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ABSTRACT Streptococcus agalactiae is the leading cause of meningitis in newborns
and a significant cause of invasive diseases in pregnant women and adults with
underlying diseases. Antibiotic resistance against erythromycin and clindamycin in
group B streptococcus (GBS) isolates has been increasing worldwide. GBS expresses the
Srr1 and Srr2 proteins, which have important roles in bacterial infection. They have
been investigated as novel vaccine candidates against GBS infection, with promising
results. But a recent study detected non-srr1/2-expressing clinical isolates belonging to
serotype III. Thus, we aimed to analyze the genotypes of non-srr1/2 GBS clinical isolates
collected between 2013 and 2016 in South Korea. Forty-one (13.4%) of the 305 serotype
III isolates were identified as non-srr1/2 strains, including sequence type 19 (ST19)
(n=16) and ST27 (n=18) strains. The results of the comparative genomic analysis of the
ST19/serotype III/non-srr1/2 strains further revealed four unique gene clusters. Site 4 in
the srr1 gene locus was replaced by an lsa(E)-lnu(B)-aadK-aac-aph-aadE-carrying multi-
drug-resistant gene cluster flanked by two IS1216 transposases with 99% homology to
the enterococcal plasmid pKUB3007-1. Despite the Srr1 and Srr2 deficiencies, which
resulted in reduced fibrinogen binding, the adherence of non-srr1/2 strains to endo-
thelial and epithelial cells was comparable to that of Srr1- or Srr2-expressing
strains. Moreover, their virulence in mouse models of meningitis was not signifi-
cantly affected. Furthermore, additional adhesin-encoding genes, including a
gene encoding a BspA-like protein, which may contribute to colonization by non-
srr1/2 strains, were identified via whole-genome analysis. Thus, our study pro-
vides important findings that can aid in the development of vaccines and antibi-
otics against GBS.

IMPORTANCE Most previously isolated group B streptococcus (GBS) strains express ei-
ther the Srr1 or Srr2 glycoprotein, which plays an important role in bacterial coloni-
zation and invasion. These glycoproteins are potential protein vaccine candidates. In
this study, we first report GBS clinical isolates in which the srr1/2 gene was deleted
or replaced with foreign genes. Despite Srr1/2 deficiency, in vitro adherence to mam-
malian cells and in vivo virulence in murine models were not affected, suggesting
that the isolates might have another adherence mechanism that enhanced their viru-
lence aside from Srr1/2-fibrinogen-mediated adherence. In addition, several non-srr1/
2 isolates replaced the srr1/2 gene with the lnu(B) and lsa(E) antibiotic resistance
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genes flanked by IS1216, effectively causing multidrug resistance. Collectively, we believe
that our study identifies the underlying genes responsible for the pathogenesis of new
GBS serotype III. Furthermore, our study emphasizes the need for alternative antibiotics for
patients who are allergic to b-lactams and for those who are pregnant.

KEYWORDS Streptococcus agalactiae, IS1216, multidrug resistance gene, srr1/2, ST19

S treptococcus agalactiae (group B streptococcus [GBS]) is a Gram-positive commensal
bacterium that colonizes the gastrointestinal, urinary, and genital tracts of healthy

adults (1). Maternal GBS colonization is the leading cause of neonatal sepsis and men-
ingitis and a significant cause of morbidity in immunocompromised adults, particularly
the elderly (2, 3). Recent studies have reported that invasive GBS infections among the
elderly were responsible for approximately 25 deaths/100,000 population in the
United States in 2015 (4). The capsular polysaccharide (CPS), a major determinant in
the categorization of GBS strains into 10 serotypes (Ia, Ib, and II to IX), is the most im-
portant virulence factor (5). However, several reports have described multilocus sequence
typing (MLST) as another potential GBS classification system for describing the evolution-
ary relationships and epidemiology of prevalent sequence type (ST) isolates (6, 7). Using
MLST, ST17 serotype III GBS strains, which currently account for the highest proportion of
infant invasive disease, have been predicted as emerging highly virulent strains (8–11).

Penicillin G and ampicillin are the most widely used antibiotics for the prevention
and treatment of GBS infections (12, 13); however, penicillin-nonsusceptible GBS isolates
have been reported worldwide (14, 15). Meanwhile, erythromycin and clindamycin repre-
sent second-line antibiotics that are often recommended by the Centers for Disease
Control and Prevention (CDC) and the American College of Obstetricians and Gynecologists
(ACOG) for patients with allergies to b-lactam antibiotics (16).

In addition, owing to their synergistic activity, aminoglycosides are commonly pre-
scribed in combination with b-lactam antibiotics for streptococcal endocarditis (17)
and prosthetic joint infections (18). However, the increasing resistance rates reported
in South Korea (51.8%), China (74.1%), and other countries against macrolide and ami-
noglycoside antibiotics pose a serious global clinical challenge (19, 20).

GBS can also develop resistance to multiple antimicrobial compounds due to the
acquisition of resistance genes hosted on mobile genetic elements (MGEs) (21). MGEs
comprise insertion sequences (ISs), transposons (Tns), plasmids, and bacteriophages
(22), which can translocate within, or between, prokaryotic genomes. Many MGEs have
a significant role in facilitating horizontal genetic transfer (HGT) and promoting the ac-
quisition of antibiotic resistance genes (23). In fact, in GBS, in which lincosamide-resist-
ant strains are rarely isolated, the emergence of clinical isolates resistant to lincosa-
mides is increasing due to the acquisition of an lnu(B)-carrying fragment (24–29). For
instance, the GBS isolate SGB76 harbors a 12,076-bp lnu(B)-carrying fragment along
with other antibiotic resistance genes, including aadE (streptomycin resistance), spw
(spectinomycin resistance), and lsa(E) (pleuromutilin, lincosamide, and streptogramin A
resistance). These genes are located between two IS1216 fragments that share a high
degree of homology with the IS1216 locus located in Staphylococcus aureus SA7037
and Enterococcus faecalis pEF418 (30, 31). Moreover, the GBS strain UCN70, isolated
from a vaginal swab, was reported to be macrolide, lincosamide, and streptogramin A
resistant (32). Indeed, the expansion of MGEs containing antibiotic resistance genes in
GBS has been suggested to contribute to the emergence of adult infections in non-
pregnant individuals (33–40).

Clinical GBS isolates encode serine-rich-repeat (SRR) glycoproteins (Srr1 or Srr2), im-
portant adhesion molecules that interact with human fibrinogen (41, 42). Based on
their significant roles in the pathogenesis of GBS infections, Srr1 and Srr2 have been
investigated as attractive novel vaccine candidates against GBS infections. However,
we previously reported that 3.2% (n=6) of 185 GBS clinical isolates, collected at the
Korea University Hospital (Seoul, South Korea), did not carry srr1 or srr2, and all
belonged to serotype III (43). These findings prompted us to further investigate the
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correlation between non-srr1/2 strains and GBS serotypes as well as the genomic char-
acteristics associated with srr1/2 deficiency in GBS clinical isolates. Therefore, in the cur-
rent study, 41 non-srr1/2 strains from 305 serotype III clinical isolates were analyzed
using comparative whole-genome sequencing to investigate the relationship between
their genetic structures and antibiotic resistance and virulence.

RESULTS
Epidemiological analysis of non-srr1/2 GBS clinical isolates. A total of 1,248 GBS

clinical isolates were collected between 2013 and 2016 at the Korea University Guro
Hospital (Seoul, South Korea). Capsular serotypes of the isolates were identified using a
latex agglutination assay and multiplex PCR analysis, revealing 86 serotype Ia, 205 sero-
type Ib, 30 serotype II, 305 serotype III, 11 serotype IV, 124 serotype V, 99 serotype VI, 2
serotype VII, 185 serotype VIII, and 9 serotype IX isolates (Table 1). Additionally, 192 iso-
lates were identified as nontypeable or multitypeable strains. Consistent with our pre-
vious report (43), serotype III (24.4%) represented the predominant GBS serotype.
Interestingly, serotype VIII was also found to represent a major serotype isolated from
the Korea University Guro Hospital, accounting for 14.8% of the clinical isolates and
increasing from 7.0% in 2013 to 19.0% in 2016 during this study period.

We had previously determined that all non-srr1/2 strains were of serotype III (43), in
the current study, we investigated the presence of the srr1 and srr2 genes in 305 sero-
type III isolates using a multiplex PCR assay. Among these isolates, 240 and 24 carried
srr1 and srr2, respectively (Table 2). Notably, the remaining 41 isolates were identified
as non-srr1/2 strains, accounting for 13.4% of serotype III and 3.3% of the total isolates.
To further investigate the genetic characteristics of these strains, MLSTs and clonal
complexes (CCs) of all 41 non-srr1/2 isolates were analyzed. Among the 41 non-srr1/2
isolates, 16 belonged to ST19, while the remaining 25 were of ST27 (n=18), ST529
(n=6), and ST171 (n=1) (Table 3). eBURST analysis further revealed that all non-srr1/2
isolates, with the exception of one isolate (NSP14-65 [ST171; CC17]), belonged to CC19
(44). Taken together, 41 isolates (13.4%) of the 305 serotype III isolates were identified
as non-srr1/2 strains, with the largest proportion belonging to CC19 (97.6%; n=40).

Phenotypic characteristics of non-srr1/2 isolates. Generally, GBS strains express
one of the two SRR proteins Srr1 and Srr2, which are heavily glycosylated cell wall-
anchoring proteins (45–47). Thus, the loss of srr1 and srr2 expression in S9968 (ST19)
and NSP15-73 (ST27) was confirmed by lectin blot analysis. The results show that a

TABLE 1 Capsular serotypes of GBS clinical isolates

Yr

No. (%) of isolates of serotype

Ia Ib II III IV V VI VII VIII IX NTa Total
2013 16 (8.6) 32 (17.3) 6 (3.2) 41 (22.2) 2 (1.1) 20 (10.8) 16 (8.6) 0 (0.0) 13 (7.0) 1 (0.5) 38 (20.5) 185 (100)
2014 12 (4.2) 50 (17.4) 4 (1.4) 83 (28.9) 2 (0.7) 29 (10.1) 28 (9.8) 1 (0.3) 24 (8.4) 2 (0.7) 52 (18.1) 287 (100)
2015 29 (7.7) 63 (16.8) 11 (2.9) 97 (25.9) 3 (0.8) 31 (8.3) 28 (7.5) 1 (0.3) 72 (19.2) 0 (0.0) 40 (10.7) 375 (100)
2016 29 (7.2) 60 (15.0) 9 (2.2) 84 (20.9) 4 (1.0) 44 (11.0) 27 (6.7) 0 (0.0) 76 (19.0) 6 (1.5) 62 (15.5) 401 (100)

Total 86 (6.9) 205 (16.4) 30 (2.4) 305 (24.4) 11 (0.9) 124 (9.9) 99 (7.9) 2 (0.2) 185 (14.8) 9 (0.7) 192 (15.4) 1,248 (100)
aNT, nontypeable.

TABLE 2 Prevalence of srr genotypes in serotype III isolates from 2013 to 2016

Genotype

No. of isolates from yr
Total no. (%)
of isolates2013 2014 2015 2016

srr1 29 66 78 67 240 (78.7)
srr2 0 4 10 10 24 (7.9)
Non-srr1/2 12 13 9 7 41 (13.4)

Total 41 83 97 84 305 (100.0)
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strong glycosylated protein signal was detected in the NEM316 strain, which was lost
in the isogenic srr1 deletion mutant NEM316 (Dsrr1) (Fig. 1A). A strong glycosylated
protein signal was also detected in the COH1 strain, which was lost upon srr2 deletion
(Dsrr2). In contrast, no glycosylated protein signals were observed in the non-srr1/2 iso-
lates S9968 and NSP15-73, suggesting the absence of Srr1/2 proteins in the non-srr1/2
strain serotype III GBS isolates. This was confirmed following our examination of an
additional five non-srr1/2 strains, all of which lacked Srr1/2 protein expression (data
not shown).

Considering the reported contribution of Srr1 or Srr2 to the colonization and viru-
lence of GBS in the pathogenesis of meningitis and endocarditis via its interaction with
human fibrinogen (48), we next sought to investigate the impact of srr1/2 gene loss in
non-srr1/2 isolates on their fibrinogen binding activity. This activity was observed to be
significantly reduced in the srr1- and srr2-deficient strains compared to that in their

TABLE 3 STs, clonal complexes, and MICs of 41 non-srr1/2 isolatesa

Isolate ST CC

MIC (mg/ml)

Aminoglycosides Lincosamides

AMK GEN KAN SPT STR TOB CLI LIN
S9968 19 19 128 512 512 512 64 512 4 32
S10039 19 19 128 512 512 512 64 512 64 128
S10124 19 19 128 512 512 512 256 512 128 256
S10171 19 19 128 512 512 512 256 512 4 32
NSP14-81 19 19 128 512 512 256 256 512 4 32
NSP14-151 19 19 128 512 512 32 64 512 128 256
NSP14-167 19 19 128 512 512 128 64 512 64 128
NSP15-560 19 19 128 512 512 512 64 512 64 128
NSP15-613 19 19 128 512 512 32 64 512 64 128
NSP16-136 19 19 128 512 512 32 32 256 64 128
GBS16-89 19 19 128 512 512 512 256 256 64 256
S10120 19 19 32 8 64 16 32 16 ,0.5 ,0.5
NSP14-66 19 19 16 4 32 32 16 8 ,0.5 ,0.5
NSP15-659 19 19 64 16 128 32 64 16 ,0.5 ,0.5
NSP16-31 19 19 64 8 64 32 64 16 ,0.5 ,0.5
GBS16-54 19 19 64 8 64 32 32 16 ,0.5 ,0.5
S9928 27 19 64 16 128 32 64 16 ,0.5 ,0.5
S9981 27 19 64 16 64 32 64 16 ,0.5 ,0.5
S10048 27 19 64 16 128 32 64 16 ,0.5 ,0.5
S10072 27 19 64 16 128 32 64 32 ,0.5 ,0.5
S10121 27 19 64 16 128 32 64 16 ,0.5 ,0.5
NSP14-76 27 19 64 16 64 32 64 16 ,0.5 ,0.5
NSP14-110 27 19 64 16 128 32 64 16 ,0.5 ,0.5
NSP14-149 27 19 64 8 64 32 64 16 ,0.5 ,0.5
NSP14-150 27 19 128 16 256 64 128 32 ,0.5 ,0.5
NSP14-161 27 19 32 8 64 32 32 8 ,0.5 ,0.5
NSP14-259 27 19 64 16 128 32 64 16 ,0.5 ,0.5
NSP15-73 27 19 32 8 64 32 64 16 ,0.5 ,0.5
NSP15-236 27 19 64 16 64 32 64 16 ,0.5 ,0.5
NSP15-531 27 19 64 16 128 32 64 16 ,0.5 ,0.5
NSP15-584 27 19 64 8 64 32 64 16 ,0.5 ,0.5
NSP15-635 27 19 64 16 128 32 64 16 ,0.5 ,0.5
NSP16-102 27 19 64 16 128 32 64 16 ,0.5 ,0.5
GBS16-40 27 19 32 8 64 16 32 8 ,0.5 ,0.5
S10003 529 19 64 8 64 32 32 16 ,0.5 ,0.5
S10161 529 19 64 16 64 32 32 16 ,0.5 ,0.5
NSP14-28 529 19 64 16 64 32 64 16 ,0.5 ,0.5
NSP14-87 529 19 64 16 128 32 64 16 ,0.5 ,0.5
NSP15-667 529 19 128 16 128 32 64 16 ,0.5 ,0.5
GBS16-17 529 19 64 8 64 32 64 16 ,0.5 ,0.5
NSP14-65 171 17 128 16 128 32 64 32 ,0.5 ,0.5
aAbbreviations: ST, sequence type; CC, clonal complex; AMK, amikacin; GEN, gentamicin; KAN, kanamycin; SPT,
spectinomycin; STR, streptomycin; TOB, tobramycin; CLI, clindamycin; LIN, lincomycin.
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parental wild-type (WT) strains, NEM316 and COH1, respectively. Additionally, the bind-
ing of S9968 to fibrinogen was also markedly inhibited compared to that of srr1- and
srr2-expressing WT strains (Fig. 1B). Moreover, we found that most of the 41 non-srr1/2
isolates exhibited reduced fibrinogen binding, with the exception of NSP14-66 of ST19,
NSP14-76 and NSP14-161 of ST27, and NSP14-28 of ST529 (see Fig. S1 in the supple-
mental material).

The antibiotic susceptibility of non-srr1/2 isolates (n= 41) was then evaluated. All of
these isolates were found to exhibit high levels of resistance to the six tested amino-
glycoside antibiotics (amikacin [AMK], gentamicin [GEN], kanamycin [KAN], spectino-
mycin [SPT], streptomycin [STR], and tobramycin [TOB]), with MICs ranging from 8 to
over 512mg/ml (Table 3). Among them, 11 isolates showed extremely high-level resist-
ance to clindamycin and lincomycin (LIN), with MICs ranging from 4 to .256mg/ml.
Moreover, these 11 isolates, all of which belonged to ST19, exhibited higher resistance
to gentamicin, kanamycin, and tobramycin (MIC values of over 256mg/ml) than the
remaining 30 isolates.

Whole-genome and comparative genomic analyses of non-srr1/2 strains. To
confirm the genetic organization of non-srr1/2 isolates of GBS serotype III, whole ge-
nome analysis was performed using hybrid sequencing with the Pac-Bio and Illumina
MiSeq platforms. The whole genomes of S9968 (ST19), isolated from the urine of a 48-
year-old female patient with chronic renal failure and urinary tract infections, and
NSP15-73 (ST27), isolated from the urine of a 50-year-old female patient with chronic
renal failure and urinary tract infections, were analyzed (Table S1) to determine
whether any genetic characteristics were unique to non-srr1/2 isolates. The circular
chromosomes of S9968 and NSP15-73 were found to be 2,201,113 and 2,302,798 bp
long, respectively, which were slightly longer than those of other sequenced serotype
III strains, such as COH1 (CC17; 2,065,074 bp) and H002 (CC19; 2,147,420bp). Additionally,
the percent GC contents of S9968 (36.0%) and NSP15-73 (35.8%) were similar to those of
COH1 (35.5%) and H002 (35.7%). Among the total 2,251 (S9968) and 2,348 (NSP15-73)
genes, 2,149 and 2,246 were protein encoding, respectively. Additionally, the numbers of
rRNAs and tRNAs in both strains were 21 and 80, respectively (49, 50). In the NSP15-73
strain, all accessory Sec2 system genes were absent, and no other gene substitutions or
mutations were detected (Fig. S2). Considering the clinical importance of clindamycin and

FIG 1 Reduced binding of non-srr1/2 isolates to immobilized fibrinogen. (A) Expression of glycoproteins Srr1
and Srr2 on the cell surface. Cell wall proteins were isolated from Srr1-expressing GBS (NEM316) and its
isogenic mutant (Dsrr1), Srr2-expressing GBS (COH1) and its isogenic mutant (Dsrr2), and non-srr1/2 isolates
S9968 and NSP15-73. Srr1/2 proteins separated by SDS-PAGE were detected with biotin-conjugated WGA,
followed by incubation with HRP-conjugated streptavidin. (B) GBS binding to immobilized fibrinogen.
Suspensions of GBS WT (NEM316, COH1, and S9968) and isogenic mutant (NEM316 Dsrr1 and COH1 Dsrr2)
strains were incubated in wells pretreated with human fibrinogen (0.1mM), followed by detection with 0.1%
crystal violet. Cell binding to immobilized fibrinogen was measured as the absorbance at 595 nm. Data are
presented as the means 6 standard deviations. **, P, 0.005; ***, P, 0.001.
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lincomycin in treating GBS infection in patients with allergies to penicillin, we next focused
on the characteristics of non-srr1/2 isolates of GBS serotype III with aminoglycoside and lin-
cosamide resistance patterns.

Average nucleotide identity (ANI) is considered the most relevant comparative pa-
rameter used for bacterial species delineation (51). The phylogenetic analysis of S9968
compared to 21 serotype III reference strains showed that S9968 had ANI values of
.99% with the other reference serotype III strains, with the exception of CNCTC8184
(98.4%) and NEM316 (98.7%), and was found to be the most closely related to H002
(99.93%) and Sag158 (99.76%), both of which belong to ST19 (Fig. 2A).

BLAST Ring Image Generator (BRIG) software was then used to create the circular
structure of the S9968 genome, which was then compared with those of H002 (STIII;
ST19) and Sag158 (STIII; ST19) (52). Four large novel cluster sites unique to S9968 were
found (Fig. 2B). Site 1 contained 15 genes, including 3 transposons and 1 integrase.
Site 2 comprised 36 genes, including that encoding the conjugal transfer protein TraG
as well as several conjugation-related genes encoding a conjugative transposon, a
relaxase, a relaxosome, and a DNA primase. In addition, three LPxTG cell wall-anchor-
ing proteins were encoded in site 2. Meanwhile, site 3 and site 4 were the contigs
flanked by the IS6-like element IS1216. Site 3 harbored 19 genes, including the spw
gene belonging to the ANT (9) family of aminoglycoside nucleotidyltransferases, which
confers resistance to spectinomycin. The site 4 cluster, found in the srr1 gene locus, com-
prised 29 genes located upstream of the accessory sec2 system and spanned 11,886bp
(Table S2). In addition, PCR and sequencing analyses (Fig. S3) revealed that among the 41
non-srr1/2 isolates, only those with both aminoglycoside and lincosamide resistance
(n=11) harbored the lnu(B)-carrying fragment (Fig. 2B).

Genetic environment of IS1216 contigs in S9968. Comparative genomic analysis
showed that the site 4 cluster of S9968 comprised 12 open reading frames (ORFs),
which contained lsa(E) for pleuromutilin-lincosamide-streptogramin A resistance, lnu(B)
for lincosamide resistance, aadK and aadE for streptomycin resistance, and aac-aph for

FIG 2 Genome comparison of GBS S9968 and other serotype III isolates. (A) Phylogenetic tree analysis of the S9968 strain based on ANI values obtained from
whole genome sequences. The genome sequences were retrieved from the GenBank database, and ANI values were estimated using JSpecies. The phylogenetic
tree was constructed using MEGA 6.0. (B) Comparative genome visualization map of S9968 with two related genome isolates, Sag158 (GenBank accession
number CP019979) and H002 (accession number CP011329). GC contents and GC skew are represented on the distance scale in the inner map. Orthologous
genes found in H002 (red) and Sag158 (blue) are displayed in the outer map. The double line (green) in the map indicates the unique ORFs found in S9968.
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gentamicin-kanamycin-tobramycin resistance (Fig. 3). Unlike the previously reported lnu
(B)-carrying fragment in GBS (28, 31), which carries aadE, spw, and lsa(E), the lnu(B)-carrying
fragment of S9968 contains additional aminoglycoside resistance genes, aadK and aac-
aph (31). In addition, the spw gene, which was absent from the site 4 cluster, was located
in the site 3 cluster.

Basic Local Alignment Search Tool Nucleotide (BLASTN) analysis further indicated that
antibiotic resistance genes (12 ORFs) in the site 4 cluster showed high similarity to those of
several multidrug-resistant bacteria, including Staphylococcus and Enterococcus. Among
them, enterococcal plasmid pKUB3007-1 carrying antibiotic resistance genes, flanked by
two ISEf1 elements, shared the highest nucleotide homology with the lnu(B)-carrying frag-
ment of S9968 (99% maximum identity and 99.89% query coverage of the total nucleotide
sequence) (53). However, it exhibited low homology with previously reported GBS lnu(B)-
lsa(E) transposons (31).

Virulence of non-srr1/2 isolates. Srr1 and Srr2 serve as important adhesins involved
in GBS invasion via the blood-brain barrier (54). In fact, deletion of srr1 or srr2 in GBS
resulted in significantly lower levels of invasiveness in human brain microvascular endo-
thelial cells (hBMECs) than those of WT GBS strains (41). Thus, to determine whether non-
srr1/2 clinical isolates exhibit impaired binding to endothelial and epithelial cells, we exam-
ined if the adherence of S9968 to hBMECs and A549 cells differed compared with that of
Srr1- and Srr2-expressing serotype III reference strains (NEM316 and COH1, respectively).
The mutant strains deficient in srr1 or srr2 (NEM316 Dsrr1 or COH1 Dsrr2) showed signifi-
cantly diminished adherence to both hBMECs and A549 cells compared to their parental
WT strains (NEM316 or COH1) (Fig. 4A and B). However, despite the defect in both the srr1
and srr2 genes, the capacity for adherence of the S9968 strain to hBMECs and A549 cells
did not differ significantly from that of NEM316 and COH1.

Finally, the virulences of S9968 and Srr1- or Srr2-expressing serotype III strains
(NEM316 or COH1, respectively) were compared in a mouse model of GBS meningitis.
CD-1 mice (n=10 per group) were infected intravenously (i.v.) with either NEM316,
COH1, or S9968, and their survival was monitored over 72 h (Fig. 4C). The results
showed that 80% of the mice infected with COH1 or S9968 and 90% of the mice
infected with NEM316 died within 72 h, with no significant differences among the
three groups. In contrast, srr1- or srr2-deficient isogenic mutant strains exhibited

FIG 3 Schematic representation of the antibiotic resistance locus flanked by two IS1216 transposases in GBS S9968. The genetic locus flanked by two
IS1216 transposases in the site 4 cluster of the S9968 strain was compared with the corresponding regions identified in GBS strains H002 and NEM316 and
E. faecalis pKUB3006.

IS1216-Flanked Antibiotic Resistance Genes in GBS

July/August 2021 Volume 6 Issue 4 e00543-21 msphere.asm.org 7

https://msphere.asm.org


FIG 4 Comparison of adherence rates and virulences of GBS strains. (A and B) Adherence of GBS strains, NEM316 and its isogenic mutant (Dsrr1), COH1
and its isogenic mutant (Dsrr2), and S9968, to hBMECs (A) and A549 cells (B). Data are presented as the means 6 standard deviations. (C) Kaplan-Meier
survival curves. CD-1 male mice were injected i.v. with GBS strain NEM316 or its isogenic mutant (Dsrr1), COH1 or its isogenic mutant (Dsrr2), or S9968
(n= 10 per group). Mouse survival was monitored for 72 h. (D to F) Bacterial loads in mouse organs. At the end of the experiment, mice were euthanized,
and bacterial loads in the brain (D), lung (E), and blood (F) were assessed. *, P, 0.05; **, P, 0.01; n.s, not significant.

Zhi et al.

July/August 2021 Volume 6 Issue 4 e00543-21 msphere.asm.org 8

https://msphere.asm.org


significantly lower virulence than their parental strains (NEM316 and COH1) or S9968.
Mice were euthanized, and brain, blood, and lung tissues were collected to enumerate
the bacterial loads. As shown in Fig. 4D to F, mice infected with srr1- or srr2-deficient
isogenic mutants exhibited significantly lower bacterial loads in the brain, lung, and
blood than those infected with the parental strains (NEM316 and COH1) or S9968.

Collectively, these findings suggest that despite the defect in Srr1 or Srr2 expression
and the failure to bind fibrinogen, non-srr1/2 clinical isolates exhibited capacities for
binding to brain cells and virulence comparable to those of Srr1- or Srr2-expressing
isolates.

DISCUSSION

The geographic distribution of GBS serotypes varies across countries and over time.
This study comprised capsular serotyping of 1,248 GBS clinical isolates collected over
4 years at the Korea University Guro Hospital, located in the southwestern region of
Seoul, South Korea, which is inhabited by a diverse Asian population. Consistent with
our previous report, serotype III was the most predominant serotype detected among
the 10 capsular serotypes. Previously, serotype III was reported to account for 57.7% of
invasive infections in neonates, 84.3% of infections in geriatric adults (55), and 21 to
28% of infections in pregnant women (56).

Although the cause of this increased invasiveness associated with serotype III GBS
compared to other serotypes has not been fully elucidated, many clinical studies sug-
gest that the lower level of production of CPS-specific antibodies during GBS infections
with serotype III may be partially responsible. For example, neonatal infections with
serotype III are likely associated with poor maternal transfer of serotype III CPS-specific
IgG through the placenta, compared to other serotypes. Resistance to various antibiot-
ics caused by the overprescription of antibiotics is considered another factor contribut-
ing to the climbing number of GBS infections in both neonates and adults (57). Among
the 1,248 clinical isolates examined in the current study, we observed a pattern of high
lincosamide resistance in serotype III. Further genomic analysis revealed that some
serotype III isolates acquired more than two IS1216 elements encoded by several anti-
biotic resistance genes. The first IS1216 element, located in the site 3 cluster, carried
only aminoglycoside resistance genes, while the second IS1216 element, located in the
site 4 locus, carried both aminoglycoside and lincosamide resistance genes.

IS1216 is highly associated with several resistance genes in Enterococcus (58),
Staphylococcus (58), and Streptococcus (59) species. ISFinder (https://isfinder.biotoul.fr)
analysis showed that the IS1216-flanked genes identified in this study (designated
IS1216-G1 and -G2 [808 bp]) shared 99% homology with IS1216E (ISEfa14; ISS1Y) from
Enterococcus faecium CH19 (GenBank accession number U49512) (60). Furthermore,
this IS1216 element comprised 226-amino-acid (aa) transposases (Tnps) with a DDE
motif for strand cleavage and rejoining as well as 24 bp of a left inverted repeat (LIR)
(59-GGT TCT GTT GCA AAG TTT TAA ATC TAC TAT CAA ATA AGG TAG AAT AG-39) and a
right inverted repeat (RIR) (59-GGT TCT GTT GCA AAG TTT TAA ATA AAG AAT AAA ATC
CTT ACG GTA TCT AT-39). Although IS1216 transposases carrying lincosamide resistance
genes have been previously reported in GBS (28), this is the first study to report the
presence of IS1216 carrying two types of antibiotic resistance genes that are highly ho-
mologous to a portion of the E. faecalis plasmid pKUB3007-1.

IS1216 found in the site 4 cluster carried multiresistance genes, including lsa(E) and
lnu(B) for lincosamide resistance and aadK, aacA-aphD, and aadE for aminoglycoside
resistance. Although lincosamides such as clindamycin are recommended alternatives
for pregnant women and patients who are allergic to b-lactams (16), resistance to this
class of drugs has been reported in GBS clinical isolates since the 1990s, which has
been shown to be caused primarily by the lnu(B) gene alone or together with lsa (31,
61). Similarly, combination treatment with a b-lactam and an aminoglycoside is com-
monly administered for at least the first 2weeks of infective endocarditis (62) and
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prosthetic joint infection (63) treatment; however, the emergence of resistant strains
suggests that these agents should be used with caution.

Transposable elements may alter gene expression via insertion within the coding
region or the promoter region to enhance or reduce host virulence. For instance,
ISEfa4 of E. faecalis disrupts the ddl gene encoding the housekeeping D-alanine-D-ala-
nine ligase, the absence of which results in reduced glycopeptide resistance in E. faeca-
lis (64). In the current study, non-srr1/2 clinical isolates showed the transposition of
IS1216 in the accessory Sec system exporting LPxTG-anchoring glycoproteins (Srr1 or
Srr2). Due to the insertion of IS1216, srr1 was completely deleted in 11 non-srr1/2
isolates.

The expression of Srr1 or Srr2 promotes GBS attachment to human brain endothe-
lial cells via interaction with the fibrinogen Aa chain (48). Previous in vivo studies with
targeted knockdown of the srr1 or srr2 gene have shown that srr1 or srr2 deficiency in
GBS results in reduced virulence and colonization compared to those of parental WT
strains (41). Similarly, the S9968 strain exhibited significantly lower binding of immobi-
lized human fibrinogen than srr1- or srr2-expressing strains (NEM316 or COH1, respec-
tively); however, its binding of endothelial and epithelial cells was comparable to that
of the Srr1- and Srr2-expressing strains. Additionally, the virulence of S9968 did not dif-
fer significantly from that of Srr1- or Srr2-expressing strains in a murine model of inva-
sive GBS infection. Comparative analysis of its genome with that of NEM316 or its
closely related strain H002 revealed additional LPxTG motif-containing proteins, anti-
gen I//II and BspA, in the site 2 gene cluster of S9968. Although the involvement of
these proteins in GBS pathogenesis was not investigated in the current study, previous
studies have reported that BspA and BspC are critical adhesins in GBS, which interact
with the gp340 protein on human epithelial cells and the host cytoskeleton compo-
nent vimentin, thereby contributing to GBS meningitis pathogenesis (65, 66). Thus, it is
hypothesized that the loss of Srr1 or Srr2 in S9968, and the resulting decrease in fibri-
nogen binding, might be compensated by the acquisition of other cell wall-anchoring
proteins, such as the BspA isotype. In fact, four isolates (NSP14-66, NSP14-76, NSP14-
161, and NSP14-28) showed fibrinogen binding activity similar to or higher than that
of Srr1- or Srr2-expressing serotype III strains (NEM316 or COH1). Thus, further investi-
gation is required to define the pathogenesis of non-srr1/2 isolates as well as effective
therapeutic strategies.

The results presented in this study describe IS1216 carrying lincosamide and amino-
glycoside resistance genes in GBS, which might be acquired from other common multi-
drug-resistant bacteria such as Enterococcus spp. or Staphylococcus spp. Since all GBS
clinical isolates have been reported to express either Srr1 or Srr2 protein on their cell
wall, they have been considered potential vaccine candidates (43). However, this study
reports the presence of GBS clinical isolates that do no express Srr1/2 following the
insertion of IS1216. Thus, new strategies to develop a versatile GBS protein-based vac-
cine are warranted. In addition, considering the high level of resistance to lincosamide
in GBS, alternative antibiotic agents should be considered for patients who are allergic
to b-lactam antibiotics. Collectively, the results of this study provide important genomic
evidence related to antibiotic resistance in clinical GBS isolates, which could facilitate the
development of more effective treatment options.

MATERIALS ANDMETHODS
Chemical reagents. All chemicals used in this study were purchased from Sigma-Aldrich (St. Louis,

MO, USA) unless otherwise indicated.
Bacterial strains. The study was approved by the Korea University Guro Hospital (KUGH IRB number

2016GR0265). All clinical isolates (n= 1,248) were collected between 2013 and 2016 at the Korea
University Guro Hospital (Seoul, South Korea), and all non-srr1/2 clinical isolates used in this study are
listed in Table S1 in the supplemental material. GBS reference strains and their Srr-deficient isogenic
mutants, NEM316, NEM316 Dsrr1, COH1, and COH1 Dsrr2, were kindly provided by Paul Sullam (University of
California, San Francisco, San Francisco, CA, USA).

Capsular and genetic analyses of GBS isolates. Capsular serotyping was conducted using the
Strep-B-Latex kit (Statens Serum Institute, Copenhagen, Denmark) and a multiplex PCR assay (Table S3)
as described previously (67, 68). The gene cluster flanked by two IS1216 elements was detected by PCR
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specific for the targeted region from pol to aadE (Fig. 3 and Fig. S3). The srr1 and srr2 genes were also
detected by PCR using specific primers. All primers are listed in Table S4.

Multilocus sequencing typing. GBS multilocus sequence typing (MLST) was performed as described
previously (69). Seven housekeeping genes (adhP, pheS, atr, glnA, sdhA, glcK, and tkt) were amplified and
sequenced using MLST primer sets (Table S5), and PCR cycles were as follows: 1 cycle at 95°C for 5min;
30 cycles of 95°C for 20 s, 56.2°C for 20 s, and 72°C for 1.5min; and 1 cycle of 72°C for 5min. The identi-
fied alleles were submitted to the S. agalactiae MLST database (http://pubmlst.org/sagalactiae/) for the
assignment of sequence types (STs). In addition, each ST sharing six of the seven MLST loci with another
ST in the group was clustered into a CC as described previously (70).

Antimicrobial susceptibility testing. The broth microdilution test was used to determine the anti-
microbial susceptibilities of GBS non-srr1/2 clinical isolates to amikacin (AMK), gentamicin (GEN), kana-
mycin (KAN), spectinomycin (SPT), streptomycin (STR), tobramycin (TOB), clindamycin (CLI), and lincomy-
cin (LIN) as described previously (71, 72). Briefly, GBS was inoculated in Todd-Hewitt broth supplemented
with yeast extract (THY) and incubated overnight at 37°C. The culture of GBS grown overnight was diluted to
achieve turbidity of an optical density at 600 nm (OD600) of 0.05 to 0.06, and 100 ml of the GBS suspension
was then added to each well of a round-bottom 96-well plate (SPL, Pocheon, South Korea) with 2-fold serially
diluted antibiotics. The breakpoints according to the criteria of the European Committee on Antimicrobial
Susceptibility Testing were used to interpret the final MICs (73).

Detection of Srr1 and Srr2 proteins using the lectin blot assay. GBS cell wall extracts, prepared as
described previously (41), were separated using 8 to 12% Bis-Tris gels (Invitrogen) and transferred to
nitrocellulose membranes. The membranes were then incubated with biotin-conjugated wheat germ
agglutinin (WGA; Vector Labs, Burlingame, CA, USA), followed by incubation with horseradish peroxidase
(HRP)-conjugated streptavidin (0.2mg/ml; Sigma-Aldrich). Signals were visualized using a chemilumines-
cent Western blotting substrate (Thermo Scientific, Waltham, MA, USA), and data were acquired using
the Bio-Rad ChemiDoc Touch imaging system (Bio-Rad Laboratories, Hercules, CA, USA).

Binding of GBS to immobilized fibrinogen. Purified human fibrinogen (3mg; Sigma-Aldrich) in
phosphate-buffered saline (PBS) was immobilized in 96-well microtiter plates (SPL), and the wells were
then blocked with 350ml of a casein-based blocking solution (Sigma-Aldrich) for 1 h at room tempera-
ture. The plates were then incubated with 100 ml of the GBS suspension (1010 CFU/ml) for 30min at 37°C
and washed to remove unbound bacteria. Wells were stained with crystal violet (0.5% [vol/vol]; Sigma-
Aldrich) as described previously (48), and the absorbance was measured at 595 nm using a spectrometer
(Epoch 2; BioTek, Winooski, VT, USA).

Whole-genome sequencing, genome assembly, and annotation. The GBS clinical isolate S9968
(STIII; non-srr1/2; MLST ST19) was sequenced using PacBio single-molecule sequencers (Pacific
Biosciences, Menlo Park, CA, USA), performed by Macrogen Inc. (Seoul, South Korea). De novo assembly
was implemented using Hierarchical Genome Assembly Process version 3 (HGAP3). The genome annota-
tions were performed using the PROKKA pipeline (v1.13), and gene functions were identified using
eggNOG (74, 75). The GenBank accession number for the genomic sequence of the GBS strain S9968 is
SAMN15246708. Comparative genomic analysis was performed by analyzing ANI for nucleotide-level
comparisons with 21 serotype III strains retrieved from the NCBI GenBank database (Table S6) (51). The
phylogenetic tree of 22 GBS strains, 21 serotype III reference strains, and the S9968 clinical isolate was
constructed using MEGA 6.0 based on the ANI values (52). Genome-wide visualization of coding
sequence identities between S9968 and other genomes of serotype III strains was performed using BRIG.

GBS adherence assay. Human brain microvascular endothelial cells (hBMECs; Lonza, Basel,
Switzerland) and human alveolar epithelial cells (A549; ATCC, Manassas, VA, USA) were cultured in
24-well cell culture plates. When the cells reached approximately 90% confluence, they were washed
before bacterial infection. GBS was then added to the cells at a multiplicity of infection (MOI) of 10
for 1 h. The monolayer was washed six times with PBS, followed by lysis with 0.05% trypsin-EDTA
and 0.25% Triton X-100 after a 30-min incubation at 37°C (76). The lysates were serially diluted and
plated onto blood agar plates to enumerate the bacteria. The adherent GBS bacteria were then cal-
culated as follows: (recovered CFU/original CFU)� 100%.

Mouse model of meningitis. Animal experiments conducted in this study were approved by the
Committee on the Use and Care of Animals at the Korea Energy Research Institute (KAERI-IACUC-2019-
008 and KAERI-IACUC-2021-002) and were performed according to accepted veterinary standards. A mu-
rine model of hematogenous GBS meningitis was described previously (41). Groups (n= 10 per group) of
outbred 6-week-old male CD-1 mice (OrientBio, Suwon, South Korea) were injected via the tail vein with
100 ml of PBS containing 5� 107 CFU of GBS (NEM316, NEM316 Dsrr1, COH1, COH1 Dsrr2, or S9968).
Mouse survival was monitored for 72 h. At the experimental endpoint, the remaining mice were eutha-
nized, and blood and brain tissues were collected. The tissues were homogenized, and the blood as well
as the brain and lung homogenates were plated on blood agar for the enumeration of bacterial CFU.

Statistics analysis. Differences in the bacterial strains in the in vitro assays were evaluated using
unpaired two-tailed Student’s t test. The survival of mice was determined using Kaplan-Meier survival
analysis; data were representative of results from three independent experiments and expressed as the
means 6 standard deviations using GraphPad Prism version 6.0 (GraphPad Software Inc., La Jolla, CA,
USA). A P value of,0.05 was considered statistically significant.
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FIG S1, TIF file, 1.2 MB.
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FIG S2, TIF file, 1.1 MB.
FIG S3, TIF file, 2.2 MB.
TABLE S1, DOCX file, 0.02 MB.
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TABLE S3, DOCX file, 0.02 MB.
TABLE S4, DOCX file, 0.02 MB.
TABLE S5, DOCX file, 0.02 MB.
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