approaches will 
likely become ever more useful in the biological investigation of large RNA-seq datasets.
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