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Abstract

Deep Learning-based computational pathology algorithms have demonstrated profound ability to 

excel in a wide array of tasks that range from characterization of well known morphological 

phenotypes to predicting non human-identifiable features from histology such as molecular 

alterations. However, the development of robust, adaptable and accurate deep learning-based 

models often rely on the collection and time-costly curation large high-quality annotated training 

data that should ideally come from diverse sources and patient populations to cater for the 

heterogeneity that exists in such datasets. Multi-centric and collaborative integration of medical 

data across multiple institutions can naturally help overcome this challenge and boost the 

model performance but is limited by privacy concerns among other difficulties that may arise 

in the complex data sharing process as models scale towards using hundreds of thousands of 
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gigapixel whole slide images. In this paper, we introduce privacy-preserving federated learning 

for gigapixel whole slide images in computational pathology using weakly-supervised attention 

multiple instance learning and differential privacy. We evaluated our approach on two different 

diagnostic problems using thousands of histology whole slide images with only slide-level labels. 

Additionally, we present a weakly-supervised learning framework for survival prediction and 

patient stratification from whole slide images and demonstrate its effectiveness in a federated 

setting. Our results show that using federated learning, we can effectively develop accurate 

weakly-supervised deep learning models from distributed data silos without direct data sharing 

and its associated complexities, while also preserving differential privacy using randomized noise 

generation. We also make available an easy-to-use federated learning for computational pathology 

software package: http://github.com/mahmoodlab/HistoFL.
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1. Introduction

The emerging field of computational pathology holds great potential in increasing 

objectivity and enhancing precision of histopathological examination of tissue. Machine 

learning – and deep learning in particular – have demonstrated unprecedented performance 

in various pathology tasks such as characterization of a disease phenotype (Wang et al., 

2020; Zhou et al., 2019; Anand et al., 2020; Bulten et al., 2020; Mahmood et al., 2019), 

quantification of the tumor microenvironment (Javed et al., 2020; Graham et al., 2019; 

Schapiro et al., 2017), prediction of survival (Muhammad et al., 2019) and treatment 

response (Niazi et al., 2019; Bera et al., 2019), and integration of genomics with histology 

for improved patient stratification (Chen et al., 2020; Mobadersany et al., 2018; Lazar et 

al., 2017). Thanks to the ability of such algorithms to mine sub-visual features – even 

beyond the scope of known pathological markers – deep learning models have managed to 

tackle challenging tasks such as estimating primary source for metastatic tumors of unknown 

origin, identify- ing novel features of prognostic relevance (Yamamoto et al., 2019; Pell et 

al., 2019; Bera et al., 2019), and predicting genetic mutations from histomorphologic images 

only, without the use of immunohistochemical staining (Coudray et al., 2018). Among 

various approaches, weakly-supervised methods such as attention MIL (Lu et al., 2019, 

2020a) appear well-suited to potential adoption in clinical practice. Xiao et al. recently 

presented a censoring-aware deep ordinal regression method for survival prediction in 

computational pathology Xiao et al. (2020). These models learn from weak annotations 

in the form of image or patient-level labels which can include labels such as diagnosis or 

survival associated with the patient. Such information is readily available in clinical records 

and thus the data annotation does not introduce significant overhead over standard clinical 

workflow, in contrast to pixel-level annotations of regions of interest required by supervised 

models.

As in all machine learning affairs, the model’s accuracy and robustness can be 

significantly increased by incorporating diverse data reflecting variations in underlying 
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patient populations, as well as data collection and preparation protocols. Specifically, in 

pathology, whole slide images (WSIs) used for computational analysis can exhibit immense 

heterogeneity. Such diversities arise from not only the patient group corresponding to the 

histology specimens and variations in the tissue preparation, fixation and staining protocols, 

but also different scanner hardware that are used for digitization. While it may be possible 

and desirable to gain increased exposure to such heterogeneity through agglomeration of 

medical data from multiple institutions into a centralized data repository in order to develop 

more generalizable models, data centralization poses challenges not only in the form of 

regulatory and legal concerns (e.g. differing standards for data interoperability may preclude 

data transfer among institutions Scheibner et al. (2020)) but also technical difficulties such 

as high cost of transfer and storage of huge quantities of data. The latter is particularly 

relevant for computational pathology at scale since just 500 gp WSIs can be as large as the 

entirety of ImageNet (Deng et al., 2009).

Federated learning (Yang et al., 2019; Konecˇny’ et al., 2016; McMahan et al., 2017; Rieke 

et al., 2020) offers means to mitigate these challenges by enabling algorithms to learn from 

decentralized data distributed across various institutions. In this way, sensitive patient data 

are never transferred beyond the safety of institutional firewalls, and instead, the model 

training and validation occur locally at each institution and only the model specifics (e.g. 

parameters or gradients) are transferred. In general, federated learning can be achieved 

through two approaches. 1) Master-server: a master-server is used to transfer the model 

to each node (i.e. participating institution), where the model trains for several iterations 

using the local data. The master-server then collects the model parameters from each node, 

aggregates them in some manner, and updates the parameters of the global model. Updated 

parameters are then transferred back to the local nodes for the next iteration. 2) Peer-to-peer: 

each node transfers the locally-trained parameters to some or all of its peers and each node 

does its own parameter aggregation. The benefit of the master-server approach is that all 

governing mechanisms are separated from the local nodes which allows for easier protocol 

updates and inclusion of new institutions. In contrast, the peer-to-peer approach is less 

flexible – since all the protocols must be agreed-on in advance – however, the absence of a 

single controlling entity might be preferred in some cases e.g. due to lower costs or greater 

decentralization.

Although the nodes never transfer data themselves – only the model specifics – if leaked 

or attacked these can be sufficient to indirectly expose sensitive private information. Data 

anonymization alone does not provide sufficient protection (Rocher et al., 2019) since parts 

of the training data can be reconstructed by inversion of model parameters (Carlini et al., 

2019; Zhang et al., 2020), gradients (Zhu et al., 2019; Geiping et al., 2020), or through 

adversarial attacks (Wang et al., 2019; Hitaj et al., 2017). This is particularly worrisome 

in radiology where the medical scans can be used to reconstruct a patient’s face or body 

image. Even though histology data do not hold such a direct link with patient identity, it 

might still allow an indirect patient identification e.g. in the case of rare diseases. The design 

of countermeasures for increasing differential privacy is thus a very active field of research 

(Kaissis et al., 2020; Kairouz et al., 2019). A popular strategy in the medical field is a 

contamination of the input data (Cheu et al., 2019) or the model parameters (Dong et al., 
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2019) with certain levels of noise. This de- creases the individually recognizable information 

while preserving the global distribution of the data (Kaissis et al., 2020).

Though federated learning was originally proposed for non-clinical use, since its inception 

in Konecˇny’ et al. (2016), it has already appeared in some medical applications. These 

include large-scale multicenter studies of genomics (Mandl et al., 2020; Rehm, 2017; 

Jagadeesh et al., 2017), electronic health records (Brisimi et al., 2018; Choudhury et al., 

2019a, b), or wearable health devices (Chen et al., 2020). In the field of medical imaging, 

federated learning is particularly popular in the neurosciences. So far it has been applied 

in tasks such as brain tumor (Li et al., 2019; Sheller et al., 2018) and brain tissue (Roy et 

al., 2019) segmentation, EEG signal classification (Ju et al., 2020), analysis of fMRI scans 

of patients with autism (Li et al., 2020b) or MRI scans of neurodegenerative disease (Silva 

et al., 2019). Further adoption of federated learning in other medical domains is strongly 

anticipated due to the increasing demand for large and inter-institutional studies.

One of the fields that would strongly benefit from the federated framework is computational 

pathology (Andreux et al., 2020b, a; Rieke et al., 2020). Since histopathologic diagnosis 

is the gold standard for many diseases, pathology data is largely available in almost 

any hospital. Federated learning would in principle enable deep learning models to learn 

from much larger and more diverse multi-institutional data sources without the challenges 

associated with data centralization and healthcare interoperability. Furthermore, while fully-

supervised approaches are burdened by the need for time-costly pixel-level annotation based 

on pathologist expertise, weakly-supervised approaches such as MIL simplify collaborative 

efforts by alleviating the requirement for such human expertise and the burden of creating 

pixel-level labels under unified annotation protocol in all participating institutions.

Herin, we present the key contributions of our work as follows:

1. We present a large-scale computational pathology study to demonstrate the 

feasibility and effectiveness of privacy-preserving federated learning using 

thousands of gigapixel whole slide images from multiple institutions.

2. We account for the challenges associated with the lack of de- tailed annotations 

in most real world whole slide histopathology datasets and demonstrate how 

federated learning can be coupled with weakly-supervised multiple instance 

learning to perform both binary and multi- class classification problems 

(demonstrated on breast cancer and renal cell cancer histological subtyping) 

using only slide-level labels for supervision.

3. We extend the usage of attention-based pooling in multiple instance learning-

based classification and present an interpretable, weakly-supervised framework 

for survival prediction (demonstrated on renal cell carcinoma patients) in 

computational pathology using whole slide images and patient-level prognostic 

information.

4. We further validate the effectiveness of weakly-supervised deep survival models 

in a federated framework, paving the way for the development of prognostic 

models trained on multi-institutional cohorts with diverse populations.
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We also make available an easy-to-use federated learning for computational pathology 

software package: http://github.com/mahmoodlab/HistoFL

2. Methods

In this section, we will formulate our weakly-supervised federated multiple instance learning 

framework for performing privacy-preserving federated learning on data from across 

multiple institutions in the form of digitized gigapixel whole slide images.

2.1. Differential privacy and federated learning

In this problem, we want to develop deep learning models for performing predictive tasks 

on gigapixel WSIs by using data from different institutions. We denote data owned by 

institution i as Di, which we assume for simplicity, is simply a data matrix with a finite 

number of entries. Suppose there are in total B sites and we denote their corresponding 

data silo as D1, D2, . . ., DB. Since each medical institution will not share data with other 

parties due to various issues (e.g. institutional policies, incompatible data sharing protocols, 

technical difficulties associated with sharing large amount of data or fear of privacy loss), we 

cannot pool together their data and train a single deep learning model fcentralized for solving 

the desired task. Instead, our objective is to develop a federated learning framework where 

the data owners collaboratively train a model fglobal, in which each data owner does not need 

to share its data Di with others but can all benefit from the usefulness of the final model. 

In this paper, we adapted a master-server architecture, where each client node, representing 

each medical institution, locally utilizes the same deep learning architecture as one another 

and the global model, which we assume to be hosted on a central server hub. Each institution 

trains its respective model using local data and uploads the values of the trainable model 

parameters to the master server at a consistent frequency (i.e. once every one epoch of 

local training). We also adopt a randomized mechanism previously utilized on multi-site 

fMRI analysis (Li et al., 2020a), which allows each data owner to blur the shared weight 

parameters by a randomly noise vector zi to protect against leak-age of patient-specific 

information. After the master server receives all the parameters, it averages them in the 

global model and sends new parameters back to each local model for synchronization. 

Differential privacy is a popular definition of individual privacy (Dwork et al., 2014; Shokri 

and Shmatikov, 2015), which informally means that the attacker can learn virtually nothing 

about an individual sample if it were removed from or added to the dataset (Abadi et al., 

2016). In this problem, it means when a data point di is removed from or added to the 

dataset Di, the attacker can not infer any information about di from the output of weights 

of model fglobal. Differential privacy provides a bound s to represent the level of privacy 

preference that each institution can control. Formally, it says (Dwork et al., 2006), given a 

real-valued function f, and two adjacent datasets Di, Di
’ differing by exactly one example, 

i.e., Di − Di′ 1 = 1, fsatisfies (ε, δ)- differential privacy if for any subset of outputs S:

P f Di ∈ S ≤ eϵP f D′i ∈ S + δ (1)
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where the introduction of the δ term relaxes the stricter notion of ε-differential privacy 

and allows the unlikely event of differential privacy being broken to occur with a small 

probability.

To satisfy (ε, δ)-differential privacy, first, we provide the definition of l2 sensitivity of f, 
denoted by Δ2(f) as the maximum difference in the outputs of f over all possible adjacent 

datasets Di, Di ’:

Δ2(f) = max
Di − Di′ 1 = 1

f Di − f Di′ 2 (2)

For arbitrary ε ∈ (0, 1), as stated by Theorem 3.22 (Dwork et al., 2014), adding random noise 

to f that is generated from a Gaussian distribution with zero mean and standard deviation 

σ, i.e., N 0, σ2 , will result in f satisfying (ε, δ)-differential privacy if σ ≥
cΔ2(f)

ϵ  and c2 > 2

ln 1.25
δ . After rewriting the two inequalities, in other words, for any choice of ε, (ε, δ) 

-differential privacy can be satisfied for f by using the Gaussian mechanism, where δ is 

related to the variance of the Gaussian noise distribution via:

σ2 ≥ c2Δ2
2(f)

ϵ2 σ2 >
2ln 1.25

δ Δ2
2(f)

ϵ2
ϵ2σ2

2Δ2(f)2 > ln 1.25
δ

1.25
δ < exp ϵ2σ2

2Δ2(f)2 δ > 5
4exp −ϵ2σ2

2Δ2(f)2

(3)

In our federated learning setting, f involves a neural network consisting of many layers 

of trainable parameters making computing Δ2(f) intractable. However, without loss of 

generality, if we assume Δ2(f) = 1, we see that for a given level of δ, increasing σ will 

enable a smaller ε to be satisfied. Following Li et al., (2020b), we let σ = αη, where η is the 

standard deviation of the weight parameters of each layer in the neural network, effectively 

linking α, a parameter adjustable for participating institutions, to the level of differential 

privacy protection.

2.2. Data preprocessing

We processed and analyzed all of our WSI data at 20 × magnification. Due to the lack 

of labeled ROIs and the intractable computational expense of deploying a convolutional 

neural network (CNN) directly to the whole spatial extent of each WSI, we utilize a 

form of weakly-supervised machine learning known as multiple instance learning (MIL). 

Under the MIL framework, each WSI is treated as a collection (bag) of smaller regions 

(instances), enabling the model to learn directly from the bag-level label (diagnosis or 

survival information) during training. The details of the MIL-inspired weakly-supervised 

learning algorithms we use are described in Sections 2.3 and 2.4. To construct the MIL 

bags, we utilize the CLAM (Lu et al., 2020a) WSI processing pipeline to automatically 

segment the tissue regions in each WSI and divide them into M 256 × 256 image crops 

(instances), where M varies with the amount of tissue content in each slide. To overcome 
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the computational challenges resulting from the enormous sizes of gigapixel WSI bags, 

each 256 × 256 RGB instance further undergoes dimensionality-reduction via a pretrained 

ResNet50 CNN encoder (truncated after the 3rd residual block for spatial average pooling), 

and is embedded as a 1024-dimensional feature vector for efficient training and inference. 

Accordingly, each WSI in the dataset is represented by a M × 1024 matrix tensor.

For survival prediction, all WSIs corresponding to each patient case are analyzed 

collectively, i.e., for a case with N WSIs represented by individual bags of size M1, …, MN
respectively, the bags are concatenated along the first dimension to form a single patient bag 

of dimensions ∑j = 1
N Mj × 1024.

2.3. Weakly-supervised learning on WSIs

We adopted a multiple instance learning-based framework for weakly-supervised 

classification and survival prediction and use it as the basis for performing federated 

learning on gigapixel WSIs. We begin by describing the weakly-supervised learning 

algorithms in the case of a single local model (no federated learning). Each model consists 

of a projection module fproj, an attention module fattn, and a prediction layer fpred. The 

projection module consists of sequential, trainable fully-connected layers that project the 

fixed feature embeddings obtained using a pretrained feature encoder into a more compact, 

feature space specific to histopathology images of the chosen disease model. Given the jth 

incoming WSI/patient bag of Mj patch embeddings in the form of a Xj′ ∈ ℝMj × 1024 matrix 

tensor, for simplicity, we use a single linear layer Wproj ∈ ℝ512 × 1024 to project incoming 

patch-level embeddings into a 512-dimensional latent space, denoted by Hj ∈ ℝMj × 512. The 

attention module fattn uses attention-based pooling (Ilse et al., 2018) to identify information 

rich patches/locations from the slides and aggregates their information into a single global 

representation for making a prediction at the bag level. We use the gated variant of the 

attention network architecture introduced by Ilse et al. (2018). Accordingly, fattn consists of 

3 fully-connected layers with weights Ua, Va and Wa and learns to assign an attention score 

to each patch embedding hj, m ∈ ℝ512 (each row entry in Hj), indicating its contribution to 

the bag-level feature representation hbagj ∈ ℝ512, where aj, m represents the score for the mth 

patch and is given by:

aj, m =
exp Wa tanh Vahj, m

⊤ ⊙ sigm Uahj, m
⊤

∑m = 1
Mj exp Wa tanh Vahj, m

⊤ ⊙ sigm Uahj, m
⊤ (4)

Alternatively, the attention score vector for the whole bag is denoted by: Aj = fattn Hj . 

Subsequently, the bag-level representation hbagj is calculated by using the predicted attention 

scores as weights for averaging all the feature embeddings in the bag as:
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hbagj = Attn − pool Aj, Hj = ∑
m = 1

Mj
aj, mhj, m (5)

We used a 256-dimensional representation for the hidden layers in the attention network 

and apply Dropout with p = 0.25 to these activations for regularization - namely, 

Ua ∈ ℝ256 × 512, Va ∈ ℝ256 × 512 and Wa ∈ ℝ1 × 256. Lastly, the prediction layer fpred maps 

the bag representation hbagj to predictions logits sj, using a different activation function and 

loss function for classification and survival prediction: sj = fpred hbagj . The methodological 

details are described below.

Weakly-supervised classification For weakly-supervised classification, we use the prediction 

layer fpred to predict the unnormalized class-probability logits sj, which are then super-vised 

using the slide-level label Yj by applying the softmax activation and computing the standard 

cross-entropy loss.

Weakly-supervised survival prediction For weakly-supervised survival prediction using 

right-censored survival data, we consider discrete time intervals based on quantiles of event 

times for uncensored patients. More formally, we first consider the continuous time scale, 

where each labeled patient entry in the dataset, indexed by j, consists of a follow-up time 

Tj, cont[0, ∞) and a binary censorship status cj where cj = 1 indicates censorship (the event 

did not occur by the end of the follow-up period) while cj = 0 indicates that the event 

occurred precisely at time Tj, cont. Next, we partition the continuous time scale Tcont into R 

non-overlapping bins: 0, t1 , t1, t2 , … . tR − 1, ∞  and discretize Tj, cont accordingly where:

Tj, disc = r iff Tj, cont ∈ tr, tr + 1 (6)

In our study, we investigated R ∈ {2, 4, 6, 8} (results presented in Section 3.5), where 

for each choice of R (number of bins), t1, t2, …, tR − 1 are determined based on quantiles 

of event times of uncensored patients. For simplicity, from now on we refer to a patient’s 

discrete survival time Tj, disc simply as Tj and to be consistent with the notation we used for 

classification, we refer to the ground truth label as Yj. Given a patient’s bag-level feature 

representation hbagj as calculated by the model, the prediction layer fpred is responsible for 

modeling the hazard function defined as:

fhazard r ∣ hbagj = P Tj = r ∣ Tj ≥ r, hbagj (7)

which relates to the survival function through:
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fsurv r ∣ hbagj = P Tj > r ∣ hbagj

= ∏
u = 1

r
1 − fhazard u ∣ hbagj

(8)

Since we consider the label set T j ∈ 0, …, R − 1  to be the support of the hazard function, 

and R corresponding to number of bins of event times, fpred is a linear layer with weight 

parameters Wpred ∈ ℝR × 512 Finally, given logits sj = fpred hbagj , the sigmoid activation is 

applied to predict hazard distribution since it represents conditional probabilities, which are 

confined to positive real-values in the range of [0, 1]. For model optimization, we maximize 

the log likelihood function corresponding to a discrete survival model (Tutz et al., 2016), 

which is written as:

l = 1 − cj ⋅ log P T j = Y j ∣ hbagj + cj ⋅ log fsurv Y j ∣ hbagj (9)

By rewriting P Tj = r ∣ hbagj = fhazard r ∣ hbagj fsurv r ∣ hbagj , the loss we minimize based 

on the log likelihood function (Zadeh and Schmid, 2020) can be expressed as:

L = − l = − cj ⋅ log fsurv Y j ∣ hbagj
− 1 − cj ⋅ log fsurv Y j − 1 ∣ hbagj
− 1 − cj ⋅ log fhazard Y j ∣ hbagj

(10)

During training, we additionally upweight the contribution of uncensored patient cases by 

minimizing a weighted sum of L and Luncensored, which is defined by the terms:

Luncensored = − 1 − cj ⋅ log fsurv Y j − 1 ∣ hbagj
− 1 − cj ⋅ log fhazard Y j ∣ hbagj

(11)

Accordingly, the loss we optimize for weakly-supervised sur- vival prediction is:

Lsurv = (1 − β) ⋅ L + β ⋅ Luncensored (12)

2.4. Weakly-supervised federated learning with differential privacy

For both classification and survival prediction, we train the models on each client server 

within a federated learning setup, where each model is trained locally and the weights 

of the model are collected each epoch and aggregated to update the central model. The 

central model then sends back the new weights to each client model (Fig. 1). To preserve 

the differential privacy of the individual data located on each client server, we utilize a 

randomized mechanism, i.e., the Gaussian mechanism which we introduced in Section 2.1. 
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Hereby, our algorithm for collaboratively training server model and client models is shown 

in Algorithm 1.

In the proceeding section, we demonstrate the feasibility, adaptability and interpretability 

of attention-based multiple instance federated learning on three different computational 

pathology problems: (A) Breast Invasive Carcinoma (BRCA) subtyping (B) Renal Cell 

Carcinoma (RCC) subtyping (C) Clear Cell Renal Cell Carcinoma (CCRCC) survival 

prediction.

Algorithm 1

Privacy-preserving federated learning using attention-based multiple instance learning for 

multi-site histology-based classification and survival prediction.

Input:

 I. WSI Data and weak annotation (e.g. patient diagnosis or prognosis) scattered among B participating institutional 
sites:

  (X, Y) = X1, j, Y 1, j , …, XB, j, Y B, j , where

  Xi, j, Y i, j = Xi, 1, Y i, 1 , …, Xi, Ni, Y i, Ni  represents the set of Ni. pairs of WSI data and 

corresponding label for training stored at site i (in survival prediction, Xi,j. is the set of all diagnostic WSIs for patient j 
whereas in classification, it is a single WSI). We use

  X′, Y = X1, j′ , Y 1, j , …, XB, j′ , Y B, j  to denote WSI data-label pair after pre-processing (patching 

and feature extraction via a pretrained CNN feature encoder).

 II. Neural network models on local clients flocal = f1, …, fB and global model fglobal, stored on the central 

server. Each model fi, consists of a projection module fi, proj, an attention module fi,  attn and prediction layer 

fi, pred. We denote the weights of the local models as W1, …, WB and weights of the global model as Wglobal.

 III. Noise generator M( ⋅ ), which generates Gaussian random noise z ∼ 0, α2η2  where a denotes the noise level 

for and n is the standard deviation of a neural network weight matrix.

 IV. Number of training epochs or federated rounds, K.

 V. Optimizers opt1( ⋅ ), …, optB( ⋅ )  that update the model weights w.r.t a suitable loss metric L using gradient 

descent.

 VI. Weight coefficient for each client during federated averaging, e.g. γi =
Ni

∑Ni
.

 1. initialize all model weights Wglobal
(0) , W1

(0), …, WB
(0)

 2. for k = 1 to K do

 3.  for i = 1 to B do

 4.   for j = 1 to Ni do

      Hi, j = fi, proj
(k) Xi, j′

      Ai, j = fi,  attn
(k) Hi, j

 5.     hbagi, j = Attn − pool Ai, j, Hi, j

      si, j = fi,  pred
(k) hbagi, j

      Wi
(k) opti L si, j, Y i, j , Wi

(k)
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 6.   end for

 7.  end for

 8.   Wglobal
(k) Σiγi Wi

(k) + M Wi
(k)

 9.  for i = 1 to B do

 10.    Wi
(k) Wglobal

(k)

 11.   end for

 12. end for

 13. return global model fglobal

3. Experiments and results

3.1. Dataset description

Weakly-supervised classification.—To evaluate the proposed federated learning 

framework for weakly-supervised classification in histopathology, we examined two clinical 

diagnostic tasks for two separate disease models, namely, Renal Cell Carcinoma (RCC) and 

Breast Invasive Carcinoma (BRCA). For both tasks, we used publicly available WSIs from 

the TCGA (The Cancer Genome Atlas) in addition to in-house data collected at the Brigham 

and Women’s Hospital for model development and evaluation. In all cases, each gigapixel 

WSI is associated with a single ground truth slide-level diagnosis and no pixel or ROI-level 

annotation available.

Breast cancer dataset.—For the first binary task of classifying primary Breast Invasive 

Carcinoma as either lobular or ductal morphologial subtypes, 1056 FFPE dianostic WSIs 

(211 lobular and 845 ductal) were retrieved from the TCGA BRCA (Breast Invasive 

Carcinoma) study and our in-house dataset consists of 1070 WSIs of primary breast cancer 

(158 lobular and 912 ductal). Accordingly, in total we used 2126 breast WSIs (369 lobular 

and 1757 ductal).

Renal cell cancer dataset In the second task of multi-class classification of Renal Cell 

Carcinoma into clear cell (CCRCC), papillary cell (PRCC) and chromophobe cell (CHRCC) 

morphological subtypes, we collected 937 WSIs (519 CCRCC, 297 PRCC and 121 

CHRCC) from the corresponding studies in TCGA and our in-house dataset consists of 

247 WSIs of primary Renal cell carcinoma (184 CCRCC, 40 PRCC and 23 CHRCC). In 

total we used 1184 kidney WSIs (703 CCRCC, 337 PRCC and 144 CHRCC).

Weakly-supervised survival prediction.—We also examined federated learning for 

weakly-supervised survival prediction based on histopathology. Specifically, for patients 

diagnosed with renal clear cell carcinoma, we used right-censored, overall survival data from 

the TCGA-KIRC available via the cbio- portal. In total, 511 patient cases were retrieved 

from TCGA-KIRC. All diagnostic WSIs corresponding to each patient case were used for 

analysis.
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3.2. Experiments on multi-institutional WSI data

In each of the two weakly-supervised classification tasks, we considered four distinct 

“institutional sites”. These sites were identified by first naturally considering all in-house 

BWH data as one distinct institutional site. Then, for each TCGA cohort, we identified the 

tissue source site for each patient case. For the purpose of simulating federated learning 

across multiple institutions, we then randomly partitioned the set of unique tissue source 

sites into 3 non-overlapping, roughly equal-sized subsets, and grouped together the data 

corresponding to each subset of tissue source sites to serve as 3 distinct institutional sites. 

Similarly, for CCRCC survival prediction, we used 3 institutional sites created by randomly 

partitioning the tissue source sites that contributed to the TCGA-KIRC cohort. The details of 

these partitions are summarized below for each task (Tables 1–3).

Once the institutional sites were identified, the dataset is then randomly partitioned into 

a training, validation and test set, respectively consisting of 70, 15 and 15% of patient 

cases from each site, repeated using 5 different random seeds. For classification, given the 

class-imbalance nature of the datasets, within each institutional site, stratified sampling is 

used to ensure sufficient representation of minority classes across the training, validation and 

test set. Additionally, if a single patient case contains multiple diagnostic slides, all of them 

were drawn together into the same set when that patient is sampled. Similarly, for survival 

prediction, sampling is stratified based on both the discretized follow-up time (binned based 

on quartiles of event times of uncensored patients) and the censorship status.

For each task, we used the model architecture and loss function as described in detail 

in Section 2.3. To train each local model, we used the Adam optimizer with default 

hyperparamters, a learning rate of 2e-4 and l2 weight decay of 1e-5 for all experiments. 

For survival prediction, β, which controls how much the contribution of uncensored 

patients should be upweighted, was set to 0.15. Additionally, we monitored the validation 

performance each epoch and performed early stopping on the global model when it does 

not improve for 20 consecutive epochs (federated rounds), but only after it has been trained 

for at least 35 epochs. The model check-point with the best validation performance (lowest 

loss for classification and best c-index for survival prediction) was then used to evaluate on 

the held-out test set. For each task, we investigated 3 scenarios: (1) training on data from a 

single institution, (2) training a single model by centralizing or pooling together all data (no 

federated learning) and (3) training on data from all institutions using federated averaging, 

as described in Section 2.4 and outlined in details in Algorithm 1.

For scenario 3), while the originally proposed federated aver- aging algorithm (McMahan et 

al., 2017) weighs the contribution of each local model by its respective number of training 

samples γi =
Ni

ΣNi
 when updating the weights of the central model, Li et al. (2020a) chose 

to weigh each local model equally γi =
Ni
B . In our study, we stick to the design of the 

original algorithm but also investigate the performance between weighted averaging vs. 

simple averaging in Section 3.6, where results show minimal difference between the two 

design choices. We also studied changing the strength of Gaussian random noise added 

to local model weights during federated averaging, and its effect on the performance of 
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the central model. As described in Section 2.1, for each model fi, we generated Gaus- 

sian noise zi ∼ 0, α2η2  where η is the standard deviation of the weight parameters in each 

individual layer of the network and α controls the noise level. In our experiments, we 

varied α ∈ 0, 0.001, 0.01, 0.1, 1.0 . In the next section, we present results demonstrating the 

effectiveness of weakly-supervised fed- erated learning for both binary and multi- class 

classification, as well as survival prediction.

3.3. Experimental results

We evaluated our proposed weakly-supervised, federating learning framework on both a 

multi-class and a binary classification problem (Figs. 2, 3, Tables 4 and 5) as well as 

survival prediction (Fig. 4 and Table 6) and demonstrated the feasibility of performing 

privacy-preserving, federated learning on WSI data in all tasks.

In both BRCA subtyping (Table 4) and RCC subtyping (Table 5), the model performance 

is evaluated using a wide variety of classification metrics including the AUC of the ROC 

curve, mean average precision (mAP), classification error, F1 score, balanced accuracy 

(bAcc) and Cohen’s κ (macro-averaging is used to extend binary classification metrics 

to multi-class classification in the case of RCC subtyping). We found that the model 

performance benefited significantly from training on multi-institutional data using federated 

learning, compared to learning from data within a single institution. In fact, we found the 

models trained using federated learning to be generally competitive in performance even 

when compared to scenario 2), where model is trained by first centralizing (sharing) all 

training data from each institution. This is true even when different levels of random noise 

are applied for privacy preservation. For α ∈ 0, 0.001, 0.01, 0.1 , for BRCA subtyping, the 

mean test AUC ranged from 0.833 to 0.862 when using federated learning for different 

levels of random noise and for RCC subtyping, the macro-averaged test AUC ranged from 

0.974 to 0.976. In addition to strong performance, in Fig. 3, we also demonstrated that 

models trained using privacy-preserving federated learning can saliently localize regions 

of high diagnostic relevance and identify morphological features characteristic of each 

underlying tumor subtype. However, consistent with previous studies (Li et al., 2020b), we 

found that the model performance significantly deteriorated when α was set too high (e.g., 

α = 1), showing that there is indeed a trade off between model performance and privacy 

protection.

For survival prediction, we evaluated the model performance using the c-Index, which 

measures the concordance in ranking patients by their assigned risk w.r.t. their ground truth 

survival time, as well as the average cumulative/dynamic AUC (Hung and Chiang, 2010) for 

time dependent ROC curves, which quantifies the ability of a model to distinguish subjects 

who fail by a given time with subjects who fail after this time, across many time points. 

Additionally, based on the predicted risk score for each patient in the test set, we performed 

hypothesis testing using the log-rank test to assess whether each model can stratify patients 

into distinct high risk and low risk groups (cutoff based on 50th percentile of the model’s 

predicted risk scores) that resulted in statistically significantly different survival distributions 

(Table 6). When trained using data from a single institution, only 1 out of 3 institutions 

was able to yield a model that can stratify patients into distinct survival groups based on 
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predicted risk scores. Notably, we observed that the model trained using data local to site 

3 delivered performance comparable to that of centralized training and using federated 

learning. This can likely be attributed to site 3 having a much larger local dataset (n = 

331) compared to the other 2 sites (n = 104 and n = 76 respectively). Similar dataset-size 

imbalance among different participating institutions frequently occurs in the real-world and 

is also reflected in the imbalanced distribution of patient cases among the original tissue 

source sites in the TCGA. In settings where the data at a single institution are insufficient 

(e.g. site 1 and 2) in either size or diversity to yield a meaningful, generalizable model, 

soliciting data from collaborating institutions or other external sources may be necessary. On 

the other hand, we found that federated learning can overcome this challenge as all models 

trained in the federated framework (with the exception of when using α = 1) resulted in 

statistical significance (p-value < 0.05) and produced reasonable performance both in terms 

of c-Index values and average cumulative/dynamic AUC.

Similar to classification, we visualized attention heatmaps over the entire WSI for low risk 

(long survival) and high risk (short sur-vival) patients in order to interpret the regions and 

morphological features learned by the weakly-supervised model to be of high prognostic 

relevance (Fig. 4).

3.4. Intra- and inter-center performance

The ability of a trained AI model to generalize to unseen, heterogeneous data with 

population and institutional-site specific variations is not only desirable but also crucial to its 

reliability and usability in real-world settings. As such, for both classification and survival 

prediction tasks, we examine more closely the intra- versus inter-center performance of 

different approaches. As expected, federated learning not only enables better generalization 

on average, as measured in terms of both micro- and macro-averaged scores (ROC 

AUC for classification and c-indices for survival prediction) across all sites, but is also 

mostly competitive in performance against models developed using single-site data on their 

respective intra-center portion of the test data (Tables 7, 8, 9.)

3.5. Comparison of weakly-supervised survival prediction and existing strategies

In this section, we investigate the effectiveness of the proposed weakly-supervised survival 

prediction method for different hyper-parameter choices, and in comparison with existing 

strategies such as manual grading by pathologists (low vs. high fuhrman nuclear grade) 

in combination with other covariates such as age and gender on the aforementioned TCGA-

KIRC dataset (n = 511). Both the “Grade” only and “Grade + Age + Gender” methods are 

trained based on the Cox proportional hazard models using the same 5-fold splits as the 

weakly-supervised survival models are trained in the “centralized” set- ting (without using 

federated learning). We observed that in general the performance difference between the 

deep learning model trained using different values of R are under a few percents, with R = 

8 performing the best for the particular task (Table 11). Additionally we note that the cox 

proportional hazard model based on nuclear grade lags behind the weakly- supervised deep 

learning-based approach, and only matches its performance when combined with additional 

variables including age and gender, beyond histologic features made available to the deep 

learning model.
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3.6. Ablating hyperparamter choices in federated averaging

Instead of aggregating the weights of local models after each epoch, a less frequent 

communication pace can be used. We investigated model performance for each task by 

varying E, the number of epochs each local model is updated before communicating 

with the central model for aggregation, for E ∈ {1, 2, 4, 8}. As shown in Table 10, for 

classification tasks, the resulting performance shows minimal difference for larger E (less 

frequent communication) while survival prediction a decrease in c-indices of around 2 – 3% 

was observed for E = 4 and E = 8 respectively. This could potentially be explained by the 

smaller training set sizes available for the task, which makes it easier for client models to 

overfit on their local training data when a longer communication pace is used.

In addition to the weighted averaging aggregation used in the originally proposed federated 

averaging algorithm, where γi =
Ni

ΣNi
, and the contribution of each local model is weighted 

proportionally to the size of its training set, we investigate the alternative choice used by Li 

et al. (2020a), γi =
Ni
B , where uniform weights are used for averaging the updated weights of 

different local models in each training round. The results are shown for both classification 

and survival tasks and for different levels of α (Fig. 5), where minimal differences between 

the two design choices were observed.

4. Conclusion

Over the past several years, computational pathology has seen enormous growth due to 

deep learning achieving “clinical-grade” performance on many clinically-relevant pathology 

tasks. As a result, AI algorithms for pathology data have received considerable attention 

as an support decision system in assisting clinicians in pathology and laboratory medicine 

services, with recent FDA approval given to weakly-supervised AI algorithms for cancer 

diagnosis. Despite these breakthroughs, the development and validation in AI algorithms 

in pathology have been mainly limited to single-institutional datasets, which may not 

generalize at deployment time due to variations in the underlying patient population, 

staining protocols, and scanner hardware. Federated learning has been suggested as a path 

forward in enabling differential privacy and overcoming stagnant healthcare interoperability 

for sharing sensitive medical data. With increasing demand for multi-institutional studies for 

validating clinical-grade AI systems in pathology, the robust validation of federated learning 

systems, in both differential-privacy and model performance, is urgently needed to enable 

collaboration and validation of all AI systems that would participate in medical decision 

making.

In this work, we demonstrate the feasibility and effectiveness of applying federated, 

attention-based weakly-supervised learning for general purpose classification and survival 

prediction on gigapixel whole slide images from different sites, without the need for 

institutions to directly share potentially sensitive patient data. Our proposed framework 

opens the possibility for multiple institutions to integrate their WSI datasets and train a 

more robust model that tends to generalize better on unseen data than models developed 

on data from a single institution, while also allowing participating institutions to preserve 
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differential privacy via a randomized mechanism. Backed by a flexible and interpretable 

attention-based weakly-supervised learning framework, we believe our federated learning 

framework has the clear potential to be applied to many important computational pathology 

tasks beyond what we have already shown in this study.

Decreasing barriers to cross-institutional collaborations in this way will be key to the future 

development of computational pathology tools. This is especially true in two applications: 

(1) rare diseases, where a single institution may not possess enough cases of a single entity 

to train an effective model on its own due to a lack of diversity in morphology, and (2) 

global health, in which AI algorithms are deployed and finetuned in low- and middle-income 

countries that lack access to pathology and laboratory medicine services (Nabi, 2018; 

Anglade et al., 2020; Lu et al., 2021). These techniques may also be useful in situations 

where transferring large quantities of physical or digital slides may be impossible due to 

institutional or governmental regulations. Models that give institutions greater control over 

their data while still achieving at or near state-of-the-art perfor- mance will be instrumental 

in progress towards democratized computational pathology.
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Fig. 1. 
Overview of the weakly-supervised multiple instance learning in a federated learning 

framework. At each client site, for each WSI, the tissue regions are first automatically 

segmented and image patches are extracted from the segmented foreground regions. Then 

all patches are embedded into a low-dimension feature representation using a pretrained 

CNN as the encoder. Each client site trains a model using weakly-supervised learning on 

local data (requires only the slide-level or patient-level labels) and sends the model weights 

each epoch to a central server. Random noise can be added to the weight parameters before 

communicating with the central hub for differential privacy preservation. On the central 

server, the global model is updated by averaging the model weights retrieved from all client 

sites. After the federated averaging, the updated weights of the global model is then sent to 

each client model for synchronization prior to starting the next federated round.

Lu et al. Page 20

Med Image Anal. Author manuscript; available in PMC 2022 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2. 
Performance, comparative analysis and loss curves. a-c, d-f The classification performance 

and loss curves of BRCA histologic subtyping and RCC histological subtyping, respectively. 

Top: ROC curves are generated on the test sets for models trained using a centralized 

database, federated learning (with different levels of Gaussian random noise added during 

federated weight averaging) and using training data local to each institution individually. 

The AUC score (averaged over 5-fold cross-validation, s.d.) is reported for each experiment; 

macro-averaging is used for the multi-class classification of RCC subytping. Using 

multiinstitutional data and federated learning, we achieved a mean test AUC between 

0.833 and 0.862 on BRCA histologic subtyping and an AUC of between 0.974 and 

0.976 on RCC histologic subtyping respectively. Middle: Balanced accuracy score and 

the sensitivity (recall) for each class (IDC: Invasive Ductal Carcinoma, ILC: Invasive 

Lobular Carcinoma for BRCA subtyping; CHRCC: Chromophobe Renal Cell Carcinoma, 

CCRCC: Clear Cell Renal Cell Carcinoma, PRCC: Papillary Renal Cell Carcinoma for RCC 

subtyping) is plotted for all experiments to assess model performance when accounting for 

class-imbalance in the respective test set. Error bars show s.d. from 5-fold cross-validation. 

Bottom: For each experiment, the training loss and validation loss is monitored over each 
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epoch before early stopping is triggered (see Section 3.2). Loss curves are shown for a single 

cross-validation fold from each task. Federated learning is observed to converge to a higher 

training and validation loss value in both tasks.
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Fig. 3. 
Interpretability and visualization for weakly-supervised federated classification. In order to 

interpret and validate the morphological features learned by the model for RCC and BRCA 

histologic subtype classification, for randomly selected WSIs in the respective test set, the 

model trained with privacy-preserving federated learning (α= 0.01) is used to generate 

attention heatmaps using 256 × 256 sized tissue patches tiled at the 20 × magnification 

with a 90% spatial overlap. For each WSI, the attention scores predicted for all patches 

in the slide are normalized to the range of [0, 1] by converting them to percentiles. 

For subtype classification, patches with high attention refers to image regions of high 

diagnostic relevance used for class prediction. The normalized scores are then mapped to 

their respective spatial location in the slide. Finally, an RGB colormap is applied (red: high 

attention, blue: low attention), and the heatmap is overlaid on top of the original H&E 

image for display. For BRCA, patches of the most highly attended regions (red border) 

exhibited well-known tumor morphology of invasive ductal carcinoma (round cells with 
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varying degrees of polymorphism arranged in tubules, nests, or papillae) and invasive lobular 

carcinoma (round and signet-ring cells with intracellular lumina and targetoid cytoplasmic 

mucin arranged in a single-file or trabecular pattern). For RCC, highly attended regions 

exhibited well-known tumor morphology of chromophobe RCC (large, round to polygonal 

cells with abundant, finely-reticulated to granular cytoplasm and perinuclear halos), clear 

cell RCC (large, round to polygonal cells with clear cytoplasm and distinct, but delicate 

cell borders), and papillary RCC (round to cuboidal cells with prominent papillary or 

tubulopapillary architecture with fibrovascular cores). (For interpretation of the references to 

colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 4. 
Patient stratification and interpretability for weakly-supervised federated survival prediction. 

Patients in the test set were stratified into high risk and low risk groups using the median 

(50% percentile) of the model’s predicted risk score distribution as the cutoff and the 

log-rank test was used to assess the statistical significance between survival distributions of 

the resulting risk groups. Top: increasing α by over two orders of magnitude for stronger 

guarantees on differential privacy did not eliminate the model’s ability to stratify patients 

into statistically significantly (p -value < 0.05) different risk groups. Bottom: exemplars of 

Clear Cell Renal Cell Carcinoma patients predicted as high-risk and low-risk respectively by 

the model, the original H&E (left), attention-based heatmap (center), and highest-attention 

patches (right). As compared to the subtyping classification problem, since survival analysis 

is an ordinal regression problem, the high attention patches correspond to regions with 

high prognostic relevance in stratifying patients into low versus high risk groups. The 

highest attention patches for the high-risk case focus predominantly on the tumor cells 

themselves, while the highest attention patches for the low risk case focus predominantly on 

lymphocytes within the stroma and directly interfacing with tumor cells, which corroborates 

with the known prognostic relevance of tumor-immune co-localization in pathology.
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Fig. 5. 
Performance comparison between simple averaging vs. weighted aggregation. Performance 

in terms of AUC ROC for classification and c-index for survival prediction is shown for 

federated averaging across different levels of α. Error bars show s.d. from 5-fold cross-

validation.
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Table 1

Partition for BRCA subtyping (number of WSIs).

ILC IDC Total

TCGA Site 1 56 155 211

TCGA Site 2 46 268 314

TCGA Site 3 109 422 531

BWH 158 912 1070

Total 369 1757 2126

Med Image Anal. Author manuscript; available in PMC 2022 August 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Lu et al. Page 28

Table 2

Partition for RCC subtyping (number of WSIs).

CCRCC PRCC CHRCC Total

TCGA Site 1 108 120 39 267

TCGA Site 2 78 100 31 209

TCGA Site 3 333 77 51 461

BWH 184 40 23 247

Total 703 337 144 1184
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Table 3

Partition for CCRCC survival prediction (number of cases).

Uncensored Censored Total

TCGA Site 1 16 88 104

TCGA Site 2 27 49 76

TCGA Site 3 128 203 331

Total 171 340 511
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Table 6

CCRCC survival prediction test performance reported as five-fold mean (±s.d.).

c-Index AUC P-Value

Site 1 only 0.502±0.018 0.513±0.032 0.937

Site 2 only 0.506±0.017 0.520±0.022 0.662

Site 3 only 0.645±0.064 0.674±0.077 9.14 × 10−4

Centralized 0.692±0.043 0.729±0.046 1.39 × 10−8

Federated, α = 0 0.683±0.064 0.719±0.070 2.86 × 10−8

Federated, α = 0.001 0.639±0.090 0.664±0.103 1.52 × 10−5

Federated, α = 0.01 0.648±0.099 0.676±0.111 2.39 × 10−5

Federated, α = 0.1 0.647±0.085 0.672±0.098 2.52 × 10−9

Federated, α = 1 0.508±0.036 0.504±0.044 0.805
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Table 10

Federated learning performance for difference communication pace.

A. BRCA subtyping performance for different communication pace

E=1 E=2 E=4 E=8

AUC 0.862±0.025 0.869±0.024 0.865±0.027 0.867±0.024

B. RCC subtyping performance for different communication pace

E=1 E=2 E=4 E=8

AUC 0.976±0.007 0.975±0.006 0.975±0.007 0.973±0.009

C. CCRCC survival prediction performance for different communication pace

E=1 E=2 E=4 E=8

c-index 0.683±0.064 0.686±0.053 0.664±0.083 0.655±0.074
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Table 11

Survival prediction performance for different choices of R and comparison with existing approaches, reported 

as five-fold mean (±s.d.).

c-Index AUC P-Value

Grade 0.648±0.047 0.668±0.058 0.272

Grade + Age + Gender 0.693±0.050 0.716±0.065 0.193

R = 2 0.681±0.031 0.708±0.044 1.28 × 10−8

R = 4 0.685±0.020 0.723±0.022 6.38 × 10−6

R = 6 0.678±0.033 0.713±0.033 7.58 × 10−8

R = 8 0.692±0.043 0.732±0.048 1.39 × 10−8
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