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Total 25(OH)D levels were determined to assess bone health in elderly populations; however, the bioavailability
of 25(OH)D is regulated by the albumin and vitamin D binding protein (DBP) levels and DBP variations.Whether
bioavailable 25(OH)D level is a superior biomarker for vitamin D than total 25(OH)D level regarding the BMD
and the bone metabolism were not yet fully understood. With a community based cross-sectional study of 967
postmenopausal women, we found that the variant rs7041, but not rs4588, of DBP was significantly associated
with the blood DBP level, whichwas positively correlatedwith the total 25(OH)D level but negatively associated
with bioavailable 25(OH)D levels. Both total and bioavailable 25(OH)D levels were significantly correlated with
the BMD value in postmenopausal women; however, only the bioavailable 25(OH)D level was an independent
determinant of the BMD values when adjusted for age, body mass index and bone turnover biomarkers (OST
and β-CTX). The bioavailable and total 25(OH)D were negatively correlated with bone formation biomarkers
(OST, PINP and ALP) and PTH levels, while they were positively correlated with osteoprotegerin (OPG) level;
however, the bone resorption biomarker (β-CTX) was not correlated with the 25(OH)D levels. An increment
of PTH level, along with reduced bioavailable 25(OH)D levels, was evident when the bioavailable 25(OH)D
level was b5 ng/mL, which may be the optimal cutpoint for sufficient vitamin D in Chinese elderly women.
The blood calcium, magnesium, ALP, TSH, FGF23, and phosphorus levels were not correlated with the total or
the bioavailable 25(OH)D levels. These results suggested that high bioavailable 25(OH)D levels were correlated
with reduced bone turnover processes andwere a biomarker superior to total 25(OH)D for vitaminD in assessing
the risks of bone-related diseases. The results indicate that the bioavailable 25(OH)D level should be determined
in assessing the bone health.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Over 50% of elderly people aged 50 years or older suffer from osteo-
porosis, which is a common and complex heath problemmanifested by
a decreased BMD and collateral damage to the bone microarchitecture
(Wu and Du, 2016). The BMD value is measured in diagnosing of
osteopenia and osteoporosis, and populations with a lower BMD may
exhibit impaired skeletal strength and increased risk of fragility frac-
tures. Epidemiological studies have identified age, sex, body weight,
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bodymass index (BMI), living habits, dietary factors (including calcium,
vitamin D, caffeine and alcohol etc.), physical activity levels, and genetic
variations might influence the individual BMD status (Kumar et al.,
2010; Waugh et al., 2009; Karasik et al., 2016; Nguyen et al., 2000). In-
tervention strategies that have been developed based on these findings
may increase the BMD and subsequently reduce osteoporosis or risks of
fragility fractures have been widely recommended by clinical
physicians.

Vitamin D, an essential nutrient for humans, is obtained from the in-
gestion of vitamin D-containing foods or supplements or is synthesized
from 7-dehydrocholesterol by skin cells following exposure to sunlight
(Li et al., 2014). After absorption or synthesis, vitamin D can be convert-
ed into 25(OH)D by the 25-hydroxylase (CYP2R1) in the liver, and fur-
ther converted into its biologically active form, 1α,25(OH)2D by the
renal 25-hydroxyvitamin D-1α-hydroxylase (CYP27B1). 1α,25(OH)2D
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

http://crossmark.crossref.org/dialog/?doi=10.1016/j.ebiom.2016.11.029&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://dx.doi.org/10.1016/j.ebiom.2016.11.029
mailto:yjwang8888@126.com
mailto:huiwang@sibs.ac.cn
http://dx.doi.org/10.1016/j.ebiom.2016.11.029
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://www.sciencedirect.com/science/journal/03064603
www.ebiomedicine.com


Table 1
The baseline characteristics of the postmenopausal women (N= 967).

Characteristics Postmenopausal women (N = 967)

Age, median (IQR, years) 63 (59–68)
BMI, median (IQR, kg/m2) 23.51 (21.64–25.68)

Under weight (≤18.4 kg/m2) 14 (1.4%)
Normal (18.5–23.9 kg/m2) 520 (53.8%)
Overweight (24.0–26.9 kg/m2) 288 (29.8%)
Obese (≥27.0 kg/m2) 145 (15.0%)

History of bone fracture
Positive (%) 65 (6.7%)
Negative (%) 902 (93.3%)

Diagnosis of diabetes
Positive (%) 102 (10.5%)
Negative (%) 865 (89.5%)

History of thyroid diseases
Positive (%) 166 (17.2%)
Negative (%) 801 (82.8%)

History of chronic kidney disease
Positive (%) 24 (2.5%)
Negative (%) 943 (97.5%)

Chronic hepatitis status
Positive (%) 16 (1.7%)
Negative (%) 951 (98.3%)

rs7041⁎

GG (%) 72 (7.4%)
TG (%) 370 (38.3%)
TT (%) 525 (54.3%)

rs4588⁎

TT (%) 114 (11.8%)
GT (%) 422 (43.6%)
GG (%) 431 (44.6%)

Abbreviations: BMI, body mass index; IQR, interquartile range.
⁎ Hardy-Weinberg equilibrium test: P = 0.125 for rs7041 and P = 0.827 for rs4588.
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regulates about 3–5% of human genes through binding to its widely
expressed nuclear receptor, VDR, which belongs to the steroid-thy-
roid-retinoid receptor superfamily of ligand-activated transcription fac-
tors (Feldman et al., 2014). In osteoblasts, 1α,25(OH)2D stimulates
osteoblast differentiation and accelerates mineralization through both
autocrine and paracrine pathways (Woeckel et al., 2010). Vitamin D
promotes the gut absorption of calcium and phosphate, which stimulate
bone mineralization and increase the BMD (Holick, 2007). In addition,
vitamin D also decreases the production of parathyroid hormone
(PTH), a hormone that enhances bone turnover and bone loss (Frost
et al., 2010). As the major storage form of vitamin D, the total serum
or plasma 25(OH)D concentration has usually been recognized as a bio-
marker of the vitamin D status in the clinical setting (Holick, 2007;
Hossein-nezhad and Holick, 2013). It is widely accepted that vitamin
D deficiency [total blood 25(OH)D b 30 ng/mL] is associated with the
classical skeletal disorders, including rickets, osteopenia, osteoporosis
and the risk of fractures (Holick, 2007; Theodoratou et al., 2014). Epide-
miological studies have evaluated the correlation between the circulat-
ing 25(OH)D level and the BMD value, but the results were
controversial. Some studies have reported a positive association be-
tween the serum 25(OH)D level and the BMD at the hip and spine
(Saquib et al., 2006; von Muhlen et al., 2005), while others found no
such association (Videhult et al., 2016; Sayed-Hassan et al., 2016;
Garnero et al., 2007). The associations between the total 25(OH)D
level and the biomarkers of bone turnover were also suggested to be af-
fected by the sex, age, disease status and medication use of the study
participants (Garnero et al., 2007; Lu et al., 2012; Hernandez et al.,
2014).

In the human body, about 85–90% of the total circulating 25(OH)D is
bound to its carrier protein, the vitamin D binding protein (DBP,
encoded by the GC gene), which transports it between tissues. The
DBP-bound 25(OH)D is biologically inactive, not acting on target cells
(Safadi et al., 2012). Another 10–15% is bound to albumin, and b1% is
present as free-circulating 25(OH)D (Bikle et al., 1986), which is recog-
nized as bioavailable 25(OH)D. Genetic variants of DBP, including
rs7041 and rs4588, affect the circulating DBP level and the affinity of
DBP for 25(OH)D (Powe et al., 2013). Thus, the level of bioavailable
25(OH)D depends not only on the total 25(OH)D, but also on the levels
of DBP and albumin and the genetic background of the individual. How-
ever, the effects of distinct types of circulating 25(OH)D on BMD values
and bone metabolism have not been systematically evaluated. Herein,
we determined the correlations between the bioavailable 25(OH)D
level, the BMDvalues, and the biomarkers of bone turnover in postmen-
opausal women, who are prone to suffer from osteoporosis and frac-
tures. The present findings provide insights into the biological
properties of vitamin D and its activities in bonemetabolism and health.

2. Participants and Methods

2.1. Recruitment of the Participants

A cross-sectional studywas performed in an elderly Chinese popula-
tion (defined as those aged 50 and older). FromSeptember toDecember
of 2015, female residues living in three communities of the Xuihui dis-
tinct of Shanghai, China were invited to receive a physical examination
in order to determine their risks of bone fractures. All postmenopausal
womenwere asked to complete a pre-validated questionnaire including
their basic characteristics and a history of diagnosed diseases. We ex-
cluded those participants with a history of cancer, neoplasia, stoke, au-
toimmune disorders, or AIDS or had taken vitamin D supplements or
vitamin D analogs (including calciferol, cholecalciferol, and alfacalcidol)
in the past three months. None of the participants had received other
medical treatments related to bone diseases. A total of 967 eligible par-
ticipants fully meeting the inclusion criteria were recruited, with a re-
sponse rate of 84.4%, and all provided written consent for their
participation. The study was approved by the Ethics Committee of
Longhua Hospital Affiliatedwith Shanghai University of Traditional Chi-
nese Medicine (No. 2014LCSY12).

2.2. Data Collection

A face-to-face interview was performed by the physicians from the
Longhua Hospital to collect the basic characteristics and the disease his-
tory of the participants. Height was determined without shoes using a
portable stadiometer, and the weight was measured with the subject
wearing indoor clothing without shoes. The participants reported their
detailed previous medical history, including previous fractures, diag-
nosed diabetes, chronic kidney diseases, thyroid diseases and their hep-
atitis status. For each participant, we determined the lumbar spine BMD
using dual-energy X-ray absorptiometrywith amobile research vehicle.

2.3. Blood Sample Collection and Processing

Each participant provided a total of 7 mL of venous blood after an
overnight fast. The blood samples were collected in both EDTA
anticoagulation and non-EDTA tubes to collect the plasma and serum
samples, respectively. The serum samples were collected within 2 h
after the blood collection at room temperature. After being collected in
EDTA-containing tubes, the blood was gently mixed and centrifuged at
3000 rpm for 15 min at room temperature to separate the plasma. The
plasma and serumwere stored in aliquots at−80 °C until use. The geno-
mic DNA was extracted from the lymphoid cells using the standard phe-
nol-chloroformmethod. The purifiedDNAwas stored at−20 °Cuntil use.

2.4. Laboratory Analysis

The levels of total 25-hydroxyvitaminD (D2 andD3)weremeasured
with a Shimadzu series HPLC (Shimadzu Corporation, Japan)
instrument connected to an API 5500 LC-MS/MS system (Applied
Biosystems Inc., USA). The plasma DBP concentrations were measured
with human DBP Quantikine Enzyme-Linked Immuno Sorbent Assay



Fig. 1. The levels of DBP, total 25(OH)D, bioavailable 25(OH)D and BMD of the participants with different genetic types for rs4588 and rs7041. The DBP levels (a,e); total 25(OH)D level
(b,f); the bioavailable 25(OH)D level (c,g); and the BMD values of the participants (d,h).
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(ELISA) kits (R&D Systems, Minneapolis, Minnesota, USA) according
to the manufacturer's instructions. The serum human fibroblast
growth factor-23 (FGF23) and osteoprotegerin (OPG) levels
were determined with ELISA kits provided by CUSABIO (Wuhan,
China). The thyroid-stimulating hormone (TSH), N-terminal propeptide
of type I procollagen (PINP), β-CrossLaps of type I collagen
containing cross-linked C-telopeptide (β-CTX), osteocalcin (OST) and
parathyroid hormone (PTH) levels were determined with the Roche
electrochemiluminescence system (Roche Diagnosis Elecsys, Roche Di-
agnostics). The serum calcium and magnesium levels were determined
with the o-cresolphthalein complexone (oCPC) method. The albumin
concentration was tested using a bromocresol green (BCG) dye binding
method on a modular P-800 autoanalyzer (Roche Diagnostics). The
serum phosphorus level was analyzed with the ammonium
phosphomolybdate volumetric method. Plasma creatinine was
analyzed with the enzymatic Roche Creatinine Plus assay. The plasma
alkaline phosphatase (ALP) level was analyzed using enzymatic colori-
metric assays based on a Rochemodular P-800 autoanalyzer. All the bio-
chemical analyses were performed in batches with all samples from
individual runs included in one assay. The intraassay coefficient of
variation (CV) was b5.0% and the interassay CV was b12.0%.

2.5. DNA Genotyping Methods

The single nucleotide polymorphisms rs4588 and rs7041 of the vita-
min D-binding protein gene were genotyped with the Taqman SNP
genotyping assays (Thermo Fisher Scientific, USA) following the
manufacturer's guidelines. These two variants were chosen because
that they have a relative high prevalence in the general Chinese
population, and they were previously reported to be associated with
the circulating DBP level and the affinity of DBP for 25(OH)D (Powe et
al., 2013).

2.6. Calculation of the Bioavailable 25-Hydroxyvitamin D Level

Bioavailable 25-hydroxyvitaminDwas recognized as that not bound
to the DBP, including the free circulating 25(OH)D and the 25(OH)D
that was bound to albumin in blood. The concentration of bioavailable
25(OH)Dwas dependent on the total 25(OH)D, DBP, the albumin levels
and the amino acid variants of DBP. We calculated the bioavailable
25(OH)D level according to the methods reported by Powe et al.
(2013). The affinity constant between vitamin D and albumin was
6 × 105 M−1. The affinity constant was 1.12 × 109 M−1 for the subjects
homozygous for the Gc1F variant (TT for rs7041 and GG for rs4588) of
DBP, 0.60 × 109 M−1 for the homozygous Gc1S variant (GG for rs7041
and GG for rs4588), 0.36 × 109 M−1 for the homozygous Gc2 variant
(TT for rs7041 and TT rs4588) and 0.70 × 109 M−1 for any other
genotype.

2.7. Statistical Analysis

The characteristics of the study participants were presented as the
medians and the interquartile range (IQR) or the number of participants
and the corresponding proportion. A comparison of the distributions of



Fig. 2. The correlation between DBP concentrations and the total 25(OH)D (a) or the bioavailable 25(OH)D levels (b). The correlations between the total 25(OH)D level (c) and the
bioavailable 25(OH)D level (d) and the BMD are presented.
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the biochemical parameters between the groups was performed using
an ANOVA (analysis of variance), and post-hoc testing for the differ-
ences between pairs of genotype groups was performed with Tukey's
method. For the genotyping results, we used the χ2 test [with one de-
gree of freedom] to test whether the genotype distribution was consis-
tent with the Hardy-Weinberg equilibrium (HWE). The correlation
between the variants was determined with Pearson's coefficient of cor-
relation. The relationships between the total 25(OH)D or bioavailable
25(OH)D levels and DBP level or BMD values of the participants were
examined using univariate linear models. The locally weighted regres-
sion smoothing (LOESS) regression and LOESS smoothing scatterplots
were obtained to investigate the relationship between the bioavailable
and total 25(OH)D levels and PTH levels. To examine the extent to
which the total or bioavailable 25(OH)D, bone metabolism factors and
bone turnover biomarkers influence the BMD value, univariate and
multivariate linear regression analyses were performed. All parameters
were normality scaled with a mean of 0 and standard deviation (SD) of
1, and the linear regression coefficients indicate the expected change in
the response variable BMD in SD units per one SD increment of the pre-
diction variants, holding the other predictor variables constant. For the
multivariate analyses, the best fit of the final model was selected by
the backward step-downmethodwith the Akaike information criterion
(AIC) setting the BMD as the dependent variable and the patient age,
body mass index (BMI), ALP, P1NP, β-CTX, OST, total and bioavailable
25(OH)D levels as the independent variables. The variation inflation
factor (VIF) was used to determine the multicollinearity problems for
the predictor variables. Two-tailed P-values b 0.05 were recognized as
statistically significant. All of the analyses were performed with the R
software (version 3.3.1) and related packages (www.r-project.org).

3. Results

3.1. Basic Characteristics of the Participants

A total of 967 postmenopausal women fully met the recruitment
criteria for inclusion in the community cross-sectional population
study. The age of the participants ranged from 50.00 to 82.00 years old
with a median value of 63.00 (Table 1). The BMI of the participants
ranged from 16.65 to 42.42 kg/m2 with a median value of
23.51 kg/m2. Of the participants, 433 were overweight or obese
(44.8%). 102 (10.5%) participants reported a history of diabetes. A rela-
tively large proportion (166 cases, 17.2%) of women had been diag-
nosed with a thyroid disease. Including (hypothyreosis, hyperthyroid,
and thyroid cyst). A few of the subjects were positive for chronic hepa-
titis and a history of bone fractures (Table 1). For the genotyping results,
neither of the two variants (rs4588 and rs7041) was departed from the
HWE test (P N 0.05, respectively).

3.2. Biochemical Analysis of the Total 25(OH)D and Bioavailable 25(OH)D
Levels and the Genotypes of the Participants

The BMD ranged from 0.43 to 1.68 g/cm2 with a median value of
0.85 g/cm2 (Table 2). The median of the total 25(OH)D level was
17.90 ng/mL, with 591 (61.1%) patients having severe vitamin D

http://www.r-project.org


Fig. 3. The correlation matrix for the total 25(OH)D, bioavailable 25(OH)D, bone turnover
biomarkers, BMD, and other bonemetabolism biomarkers in the postmenopausalwomen.
Thenumbers in the squares and colored circles represent the Spearman's r values between
the variants. The scale bar on the left indicated the Spearman's r values for the colored
circles. ALP, alkaline phosphatase; b-CTX, β-CrossLaps of type I collagen containing
crosslinked C-telopeptide; BioVD, bioavailable 25(OH)D; CA, calcium; MG, magnesium;
DBP, vitamin D binding protein; FGF23, fibroblast growth factor-23 (FGF23); OPG,
osteoprotegerin; OST, osteocalcin; P, phosphorous; PINP, N-terminal propeptide of type I
procollagen; PTH, parathyroid hormone; TSH, thyroid stimulating hormone; ToVD, total
25(OH)D.

Table 2
The results of the biochemical analyses for postmenopausal women (N = 967).

Parameters Total participants
(N = 967)a

Minimum Maximum

BMD (g/cm2) 0.85 (0.76–0.95) 0.43 1.68
FGF23 (pg/mL)b 1.48 (1.03–2.50) 0.04 73.37
OPG (ng/mL) 0.12 (0.08–0.22) 0.03 51.55
β-CTX (ng/mL) 0.39 (0.29–0.50) 0.04 1.58
TSH (IU/mL) 2.12 (1.50–3.08) 0.01 88.94
OST (ng/mL) 17.22 (13.98–21.29) 3.79 83.51
PTH (pmol/L) 3.88 (3.18–4.92) 1.11 24.67
ALP (U/L) 76 (65–89) 23 163
Phosphorous (mmol/L) 1.15 (1.07–1.23) 0.65 1.77
Serum magnesium
(mmol/L)

0.89 (0.86–0.93) 0.69 1.20

Serum calcium (mmol/L) 2.31 (2.25–2.38) 1.69 2.85
P1NP (ng/mL) 43.85 (35.11–56.26) 9.39 115.40
Albumin (mg/mL) 46.9 (45.3–48.4) 38.3 62.7
DBP (μg/mL) 177.0 (121.0–250.5) 37.9 564.0
Total 25(OH)D (ng/mL) 17.9 (13.9–23.1) 4.5 40.8
Bioavailable 25(OH)D
(ng/mL)

2.91 (2.11–4.17) 0.71 11.45

Abbreviations: ALP, alkaline phosphatase; DBP, vitamin D binding protein; FGF23, fibro-
blast growth factor-23 (FGF23); OPG, osteoprotegerin; TSH, thyroid-stimulating hor-
mone; PINP, N-terminal propeptide of type I procollagen; β-CTX, β-CrossLaps of type I
collagen containing crosslinked C-telopeptide; OST, osteocalcin; PTH, parathyroid
hormone.

a Data are shown as the medians (interquartile range).
b 84 participants lacked information about the FGF23 level.
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deficiency (b20 ng/mL), 302 (31.2%) having a vitamin D deficiency (20
to 30 ng/mL) and 74 (7.7%) having sufficient vitamin D (N30 ng/mL)
levels. The median concentration of bioavailable 25(OH)D was
2.91 ng/mL (ranged from 0.71–11.45 ng/mL; Table 2), and this was
about 5.9% to 47.9% of the total 25(OH)D level. For rs4588, we found
no significant differences in the DBP levels of the participants carrying
the TT, GT or GG genotypes (P N 0.05 for Tukey's multiple comparisons,
Fig. 1a). But compared to wide type GG carriers, the TT or GT carriers
had lower total 25(OH)D levels and bioavailable 25(OH)D levels (Fig.
1b and c). Carrying the GG or GT genotypes for rs7041 was correlated
Fig. 4.Relationship between bioavailable 25(OH)D level (a) or total 25(OH)D level (b) and the P
PTH levels changing along with bioavailable or total 25(OH)D levels.
with a higher DBP level compared to TT carriers (P b 0.001, Fig. 1e).
For rs7041, GG carriers had a higher total 25(OH)D level compared to
the GT or TT carriers (P b 0.001; Fig. 1f); however, the GT and GG car-
riers had a significantly lower bioavailable 25(OH)D level compared to
the TT participants (P b 0.025; Fig. 1g). No significant difference was
noted for the BMD for between distinct types of the two variants,
rs4588 and rs7041 (P N 0.05; Fig. 1d and h).

3.3. Correlations between the Biomarkers of the Vitamin D Status and the
Lumbar Spine BMD

A positive correlation was noted for the total 25(OH)D level and the
DBP level (r=0.356, Pb 0.001; Fig. 2a),while theDBP levelwas negative-
ly correlatedwith the bioavailable 25(OH)D level (r=−0.774, P b 0.001;
Fig. 2b). However, we noticed that the BMD increased with an increasing
total 25(OH)D level (r = 0.282, P = 0.013; Fig. 2c), and the correlation
TH levels in the participants. The red linewas the LOESS regression plots show the trends of



Table 3
The results of the univariate andmultivariate linear regression analyses of the total and bioavailable 25(OH)D levels, bonemetabolism biomarkers, and BMD for the participants (N=967).

Variables Standardized β-coefficients (se)a P-valuea Standardize β-coefficients (se)b P-valueb Standardized β-coefficients (se)c P-valuec

Age (years) −0.196 (0.032) b0.001 −0.228 (0.030) b0.001 −0.231 (0.030) b0.001
BMI (kg/m2) 0.250 (0.031) b0.001 0.251 (0.030) b0.001 0.247 (0.030) b0.001
FGF23 (pg/mL) 0.065 (0.034) 0.056
OPG (ng/mL) −0.008 (0.032) 0.796
DBP (μg/mL) −0.039 (0.032) 0.233
TSH (IU/mL) 0.034 (0.032) 0.288
Albumin (mg/mL) 0.004 (0.032) 0.905
PTH (pmol/L) −0.059 (0.032) 0.066
Phosphorous (mmol/L) 0.047 (0.032) 0.141
Magnesium (mmol/L) −0.061 (0.032) 0.056
Calcium (mmol/L) −0.011 (0.032) 0.725
ALP (U/L) −0.098 (0.032) 0.002
P1NP (ng/mL) −0.168 (0.032) b0.001
OST (ng/mL) −0.231 (0.031) b0.001 −0.117 (0.044) 0.008 −0.120 (0.043) 0.005
β-CTX (ng/mL) −0.213 (0.031) b0.001 −0.130 (0.043) 0.003 −0.128 (0.043) 0.003
Total 25(OH)D (ng/mL) 0.080 (0.032) 0.013 0.054 (0.030) 0.070
Bioavailable 25(OH)D (ng/mL) 0.089 (0.032) 0.006 0.065 (0.030) 0.029

Abbreviations: ALP, alkaline phosphatase; BMI, body mass index; DBP, vitamin D binding protein; FGF23, fibroblast growth factor-23 (FGF23); OPG, osteoprotegerin; TSH, thyroid stim-
ulating hormone; P1NP, N-terminal propeptide of type I procollagen; β-CTX, β-CrossLaps of type I collagen containing cross linked C-telopeptide; OST, osteocalcin; PTH, parathyroid
hormone.

a Univariate linear regression model without adjustment.
b Stepwise-selected multivariate regression model 1 with adjustment for age, BMI, β-CTX, OST and the total 25(OH)D level as independent variables.
c Stepwise-selected multivariate regression model 2 with adjustment for age, BMI, β-CTX, OST and the bioavailable 25(OH)D level as independent variables.
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was more prominent for the bioavailable 25(OH)D level (r = 0.298, P =
0.006; Fig. 2d), but the correlation between the total or bioavailable
25(OH)D levels were not statistically significant (P N 0.05).
3.4. Correlations between Biomarkers for the Vitamin D Status and the Bone
Metabolism Biomarkers

The total 25(OH)D levelwas negatively correlatedwith thebone for-
mation biomarkers ALP, OST and PINP levels (Fig. 3 and Supplementary
Table 1), whereas the bioavailable 25(OH)D level was significantly cor-
related with OST and PINP but not ALP (Fig. 3 and Supplementary Table
1). Interestingly, the bone resorption biomarker β-CTX was positively
correlated with the bone formation biomarkers, including ALP, OST
and PINP (Fig. 3; Supplementary Table 1), but it was not correlated
with the total or bioavailable 25(OH)D levels. No significant correlation
was noted for the serum magnesium, calcium and phosphorus levels
with the biomarkers of the vitamin D status (Fig. 3 and Supplementary
Table 1). Interestingly, we found that OPG and FGF23 were positively
correlated with each other (P b 0.001) but neither was correlated with
the BMD values of the participants (Fig. 3 and Supplementary Table
1). The bioavailable 25(OH)D and total 25(OH)D levels were positively
correlatedwith the OPG levels but not correlatedwith FGF23 levels (Fig.
3 and Supplementary Table 1)

Both total and bioavailable 25(OH)D levels were negatively correlat-
ed with PTH levels in the postmenopausal women (Fig. 3 and Supple-
mentary Table 1), and the correlation between total 25(OH)D
(Spearman's r = −0.46) and PTH was slightly stronger than bioavail-
able 25(OH)D (Spearman's r = −0.38). The LOESS plots for the rela-
tionships for bioavailable and total 25(OH)D levels and PTH levels
were presented as Fig. 4. The LOESS plot exhibited a relatively steep de-
crease of PTH in women with bioavailable 25(OH)D b 5.0 ng/mL and a
relatively stationary phase in thosewith N5.0 ng/mL (Fig. 4a). According
to this standard, 165 of the 967 (17.1%) participants were recognized
with sufficient vitamin D levels. The LOESS plot suggested that PTH
level decreased along with the increment of total 25(OH)D level for
women with total 25(OH)D level b 22.0 ng/mL and a slower decrease
of PTH was noticed in women with total 25(OH)D N 22 ng/mL (Fig.
4b). On the basis of the current guidelines, as the vitamin D-sufficient
threshold was 25(OH)D N 30 ng/mL, only 74 of the 967 (7.7%) partici-
pants would be classified as vitamin D-sufficient. The mean PTH level
was 3.78±1.39 pmol/L for participantswith bioavailable 25(OH)D-suf-
ficient group, whichwas similar to participants with total 25(OH)D suf-
ficient group with the mean PTH was 3.87 ± 1.45 pmol/L (P = 0.655).

3.5. The Impacts of the Blood Biomarkers for BoneMetabolisms on the BMD
in Postmenopausal Women

To determine the extent to which the blood biomarker levels and
basic characteristics of the subjects are responsible for the variations
in the BMD values, standardized linearity regression analyses were con-
ducted using univariate and multivariate models. The univariate analy-
ses showed that the patient age (standardized β=−0.196, P b 0.001),
BMI (standardized β = 0.250, P b 0.001), ALP (standardized
β = −0.098, P = 0.002), P1NP (standardized β = −0.168,
P b 0.001), OST (standardizedβ=−0.231, P b 0.001),β-CTX (standard-
ized β = −0.213, P b 0.001), total 25(OH)D (standardized β = 0.080,
P = 0.013) and bioavailable 25(OH)D (standardized β = 0.089, P =
0.006) might be determinants of the BMD in postmenopausal women
(Table 3).

Multivariate stepwise regression analyses suggested that the bio-
available 25(OH)D level (standardized β = 0.065, P = 0.029), but not
the total 25(OH)D level (standardizedβ=0.054, P=0.070),was an in-
dependent determinant of the BMD value in postmenopausal women
after adjustment for the patient age, BMI, and levels of OST and β-CTX
(Table 3). In themultivariatemodels, the VIF was b2.1 for each variable,
suggesting that there was no multicollinearity effect.

4. Discussion

In the current cross-sectional study, we found that both the bioavail-
able 25(OH)D and total 25(OH)D levels were positively correlated with
the BMD values for postmenopausal women and that they were corre-
lated with the levels of bone formation biomarkers (OST, P1NP and
ALP) and factors related bone metabolism including PTH and OPG. For
postmenopausal women, the bioavailable 25(OH)D level, but not the
total 25(OH)D level, was an independent determinant of the BMD
after adjustments for age, BMI, and levels of bone turnover biomarkers
(OST and β-CTX). These results suggest that, in the elderly population,
vitamin D increases the BMD through inhibiting bone turnover, main-
taining calcium and phosphorus homeostasis, and reducing
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osteoclastogenesis. In addition, the variant rs7041, but not rs4588, was
significantly associated with the circulating DBP levels. The circulating
DBP level was positively correlated with total 25(OH)D level but nega-
tively correlatedwith the bioavailable 25(OH)D level. These results sug-
gest that not only the total 25(OH)D level, but also the DBP level and its
variants, should be considered when assessing the vitamin D status of
patients, and that the bioavailable 25(OH)D levelmay be amore reliable
biomarker in bone health assessment.

At present, the total blood 25(OH)D level is widely used as a bio-
marker for the vitamin D status in various populations, and the thresh-
old for 25(OH)D deficiency (b30 ng/mL) was defined by significantly
increased PTH level or decreased calcium absorption (Sai et al., 2011;
Rosen et al., 2012). However, because the results from experimental
and epidemiological studies were inconclusive, the optimal cut-off
point for the vitamin D level has not been clearly defined (Zhang et al.,
2016). Here, we found that both the total 25(OH)D and the bioavailable
25(OH)D levels were negatively correlated with PTH concentrations,
and there was a slightly stronger correlation between the PTH concen-
trations and total 25(OH)D than for the bioavailable 25(OH)D levels.
The LOESS plot suggested that the optimal cutpoint for sufficient bio-
available 25(OH)D level was 5.0 ng/mL, and 17.1% of the participants
were recognized with sufficient vitamin D. However, only 7.7% of the
participants were defined with sufficient vitamin D according to the
current guidelines for total 25(OH)D level of N30 ng/mL. Between the
two groups, there was no significant difference for the blood PTH levels
and the BMD values (data not shown). Powe et al. reported that, al-
though the total 25(OH)D level was higher in whites than in black
Americans, the bioavailable 25(OH)D level was similar between the
two groups in each quintile separated based on the PTH level (Powe
et al., 2013). Here, we also found that the PTH level was negatively cor-
relatedwith the BMDvalue, whichmay be due to the fact that PTH stim-
ulates bone turnover in elderly populations. The results were consistent
in that PTH levels were positively correlated with bone turnover bio-
markers, including β-CTX, OST, ALP, and PINP. These results suggest
that the bioavailable 25(OH)D but not the total 25(OH)D tightly regu-
lates the change of PTH levels and that PTH influences the BMD values
through regulating the bone turnover in postmenopausal women. Nev-
ertheless, more studies are warranted to verify these findings.

The total 25(OH)D level was influenced by genetic factors. In the
current study, we found that rs7041, but not rs4588, influences the
DBP level; however, both variants were significantly associated with
the total and bioavailable 25(OH)D levels. A positive correlation was
found between the circulating DBP level and the total 25(OH)D level,
which is consistent with previous reports demonstrating that circulat-
ing DBP prolongs the half-life of 25(OH)D by serving as a reservoir
and aiding in the reabsorption of filtered vitamin D in the kidneys
(Safadi et al., 2012; Nykjaer et al., 1999). The 25(OH)D bound to DBP
has lower biological activity, and there is a negative correlation between
the DBP level and bioavailable 25(OH)D level (Safadi et al., 2012). The
DBP level and the presence of variants rs4588 and rs7041 were not as-
sociated with the BMD for the participants, which may be due to the
fact that the variants account for only a small proportion of the bioavail-
able 25(OH)D variation or to the relatively smaller sample size in the
current study, whichmade it difficult to detect the weak correlation be-
tween theDBP concentration and theBMDvalues in thepostmenopaus-
al women.

Several epidemiological studies have determined the correlation be-
tween levels of different forms of 25(OH)D and BMD in healthy popula-
tions, but inconclusive results were noticed. A study performed by
Johnsen et al. found that, for 168 postmenopausal women not taking
the vitamin D or calcium supplements, the bioavailable or free
25(OH)D was stronger correlated with BMD than total 25(OH)D; how-
ever, the correlation between different forms of 25(OH)D and the bone
metabolism biomarkers and whether bioavailable 25(OH)D level was
an independent determinant of PTH for BMD were not determined
(Johnsen et al., 2014). Another study, with 304 adults aged between
21 and 81 years, found no significant association between any form of
25(OH)D and BMD, which might due to the relatively small sample
size, the larger range of the age for the participants, or the mixture of
the participants races (Jemielita et al., 2016). In the current study, we
found that levels of the total and bioavailable 25(OH)Dwere significant-
ly correlated with the bone metabolism biomarkers in addition to the
BMD values.With a relatively larger sample size, we found that the bio-
available 25(OH)D and total 25(OH)D levels were positively correlated
with the bone metabolism biomarker, OPG, a soluble decoy for the Re-
ceptor Activator For Nuclear Factor kB Ligand (RANKL). RANKL induces
the differentiation and activation of osteoclasts, prolongs their life, and
strengthens their adhesion to the bone surface through binding to its re-
ceptor, RANK (Receptor Activator for Nuclear Factor kB), which is
expressed on osteoclasts (Hofbauer et al., 2004). Many studies have
confirmed the important roles of the OPG/RANK/RANKL axis in various
bone diseases and treatments (LaCroix et al., 2013; Tat et al., 2008; Stuss
et al., 2013). The current study also foundnegative correlations between
OST, PINP and the total or bioavailable 25(OH)D levels. These two bone
formation biomarkers were highly correlated with each other, and both
of themwere negatively correlatedwith the BMD. Another bone forma-
tion biomarker, ALP, was also negatively correlated with the BMD, as
well as with the total 25(OH)D level. No significant correlation was
noted between ALP and the bioavailable 25(OH)D level, suggesting
that ALP was not only regulated by vitamin D but also other factors
such as PTH in the elderly populations. Postmenopausal women were
characterized with increased bone turnover process. Both the bone for-
mation and bone resorption levels might be enhanced in the elderly
postmenopausal women in our study, as suggested by the fact that the
bone resorption biomarker, β-CTX, was positively correlated with the
ALP, OST andP1NP levels in the current study. It has beenwidely accept-
ed that the net bone gain or loss of the skeleton is determined by the
balance of the formation and resorption of the bone (Shieh et al.,
2016; Nakatoh, 2016). However, the biomarkers of resorption and for-
mation alone have poor predictive ability for the BMD, since both the
bone resorption and formation were increased in subjects with in-
creased bone turnover, regardless of whether there is a net gain or
loss of bone. Here, we found that the bone formation biomarker, β-
CTX, was negatively correlated with the BMD in the postmenopausal
women, which was consistent with previous studies (Allali et al.,
2009; He et al., 2014). These results suggested that the bone resorption
is higher than the bone formation, which leads to a decrease in the BMD
in postmenopausal women. In the current study, we found that a higher
circulating 25(OH)D level was correlated with decreased levels of bone
formation biomarkers, which suggested that vitamin D may reduce the
bone turnover process in postmenopausal women and thus reduce the
loss of the BMD.

The multivariate stepwise regression analyses suggested that, for
postmenopausal women, bioavailable 25(OH)D, age, BMI, bone forma-
tion biomarker OST, and bone resorption biomarker β-CTX were inde-
pendent determinants of the BMD values. The coefficients for age,
OST, and β-CTX were negative, suggesting that increased age and
bone turnover levels led to a decrease of BMD. After adjustment of co-
variates, a positive coefficient was noted for levels of the bioavailable
25(OH)D but not for the total 25(OH)D, suggesting that only bioavail-
able 25(OH)Dwas an independent determinant for BMD. A significantly
positive correlation between the BMI andBMDvalueswas noticed (data
not shown), and the coefficient for the multivariate regression model
was positive, suggesting that women with higher BMI have higher
BMD values. This is consistent with a recent study reporting that bone
turnover was lower and the BMD was higher in obese subjects than
in normal people (Walsh et al., 2016). Although the results were some-
times controversial, many epidemiological studies have reported that
postmenopausal women with higher BMI had a reduced risk for hip or
pelvis fracture (DiPietro et al., 1993; Gnudi et al., 2009;
Prieto-Alhambra et al., 2012; Sogaard et al., 2015). However, it was es-
timated that, for obese populations, there is a U-shape relationship
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between BMI and fracture risk and that the protective effects of weight
on bone are reduced along with the increment of BMI (Palermo et al.,
2016). The PTHwas elevated in the obesewomen,whichmight damage
the bone architecture and reduce the BMD values (Goldner et al., 2008;
Bolland et al., 2006). The inflammation factors and adipokines secreted
from the white adipose tissue could stimulate bone resorption, and ab-
dominal/visceral obesity is usually associated with lower BMD values
(Palermo et al., 2016). Moreover, a higher BMI is associatedwith the re-
duced bioavailability of 25(OH)D (Wortsman et al., 2000;
Vimaleswaran et al., 2013). However, most of the studies that deter-
mined relationships between the BMI and BMD values in human sub-
jects were observational. The role of BMI in the determination of BMD
values needs further evaluation.

There were several advantages for the current study. First, all the
participants were postmenopausal women not taking vitamin D or cal-
cium supplements, which reduced influences of the menopausal status
and vitamin supplements on the outcomes of the study. Second, we de-
termined the associations between the total and bioavailable 25(OH)D
levels and bone turnover biomarkers in addition to the BMD value,
which could lead to elucidation of the underlying mechanisms for the
effects of bioavailable 25(OH)D on bone health. Third, the LOESS plot
was applied to define the optimal cutpoint for the sufficient bioavailable
25(OH)D level, which could provide guidelines for future clinical use.

Nevertheless, several limitations associated with the current study
should be acknowledged. First, the postmenopausal women were
more likely to be suffering from bone loss due to the fact that, in these
individuals, the rate of bone resorption is faster than the rate of bone
formation. Whether the results found here are similar for pre- or peri-
menopausal women or men should be addressed in future studies. Sec-
ond, we calculated the bioavailable 25(OH)D level based on the total
25(OH)D level, DBP level, albumin level, and the genetic background
of the participants according to methods reported in previous studies
(Powe et al., 2013). Thus, the extent to which the calculated 25(OH)D
actually reflects the bioavailable 25(OH)D level in the circulation
needs careful interpretation. Further, the methods used in determina-
tion of DBP might influence the outcomes of the bioavailable 25(OH)D
levels. A recent study compared fourDBP assays, including thepolyclon-
al radial immunodiffusion (pRID) assay, two polyclonal assays (Genway
Biotech, SanDiego, CA and Immunodiagnostik AG, Bensheim, Germany)
and one monoclonal ELISA (mELISA, R&D Systems, Minneapolis, MN)
(Nielson et al., 2016). They reported that the DBP levels determined
with these assays were dependent on the population race, but the un-
derlying mechanisms are unknown. The deviation for free 25(OH)D
from that measured by mELISA was larger than for pRID or polyclonal
assays in comparing the results of proteomics in the African popula-
tions, but the results between the assayswere similar in theUSnon-His-
panic whites or UK whites. The mean DBP concentrations between the
assays were similar for all subjects, but the possibility that there was
assay-specific bias in determination of the DBP concentrations could
not be excluded (Nielson et al., 2016). The influence of the assays on
DBP determinations in the Chinese population is unknown and needs
to be evaluated in future studies. Third, since the current study was
based on a cross-sectional examination, we could not determine the ef-
fects of the bioavailable 25(OH)D level or DBP level on the bone fracture
risk for the postmenopausal women. Prospective cohort studies are
warranted to determine whether the bioavailable 25(OH)D level has
higher predictive ability than the total 25(OH)D level for the bone frac-
ture risk or BMD loss in elderly women. Finally, we only determined the
BMD of the lumbar spine, and the correlations between the biomarkers
of vitamin D with the BMD values at other sites, including the femoral
neck, were not determined.

In conclusion, we found that the bioavailable 25(OH)D level, but not
the total 25(OH)D level, was an independent determinant for BMD in
postmenopausal women. In elderly women, bioavailable vitamin D en-
hances the BMD value through modulating the bone turnover process,
inhibiting PTH excretion, and stimulating OPG production. Factors that
influence the bioavailable 25(OH)D levels should be taken into consid-
eration when assessing the relationship between the vitamin D and
bone health; however, these results should be validated in intervention
studies with larger sample sizes.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.ebiom.2016.11.029.
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