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Abstract: Chemical descriptors are numeric numbers that capture the whole graph structure and
comprise a basic chemical structure. As a topological descriptor, it correlates with certain physical
aspects in addition to its chemical representation of underlying chemical substances. In the modelling
and design of any chemical network, the graph is important. A number of chemical indices have
been developed in theoretical chemistry, including the Wiener index, the Randić index, and many
others. In this paper, we look at the benzenoid networks and calculate the exact topological indices
based on the degrees of the end vertices.

Keywords: topological index; benzenoid planar octahedron networks; Randić index; forgotten index;
reclassified Zagreb indices

1. Introduction

Topological indices, which are calculated using graph theory, are important tools.
The chemical graph is a subbranch of graph theory with a wide range of applications
in chemistry and mathematics. To expect the bioactivity of chemical substances, the
topological indices, such as the ABC index, Wiener index, and Randić index, are very
useful. A growing field called cheminformatics, which combines mathematics, information
science, and chemistry, can be used to study quantitative structure–activity (QSAR) and
structure–property (QSPR) relationships that are used to examine the organic activities and
characteristics of biological substances. The topological index is a numerical value linked
with chemical compositions that suggests a link between a variety of physical qualities and
chemical structures that suggest a link between a variety of physical qualities, chemical
reactivity, and biological activity. The translation of a chemical network into a number
that describes the topology of the chemical network is the basis for topological indices.
The topological index is a chemical descriptor that contains an integer associated with the
graph that features the graph and does not change during graph automorphism. Interest in
the computer chemistry area has already increased in terms of topological descriptors and
is mostly related to the usage of uncommon quantities, the connection between structure
properties, and the relationship between structure quantity. Some of the most common
types of topological indices include those depending on distance, degree, and polynomials.
Chemical graphs are commonly used to describe molecules and molecular compounds. A
molecular graph provides a good example of the structural formula of chemical compounds
in graph theory. Many researchers have recently discovered topological indices to be crucial
in the analysis of the structural aspects of molecular graphs, networks, and chemical trees.
A tree graph is an acyclic linked graph. The branch point of a tree is defined as any vertex
with a degree of three or more.
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2. Construction for Benzenoid Planar Octahedron Network BPOH(n)

The algorithm for constructing the benzenoid planar octahedron, benzenoid-dominating
planar octahedron, and benzenoid hex planar octahedron networks (of dimension n) is
as follows:

Step-1. We design an n-dimensional oxide network [1].
Step-2. After that, connect C6 into each C3 of the oxide network.
Step-3. The resultant graph is also known as the benzenoid planar octahedron network.

Connect alternating adjacent C6 vertices to each opposite vertex. The benzenoid-
dominating planar octahedron network is represented by B2, and the benzenoid
hex planar octahedron network is represented by B3. The benzenoid-dominating
planar octahedron network BDPOH(n) and the benzenoid hex planar octahedron
network BHPOH(n) can be created using this approach (n).

B is considered as a simple connected graph in this article, and the degree of each
vertex s ∈ V(B) is denoted as δ(s).

Milan Randić [2] introduced the oldest, most desired, and most extensively examined
degree-based topological index, which is known as the Randić index, denoted by R− 1

2
(B)

and expressed as

R− 1
2
(B) = ∑

st∈E(B)

1√
δ(s)δ(t)

. (1)

Furtula and Ivan Gutman [3] discovered the forgotten index, also known as the F-index,
which is defined as

F(B) = ∑
st∈E(B)

(δ(s)2 + δ(t)2). (2)

Balaban [4,5] discovered another important index, the Balaban index, in 1982. For a
graph B with ‘n’ vertices and ‘m’ edges, the formula is

J(B) =
(

m
m− n + 2

)
∑

st∈E(B)

1√
δ(s)× δ(t)

. (3)

Ranjini et al. [6] presented three types of reclassified Zagreb indices, which are defined
as follows

REZG1(B) = ∑
st∈E(B)

(
δ(s)× δ(t)
δ(s) + δ(t)

)
. (4)

REZG2(B) = ∑
st∈E(B)

(
δ(s) + δ(t)
δ(s)× δ(t)

)
. (5)

REZG3(B) = ∑
st∈E(B)

(δ(s)× δ(t))(δ(s) + δ(t)). (6)

Only ABC4 and GA5 indices can be computed if we can determine the edge partition
of these connectivity chemical networks consisting of the sum of the degree of the ending
vertices of each edge in all of these graphs. Ss = ∑

v∈NB(s)
deg(t) where NG(s) = {t ∈ V(B) |

st ∈ E(B)}.
Ghorbani et al. [7] introduced the ABC4 index, which is described as

ABC4(B) = ∑
st∈E(B)

√
Ss + St − 2

Ss.St
. (7)

Graovac et al. [8] introduced the fifth version of the GA index, which is as follows

GA5(B) = ∑
st∈E(B)

2
√

SsSt

Ss + St
. (8)
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3. Main Results

We compute the exact results for all of the above descriptors in this paper, such as
GA5. We suggest [9–18] for these results on various degree-based topological descriptors
for a variety of graphs, and see [19,20] for basic notations and definitions.

3.1. Results for Benzenoid Planar Octahedron Network

We compute the F, J, ReZG1, ReZG2, ReZG3, ABC4, and GA5 for indices for the
benzenoid planar octahedron network denoted by B1(n) in this section.

Theorem 1. Consider the benzenoid planar octahedron network BPOH(n); its forgotten index is
equal to

F(BPOH(n)) = 5580n2 − 1152n.

Proof. Let B1(n) be the benzenoid planar octahedron network BPOH(n), as shown in
Figure 1, where n ≥ 2 and B1(n) has 45n2− 3n vertices, and the edge set of B1(n) is divided
into five partitions depending on the degrees of end vertices.

Figure 1. Benzenoid planar octahedron network BPOH(2).

We can obtain the following result by using Table 1 edge partition, and using
Equation (2), we have

F(B1(n)) = 18|E1(B1(n))|+ 25|E2(B1(n))|+ 73|E3(B1(n))|+ 80|E4(B1(n))|+
128|E5(B1(n))|,

Table 1. Degree-based edge partition for BPOH(n).

(δ(s), δ(t)) Number of Edges (δ(s), δ(t)) Number of Edges

(3, 3) 36n2 (4, 8) 12n
(3, 4) 12n (8, 8) 18n2 − 12n
(3, 8) 36n2 − 12n

We obtain the following result after calculating it

=⇒ F(B1(n)) = 5580n2 − 1152n.

In the following theorem, we compute Balaban index of benzenoid planar octahedron
network BPOH(n).
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Theorem 2. For the benzenoid planar octahedron network B1(n), the Balaban index is equal to

J(B1(n)) =
45n3(−6 + 6

√
2 + 8

√
3− 4

√
6 + 3(19 + 4

√
6))

90n2 + 6n + 4
.

Proof. Let B2(n) represent the benzenoid planar octahedron network. The outcomes can
be obtained from Table 1 using the edge partition, and using Equation (3), we have

J(B1(n)) = (
90n2

45n2 + 3n + 2
)(

1
3
|E1(B1(n))|+

1
2
√

3
|E2(B1(n))|+

1
2
√

6
|E3(B1(n))|+

1
4
√

2
|E4(B1(n))|+

1
8
|E5(B1(n))|),

We obtain the following result by using, after calculating it,

=⇒ J(B1(n)) =
45n3(−6 + 6

√
2 + 8

√
3− 4

√
6 + 3(19 + 4

√
6))

90n2 + 6n + 4
.

Theorem 3. Let B1(n) be the benzenoid planar octahedron network n ≥ 2. Then, we have

ReZG1(B1(n)) =
2250
11

n2 − 1664
77

;

ReZG2(B1(n)) = 45n2 + 3n;

ReZG3(B1(n)) = 29880n2 − 9840n.

Proof. Let B1(n) represent the benzenoid planar octahedron network. The outcomes can
be obtained from Table 1 using the edge partition, and using Equation (4), we have

ReZG1(B1(n)) =
3
2
|E1(B1(n))|+

12
7
|E2(B1(n))|+

24
11
|E3(B1(n))|

+
8
3
|E4(B1(n))|+ 4|E5(B1(n))|,

We obtain the following result after calculating it

=⇒ ReZG1(B1(n)) =
2250

11
n2 − 1664

77
.

The ReZG2 can be calculated by using (5) as follows

ReZG2(B1(n)) =
2
3
|E1(B1(n))|+

7
12
|E2(B1(n))|+

11
24
|E3(B1(n))|

+
3
8
|E4(B1(n))|+

1
4
|E5(B1(n))|,

We obtain the following result after calculating it

=⇒ ReZG3(B1(n)) = 45n2 + 3n.

The ReZG3 index can be calculated from (6) as follows

ReZG3(B1(n)) = 54|E1(B1(n))|+ 84|E2(B1(n))|+ 264|E3(B1(n))|
+384|E4(B1(n))|+ 1024|E5(B1(n))|,

We obtain the following result after calculating it

=⇒ ReZG3(B1(n)) = 29880n2 − 9840n.
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Now, we find ABC4 and GA5 indices of benzenoid planar octahedron network
BPOH(n).

Theorem 4. Let B1(n) be the benzenoid planar octahedron network. Then:

• ABC4(B1(n))= 81
√

43
55 n3 +( 36√

11
+ 18

√
26

7 − 162
√

43
55 )n2 +(6

√
3

11 + 6
√

6
11 + 6

√
22
35 + 6

√
41
35 −

60√
11
− 3
√

78
10 −

9
√

26
7 + 81

√
43

55 )n+(−6
√

3
11 + 4

√
7

11 − 6
√

41
55 + 8

√
6
7 +

√
37
5 + 24√

11
− 9
√

78
20 );

• GA5(B1(n))=108n3 + ( 72
√

154
29 − 180)n2 + (102 + 2

√
35 + 3

√
55 + 16

√
110

7 − 120
√

154
29 )n +

(−18 + 72
√

10
19 + 144

√
14

25 + 72
√

22
29 − 3

√
55

2 − 16
√

110
7 + 48

√
154

29 ).

Proof. The ABC4(B1(n)) can be calculated by using (7) as follows

ABC4(B1(n)) =
3
√

2
10
|E1(B1(n))|+

√
770
70
|E2(B1(n))|+

√
26

14
|E3(B1(n))|+

√
42

21
|E4(B1(n))|+

√
455
70
|E5(B1(n))|+

1√
11
|E6(B1(n))|

+

√
66

22
|E7(B1(n))|

√
77

33
|E8(B1(n))|+

√
33

22
|E9(B1(n))|+

√
185
60
|E10(B1(n))|+

√
78

40
|E11(B1(n))|+

√
2250
220

|E12(B1(n))|

+

√
86

44
|E13(B1(n))|,

We obtain the following result by using Table 2

ABC4(B1(n)) =
81
√

43
55

n3 + (
36√
11

+
18
√

26
7
− 162

√
43

55
)n2 + (6

√
3
11

+6

√
6

11
+ 6

√
22
35

+ 6

√
41
35
− 60√

11
− 3
√

78
10
− 9
√

26
7

+
81
√

43
55

)n

+(−6

√
3
11

+ 4

√
7

11
− 6

√
41
55

+ 8

√
6
7
+

√
37
5

+
24√
11
− 9
√

78
20

).

Table 2. Edge partition based on sum of degrees for BPOH(n).

(δ(s), δ(t)) Number of Edges (δ(s), δ(t)) Number of Edges

(10, 10) 6n (22, 36) 12n
(10, 14) 12n (22, 40) 12(n− 1)
(14, 14) 36n2 − 18n (36, 40) 12
(14, 36) 24 (40, 40) 12n− 18
(14, 40) 48(n− 1) (40, 44) 12(n− 1)
(14, 44) 36n2 − 60n + 24 (44, 44) 18n2 − 36n + 18
(22, 10) 12n

The index GA5 can be determined from (7) as follows
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GA5(B1(n)) = |E1(B1(n))|+
√

35
6
|E2(B1(n))|+ |E3(B1(n))|

+
6
√

14
25
|E4(B1(n))|+

4
√

35
27
|E5(B1(n))|+

2
√

154
29
|E6(B1(n))|

+

√
55
8
|E7(B1(n))|+

6
√

22
29
|E8(B1(n))|+

4
√

55
31
|E9(B1(n))|

+
6
√

10
19
|E10(B1(n))|+ |E11(B1(n))|+

2
√

110
21
|E12(B1(n))|

+|E13(B1(n))|,

We obtain the following result by using Table 2

GA5(B1(n)) = 108n3 + (
72
√

154
29

− 180)n2 + (102 + 2
√

35 + 3
√

55

+
16
√

110
7

− 120
√

154
29

)n + (−18 +
72
√

10
19

+
144
√

14
25

+
72
√

22
29

− 3
√

55
2
− 16

√
110

7
+

48
√

154
29

).

3.2. Results for Benzenoid-Dominating Planar Octahedron Network

We compute the F, J, ReZG1, ReZG2, ReZG3, ABC4, and GA5 for indices for the
benzenoid-dominating planar octahedron network denoted by B2(n) in this section.

Theorem 5. Consider the benzenoid-dominating planar octahedron network BDPOH(n); its
forgotten index is equal to:

F(BDPOH(n)) = 16740n2 − 19044n + 6732.

Proof. Let B2(n) be the benzenoid-dominating planar octahedron network BDPOH(n), as
shown in Figure 2, where n ≥ 2 and B2(n) has 27n2 − 33n + 12 vertices, and the edge set of
B2(n) is divided into five partitions depending on the degrees of end vertices.

Figure 2. Benzenoid-dominating planar octahedron network BDPOH(2).
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We can obtain the following result by using Table 3 edge partition, and using Equation (2),
we have

F1(B2(n)) = 18|E1(B2(n))|+ 25|E2(B2(n))|+ 73|E3(B2(n))|
+80|E4(B2(n))|+ 128|E5(B2(n))|,

We obtain the following result after calculating it

=⇒ F(B2(n)) = 16740n2 − 19044n + 6732.

Table 3. Degree-Based Edge Partition for BDPOH(n).

(δ(s), δ(t)) Number of Edges (δ(s), δ(t)) Number of Edges

(3, 3) 108n2 − 132n + 48 (4, 8) 24n− 12
(3, 4) 24n− 12 (8, 8) 54n2 − 162n + 84
(3, 8) 108n2 − 132n + 48

In the following theorem, we compute Balaban index of benzenoid-dominating planar
octahedron network BDPOH(n).

Theorem 6. For the benzenoid-dominating planar octahedron network B2(n), the Balaban index is
equal to:

J(B2(n)) =
1
4

(
18
√

2(2n− 1)(45n2 − 43n + 14)
135n2 − 141n + 50

+ 4
√

6(9n2 − 11n + 4)

+3(9n2 − 13n + 5) + 48(3n2 − 3n + 1) + 8
√

3(−1 + 2n)
)

.

Proof. Let B2(n) represent the benzenoid-dominating planar octahedron network. The
outcomes can be obtained from Table 3 using the edge partition, and using Equation (3),
we have

J(B2(n)) = (
90n2

45n2 + 3n + 2
)(

1
3
|E1(B2(n))|+

1
2
√

3
|E2(B2(n))|+

1
2
√

6
|E3(B2(n))|

+
1

4
√

2
|E4(B2(n))|+

1
8
|E5(B2(n))|),

We obtain following result by performing calculation

=⇒ J(B2(n)) =
1
4

(
18
√

2(2n− 1)(45n2 − 43n + 14)
135n2 − 141n + 50

+ 4
√

6(9n2 − 11n + 4)

+3(9n2 − 13n + 5) + 48(3n2 − 3n + 1) + 8
√

3(−1 + 2n)
)

.

Theorem 7. Let B2(n) be the benzenoid-dominating planar octahedron network n ≥ 2. Then,
we have

ReZG1(B2(n)) =
6750

11
n2 − 4598

7
n +

17414
77

;

ReZG2(B2(n)) = 135n2 − 129n + 42;

ReZG3(B2(n)) = 89640n2 − 110160n + 40140.
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Proof. Let B2(n) represent the benzenoid-dominating planar octahedron network. The
outcomes can be obtained from Table 3, and using the edge partition as follows and using
Equation (4), we have

ReZG1(B2(n)) =
3
2
|E1(B2(n))|+

12
7
|E2(B2(n))|+

24
11
|E3(B2(n))|

+
8
3
|E4(B2(n))|+ 4|E5(B2(n))|,

We obtain the following result after calculating it

ReZG1(B2(n)) =
6750

11
n2 − 4598

7
n +

17414
77

.

The ReZG2 can be calculated by using (5) as follows

ReZG2(B2(n)) =
2
3
|E1(B2(n))|+

7
12
|E2(B2(n))|+

11
24
|E3(B2(n))|

+
3
8
|E4(B2(n))|+

1
4
|E5(B2(n))|,

We obtain the following result after calculating it

ReZG2(B2(n)) = 135n2 − 129n + 42.

The ReZG3 index can be calculated from (6) as follows

ReZG3(B2(n)) = 54|E1(B2(n))|+ 84|E2(B2(n))|+ 264|E3(B2(n))|
+384|E4(B2(n))|+ 1024|E5(B2(n))|,

We obtain the following result after calculating it

=⇒ ReZG3(B2(n)) = 89640n2 − 110160n + 40140.

Now, we find ABC4 and GA5 indices of benzenoid-dominating planar octahedron
network BDPOH(n).

Theorem 8. Let B2(n) be the benzenoid-dominating planar octahedron network. Then:

• ABC4(B2(n))= 486
√

43
55 n3 + ( 114√

11
+ 51

√
26

7 − 1296
√

43
11 )n2 + (6

√
2
3 + 12

√
13
35 + 12

√
6
11 +

12
√

22
35 + 4

√
7

11 + 6
√

41
55 + 8

√
6
7 +

√
37
5 −

210√
11
− 57

√
26

7 + 567
√

43
55 ) + (−6

√
3
11 − 6

√
6
11 −

6
√

22
35 − 6

√
41
55 −

√
37
5 + 84√

11
+
√

70
6 + 9

√
26

7 − 27
√

43
11 ;

• GA5(B2(n))=648n3 +(−1590+ 288
√

154
29 )n2 +(1290+ 72

√
10

19 + 144
√

14
25 + 72

√
22

29 + 68
√

35
9 +

141
√

55
31 + 16

√
110

7 − 420
√

154
29 )n + (336− 72

√
10

19 − 2
√

35− 189
√

55
62 − 16

√
110

7 + 168
√

154
29 .

Proof. Using the edge partition, we have
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ABC4(B2(n)) =
3
√

2
10
|E1(B2(n))|+

√
770
70
|E2(B2(n))|+

√
26

14
|E3(B2(n))|

+

√
42

21
|E4(B2(n))|+

√
455
70
|E5(B2(n))|+

1√
11
|E6(B2(n))|

+

√
66

22
|E7(B2(n))|+

√
77

33
|E8(B2(n))|+

√
33

22
|E9(B2(n))|

+

√
185
60
|E10(B2(n))|+

√
78

40
|E11(B2(n))|+

√
2250
220

|E12(B2(n))|

+

√
86

44
|E13(B2(n))|,

We obtain the following result by using Table 4

ABC4(B2(n)) =
486
√

43
55

n3 + (
114√

11
+

51
√

26
7
− 1296

√
43

11
)n2 + (6

√
3

11

+12

√
13
35

+ 12

√
6

11
+ 12

√
22
35

+ 4

√
7

11
+ 6

√
41
55

+ 8

√
6
7
+√

37
5
− 210√

11
− 57

√
26

7
+

567
√

43
55

)n + (−6

√
3
11
− 6

√
6

11

−6

√
22
35
− 6

√
41
55
−
√

37
5

+
84√
11

+

√
70
6

+
9
√

26
7
− 27

√
43

11
).

Table 4. Edge partition based on sum of degrees for BDPOH(n).

(δ(s), δ(t)) Number of Edges (δ(s), δ(t)) Number of Edges

(10, 10) 12n− 6 (22, 36) 12n
(10, 14) 24n− 12 (22, 40) 12(n− 1)
(14, 14) 102n2 − 114n + 18 (36, 40) 12(n− 1)
(14, 36) 24n (36, 36) 6
(14, 40) 24n (40, 44) 24(n− 1)
(14, 44) 114n2 − 210n + 48 (44, 44) 54n2 − 114n + 6
(10, 22) 24n− 12

The index GA5 can be determined from (8) as follow

GA5(B2(n)) = |E1(B2(n))|+
√

35
6
|E2(B2(n))|+ |E3(B2(n))|+

6
√

14
25
|E4(B2(n))|

+
4
√

35
27
|E5(B2(n))|+

2
√

154
29
|E6(B2(n))|+

√
55
8
|E7(B2(n))|+

6
√

22
29
|E8(B2(n))|+

4
√

55
31
|E9(B2(n))|+

6
√

10
19
|E10(B2(n))|

+|E11(B2(n))|+
2
√

110
21
|E12(B2(n))|+ |E13(B2(n))|,

We obtain the following result using Table 4

GA5(B2(n)) = 648n3 + (−1590 +
288
√

154
29

)n2 + (1290 +
72
√

10
19

+
144
√

14
25

+
72
√

22
29

+
68
√

35
9

+
141
√

55
31

+
16
√

110
7

− 420
√

154
29

)n +

(336− 72
√

10
19

− 2
√

35− 189
√

55
62

− 16
√

110
7

+
168
√

154
29

)
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3.3. Results for Benzenoid Hex Planar Octahedron Network

In this section, we compute certain degree-based topological indices of benzenoid hex
planar octahedron network denoted by B3(n) and compute the F, J, ReZG1, ReZG2, ReZG3,
ABC4, and GA5 indices for benzenoid hex planar octahedron network in this section.

Theorem 9. Consider the benzenoid hex planar octahedron network BHPOH(n); its forgotten
index is equal to:

F(BHPOH(n)) = 5580n2 + 4008n + 48.

Proof. Let B3(n) be the benzenoid hex planar octahedron network BHPOH(n) as shown
in Figure 3, where n ≥ 2 and B3(n) has 45n2 + 51n + 6 vertices and the edge set of B3(n) is
divided into seven partitions based on the degrees of end vertices.

We can obtain the following result by using Table 5 edge partition.

F1(B3(n)) = 29|E1(B3(n))|+ 18|E2(B3(n))|+ 34|E3(B3(n))|+ 128|E4(B3(n))|+
73|E5(B3(n))|+ 50|E6(B3(n))|+ 89|E7(B3(n))|,

We obtain the following result after calculating it

=⇒ F(B3(n)) = 5580n2 + 4008n + 48.

Figure 3. Benzenoid hex planar octahedron network BHPOH(2).

Table 5. Degree-based edge partition for BHPOH(n).

(δ(s), δ(t)) Number of Edges (δ(s), δ(t)) Number of Edges

(2, 5) 12 (5, 5) 12n− 6
(3, 3) 36n2 − 36n (5, 8) 12n
(3, 5) 24n (8, 8) 18n2

(3, 8) 36n2 + 12n

In the following theorem, we compute Balaban index of benzenoid hex planar octahe-
dron network BHPOH(n).
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Theorem 10. For the benzenoid hex planar octahedron network B3(n), the Balaban index is
equal to:

J(B3(n)) =
1

10(45n2 + 45n + 2)
3(15n2 + 16n + 1)(24(−1 +

√
10)

+4(72 + 5
√

6 + 3
√

10 + 8
√

15)n + 15(19 + 4
√

6)n2).

Proof. Let B3(n) represent the benzenoid hex planar octahedron network. The outcomes
can be obtained from Table 5 using the edge partition, and using Equation (3), we have

J(B3(n)) =
90n2 + 96n + 6
45n2 + 45n + 2

(
1√
10
|E1(B3(n))|+

1
3
|E2(B3(n))|

+
1√
15
|E3(B3(n))|+

1
2
√

6
|E4(B3(n))|+

1
5
|E5(B3(n))|

+
1

2
√

10
|E6(B3(n))|+

1
8
|E7(B3(n))|),

We obtain the following result after calculating it

=⇒ J(B3(n)) =
1

10(45n2 + 45n + 2)
3(15n2 + 16n + 1)(24(−1 +

√
10)

+4(72 + 5
√

6 + 3
√

10 + 8
√

15)n + 15(19 + 4
√

6)n2).

Theorem 11. Let B3(n) be the benzenoid hex planar octahedron network n ≥ 2. Then, we have

ReZG1(B3(n)) =
2250

11
n2 +

27471
143

n +
15
7

;

ReZG2(B3(n)) = 45n2 + 51n + 6;

ReZG3(B3(n)) = 29880n2 + 17232− 660.

Proof. Let B3(n) represent the benzenoid hex planar octahedron network. The outcomes
can be obtained from Table 5 using the edge partition, and using Equation (4), we have

ReZG1(B3(n)) =
10
7
|E1(B3(n))|+

3
2
|E2(B3(n))|+

15
8
|E3(B3(n))|

+
24
11
|E4(B3(n))|+

5
2
|E5(B3(n))|+

40
13
|E6(B3(n))|

+4|E7(B3(n))|,

We obtain the following result after calculating it

=⇒ ReZG1(B3(n)) =
2250

11
n2 +

27471
143

n +
15
7

.

The ReZG2 can be calculated by using (5) as follows

ReZG2(B3(n)) =
7
10
|E1(B3(n))|+

2
3
|E2(B3(n))|+

8
15
|E3(B3(n))|

+
11
24
|E4(B3(n))|+

2
5
|E5(B3(n))|+

13
40
|E6(B3(n))|

+
1
4
|E7(B3(n))|,
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We obtain the following result after calculating it

=⇒ ReZG2(B3(n)) = 45n2 + 51n + 6.

The ReZG3 index can be calculated from (6) as follows

ReZG3(B3(n)) = 70|E1(B3(n))|+ 54|E2(B3(n))|+ 120|E3(B3(n))|
+1024|E4(B3(n))|+ 264|E5(B3(n))|+ 250|E6(B3(n))|
+1024|E7(B3(n))|,

We obtain the following result after calculating it

=⇒ ReZG3(B3(n)) = 29880n2 + 17232− 660.

Now, we find ABC4 and GA5 indices of benzenoid hex planar octahedron network
BHPOH(n).

Theorem 12. Let B3(n) be the benzenoid hex planar octahedron network. Then:

• ABC4(B3(n))= 27
11

√
430
19 n3 +( 36√

11
− 45

√
8170

209 + 18
√

26
7 )+ (60

√
10
209 + 6

√
46
77 + 6

√
2+ 36

√
5

11

− 12√
11

+ 18
√

8170
209 + 3

√
26

7 )n + (24
√

10
77 + 6

√
2
7 − 6

√
2 + 2

√
174
35 − 3

√
46
4 +

√
86
7 );

• GA5(B3(n))= 18
11

√
3

19 n3 + ( 36
7 + 18

√
2

77 −
30
√

57
209 ) + ( 395

77 + 6
√

2
209 + 12

√
57

209 + 4
√

6
11 +

24√
133

)n + ( 3
2 + 16

√
3

77 + 4
√

6
133 + 4

√
6

35 + 2
√

2
7 − 4

√
6

11 ).

Proof. Using the edge partition, we have

ABC4(B3(n)) =

√
6090
210

|E1(B3(n))|+
2
√

5
11
|E2(B3(n))|+

√
3542
154

|E3(B3(n))|

+

√
26

14
|E4(B3(n))|+

5
√

266
266

|E5(B3(n))|+
1√
11
|E6(B3(n))|

+

√
770
77
|E7(B3(n))|+

√
602
84
|E8(B3(n))|+

1√
14
|E9(B3(n))|

+

√
2

4
|E10(B3(n))|+

√√
46

24
|E11(B3(n))|+

√
95

38
|E12(B3(n))|

+

√
2090
209

|E13(B3(n))|+
√

86
44
|E14(B3(n))|,

We obtain the following result by using Table 6

ABC4(B3(n)) =
27
11

√
430
19

n3 +

(
36√
11
− 45

√
8170

209
+

18
√

26
7

)
+

(
60

√
10

209

+6

√
46
77

+ 6
√

2 +
36
√

5
11
− 12√

11
+

18
√

8170
209

+
3
√

26
7

)
n

+

(
24

√
10
77

+ 6

√
2
7
− 6
√

2 + 2

√
174
35
− 3

√
46
4

+

√
86
7

)
.
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Table 6. Edge partition based on sum of degrees for BHPOH(n).

(δ(s), δ(t)) Number of Edges (δ(s), δ(t)) Number of Edges

(10, 21) 12 (21, 24) 12
(11, 11) 18n (21, 38) 12n
(11, 14) 12n (24, 11) 24n− 24
(14, 14) 36n2 + 6n (24, 24) 12n− 18
(14, 38) 24n (24, 38) 12n− 12
(21, 11) 24n (44, 44) 18n2 − 12n

The index GA5 can be determined from (8) as follows

GA5(B3(n)) =
2
√

210
21
|E1(B3(n))|+ |E2(B3(n))|+

2
√

154
25
|E3(B3(n))|+

|E4(B3(n))|+
√

133
13
|E5(B3(n))|+

2
√

154
29
|E6(B3(n))|+

√
231
16
|E7(B3(n))|+

4
√

14
15
|E8(B3(n))|+

4
√

55
31
|E9(B3(n))|

+
2
√

798
59
|E10(B3(n))|+ |E11(B3(n))|+

4
√

57
31
|E12(B3(n))|+

2
√

418
41
|E13(B3(n))|+ |E14(B3(n))|,

We obtain the following result using Table 6

GA5(B3(n)) =
18
11

√
3
19

n3 +

(
36
7

+ 18

√
2

77
− 30

√
57

209

)
n2 +

(
395
77

+6

√
2

209
+

12
√

57
209

+ 4

√
6

11
+

24√
133

)
n +

(
3
2

+16

√
3

77
+ 4

√
6

133
+ 4

√
6

35
+ 2

√
2
7
− 4

√
6

11

)
.

4. Comparison of Indices through Graphs

The comparison of the of ABC4 index and GA5 index for B1(n), B2(n), and B3(n) is
conducted for different values of n. The comparison graphs are shown in Figures 4 and 5.

Figure 4. Comparison of ABC4 index for B1(n), B2(n), and B3(n).
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Figure 5. Comparison of GA5 index for B1(n), B2(n), and B3(n).

5. Applications

Graph theory is fast becoming a popular topic in mathematics because of its numerous
applications in fields as varied as biochemistry (genomics), electrical engineering (commu-
nications networks and coding theory), computer science (algorithms and computations),
and operations research. These results are also very useful for chemists who are working
on such graphs.

6. Conclusions

The study of topological descriptors can help us construct basic network topologies.
The specific result for the forgotten index, Balaban index, reclassified Zagreb indices, ABC4
index, and GA5 index of the benzenoid networks of type are contained in this study.
Benzenoid networks have been researched in respect to several graph-ideological factors
due to their fascinating and complicated characteristics. These results could be useful for
computer scientists and chemists who deal with benzenoid networks.
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