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Abstract

The corpus callosum (CC) is one of the most important interhemispheric white matter tracts 

that connects interrelated regions of the cerebral cortex. Its disruption has been investigated 

in previous studies and has been found to play an important role in several neurodegenerative 

disorders. Currently available methods to assess the interhemispheric connectivity of the CC 

have several limitations: i) they require the a priori identification of specific cortical regions as 

targets or seeds, ii) they are limited by the characterization of only small components of the 

structure, primarily voxels that constitute the mid-sagittal slice, and iii) they use global measures 

of microstructural integrity, which provide only limited characterization. In order to address some 

of these limitations, we developed a novel method that enables the characterization of white matter 

tracts covering the structure of CC, from the mid-sagittal plane to corresponding regions of cortex, 

using directional tract density patterns (dTDPs). We demonstrate that different regions of CC have 

distinctive dTDPs that reflect a unique regional topology. We conducted a pilot study using this 

approach to evaluate two different datasets collected from healthy subjects, and we demonstrate 

that this method is reliable, reproducible, and independent of diffusion acquisition parameters, 

suggesting its potential applicability to clinical applications.
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1. Introduction

The integrity of the corpus callosum (CC), the largest of the commissural white matter 

pathways in the brain, is critical for normal neurological functions. Its disruption has 

been associated with several neurological diseases, including Alzheimer’s, Parkinson’s, and 

Huntington’s (Nir et al., 2013; Wu et al., 2020; Rosas et al., 2010), but because of its 

complex architecture, studies of the CC have been technically challenging. For example, 

anatomical studies have attempted to use distinct parcellation schemes to obtain thickness 

and/or volume measures of the CC (Emsell et al., 2017; Rosas et al., 2010). The brain-image 

atlases that have been used to reconstruct the structure, such as the one proposed by Julich 

(Amunts et al., 2020) or the Johns Hopkins University diffusion-based white matter atlas 

(Mori and Crain, 2005) represent an average shape of the CC and require non-linear 

warping of the average shape to individual images, which pose technical challenges. The 

Hofer-Frahm scheme (Hofer and Frahm, 2006) identifies five unique CC regions in humans 

based on the structural connectivity assessed by the diffusion tractography between cortical 

regions as the fibers pass through the mid-sagittal section. This approach has been used to 

evaluate differences in callosal topography (Rosas et al., 2010; Stezin et al., 2021; Rusina et 

al., 2022) and has remained the standard for the anatomical evaluation of the CC. Although 

its applicability has already been established, that can practically be extended well beyond 

the mid-sagittal section.

Other studies have instead used diffusion metrics, which characterize microstructural tissue 

properties including fractional anisotropy (FA), axial diffusivity (AD), and radial diffusivity 

(RD) (Basser and Pierpaoli, 1996; Kingsley, 2006). In these instances, alterations in 

microstructural integrity have been typically associated with reductions in FA or increases in 

RD or AD (Xu et al., 2021), however, while they provide estimations about microstructural 

integrity, they primarily provide indirect information about macroscopic connectivity. Newer 

approaches, including the one proposed by Huang et al. (2019), which uses very high 

diffusion gradients, enable the evaluation of axon diameter/density and have been suggested 

to be more sensitive and more closely associated with cognitive measures.

Determining interhemispheric connectivity presents an even greater challenge. The 

interhemispheric connectivity of the CC has been estimated using cortical regions that 

have been a priori identified (Rubinov and Sporns, 2010), but these regions have been 

defined as both target and source for tractography (Russo et al., 2022), thereby limiting 

its true evaluation. In addition, the magnitude of the number of fibers traversing through 

the CC interconnecting cortical regions have been very difficult to deconvolve; available 

tools are primarily unable to adequately characterize interhemispheric fibers because of the 

magnitude of the connections that travel through CC. Finally, when seeded from a cortical 

region, traditional tractography can fail to reach the corresponding region of the opposite 

hemisphere. To overcome some of these limitations, advanced tools and sophisticated ROI 

definitions are necessary to delineate and subdivide callosal pathways so that the region of 

a bundle of CC can be used for tract-specific analysis (Watanabe et al., 2018; Münch et al., 

2022).
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In this study we developed a novel approach that maintains the information of the orientation 

and position of fiber trajectories and that allows the quantification of fiber tract density along 

the entire length of the CC. We hypothesized that anatomically aligned directional tract 

density patterns were unique for specific regions of the CC and could be used to evaluate 

regional interhemispheric connectivity without specifying an a priori destination. Although 

more work is needed, our findings using two healthy-subject datasets suggest that this novel 

analytical algorithm provides an accurate estimation of interhemispheric connectivity that is 

also reliable, reproducible, independent of diffusion acquisition parameters, and that have 

the potential to be used to evaluate interhemispheric connectivity in clinical applications.

2. Methods

2.1. Datasets

2.1.1. Synthetic dataset—A synthetic dataset using the Phantomas tool (Caruyer et 

al., 2014) was generated to provide a simplified reconstruction to evaluate interhemispheric 

connections, which are often complex due to their branching nature (Schilling et al., 2019). 

This was intended to evaluate the effect of different acquisition parameters, including 

angular resolution and gradient strength, on the dTDPs.

The Phantomas tool required inputs of heuristic control points, which were linked in order 

to form a polynomial trajectory (Fig. 1a) to create a synthetic diffusion dataset that included 

information regarding bundle size and diffusion acquisition configurations, such as b-values 

and uniformly oriented gradient b-vectors. Heuristic control points included a smaller bundle 

running towards the inferior direction with half the radius size of the main CC bundle.

We used three diffusion-weighting schemes: i) b700 with 10 b = 0 and 60 (number of 

orientations) b = 700 s/mm2  images; ii) b2000 with 3 b = 0 and 90 b = 2000 s/mm2

images; and iii) multi-shell scheme with 6 b = 0, 14 b = 500, 48 b = 1000, and 66 

b = 2000 s/mm2  images. We also used two commonly available diffusion imaging 

(isotropic) resolutions of 1 and 2 mm to compare the sensitivity of dTDPs to the voxel 

resolution. In addition, two cross-section bundle sizes (radius of 8 and 12 mm) were used 

to simulate CC bundles of different sizes. With these input sets, the parameter combination 

created 12 synthetic diffusion images. A sample output is depicted for the given parameters 

in Fig. 1 with reconstructed fiber orientation distributions (FODs).

2.1.2. Human datasets—We used two available human datasets. The first was a 

publicly available comprehensive diffusion MRI dataset (CDMD), which included healthy 

human subjects (N = 24, 15F/9M, mean age 34.0 ± 10.9) scanned on the MGH-USC 

(Siemens Skyra) 3T Connectome scanner (Tian et al., 2022). This dataset also included 

a subset of repeated scans (N = 6, 3F/3M, mean age 31.3 ± 10.1) from the same participants. 

A second dataset, the healthy human subjects dataset (HHSD), consisted of scans acquired 

on Siemens Tim Trio 3T MRI scanner at the A.A. Martinos Center for Biomedical 

Imaging. This dataset was further subdivided into HHSD-A, which included subjects 

(N = 24, 15F/9M, mean age 34.9 ± 7.6) that were age-matched to the CDMD, and another 
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group HHSD-B (N = 33, 14F/19M, mean age 45.9 ± 2.7), which allowed us to evaluate the 

reliability of these measures.

CDMD imaging parameters (Tian et al., 2022):  T1-weighted structural MRI data 

were acquired using an MEMPRAGE sequence with isotropic resolution of 1.0 mm, 

TR = 2530 ms, TE = 1.15, 3.03, 4.89, 6.75 ms, flip angle = 7°, and TI = 1100 ms. Diffusion 

weighted data were acquired using multiple b-value shells (50 b = 0 s/mm2  and 

16 different b values ranging from 50 to 17,800 [s/mm2]), each shell having 32 

(for b < 2400 s/mm2) or 64 (for b ≥ 2400 s/mm2) diffusion encoding directions. Imaging 

parameters were set with a = 2 mm (isotropic), TR = 3800 ms, and TE = 77 ms.

HHSD imaging parameters:  High resolution MEMPRAGE/T1 image (root-mean-

square average of 4 echos) acquired with isotropic resolution of 1.0 mm, 

TR = 2530 ms, TE = 1.64, 3.5, 5.36, 7.22 ms, flip angle = 7°, and TI = 1200 ms. The 

diffusion data used 70 diffusion weighted volumes (10 b = 0 s/mm2  and 60 

b = 700 s/mm2  images), isotropic resolution of 2 mm, TR = 7980 ms, and TE = 83 ms.

2.2. Data pre-processing framework

Synthetic dataset: Diffusion-weighted images were first denoised (Veraart et al., 2016) 

and FODs were reconstructed using a constrained spherical deconvolution model. For 

single-shell data, we used a Turnier response function estimation, and for the multi-shell 

data, we used the ‘dhollander’ option (Dhollander et al., 2019) for the response function 

estimation because the 5tt algorithm expects the diffusion data to include brain structures 

that do not exist in the synthetic dataset. For the two different bundle size configurations, a 

mid-sagittal cross section of the mean b0 images was used to draw a manual seed region, 

which imitated the CC cross section segmentation step performed for the human datasets.

CDMD: Processing steps were described in Tian et al. (2022). For the diffusion model 

fitting we used MRtrix31 pipeline using b = 800, 1500, 2400, 3450 s/mm2 shells. Since the 

CDMD was multi-shell diffusion acquisition, we used the multi-shell-multi-tissue options 

for both the response function estimation and FOD reconstruction steps.

HHSD: The diffusion images were denoised (Veraart et al., 2016) and corrected for 

distortion using FSL FUGUE (Jenkinson et al., 2012) before correcting for eddy currents 

and head motions using FSL Eddy (Andersson and Sotiropoulos, 2016; Andersson et al., 

2016). White matter FODs were obtained using a constrained spherical deconvolution model 

with a Turnier response function estimation using MRtrix3. Tract density images were 

reconstructed using (Calamante et al., 2010) to evaluate the white matter integrity of CC 

with IFOD2 probabilistic tractography (Tournier et al., 2007, 2010; Jeurissen et al., 2014).

Anatomical reconstruction and registration: We used FreeSurfer2 (version 7) to 

form an initial mask of the CC for the human datasets. Each individual T1 image was rigidly 

1mrtrix.org.
2surfer.nmr.mgh.harvard.edu.

Demir and Rosas Page 4

Neuroimage Rep. Author manuscript; available in PMC 2023 June 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://mrtrix.org


registered using FSL Flirt (rotation and translation) to the MNI152 (Mazziotta et al., 2001) 

standard space so that all subjects had a unified brain tilt along the AC-PC line. Diffusion 

weighted images were co-registered to the T1 image using a boundary-based registration 

(Greve and Fischl, 2009). Using the estimated registration matrices, the tract density maps 

were transformed to MNI152 space.

2.3. Segmentation and parcellation of the corpus callosum

The CC labels (251–255) from the FreeSurfer reconstruction were binarized to form a 

CC mask, which served as a boundary condition for the CC segmentation. The principal 

direction of diffusion V 1  and fractional anisotropy FA  maps were utilized as factors for 

the CC curve evolution and segmentation of CC, for which V 1 is expected to align in right to 

left direction ([1, 0, 0]) and FA is expected to be lower beyond the CC. The mid-sagittal slice 

was first located using the user interface along the sagittal slices, and then central voxels 

of the genu ( c1 ) at the most anterior aspect of the structure (Fig. 2a), and the splenium ( cn )
at the most posterior aspect (Fig. 2b) were identified. Using Algorithm 1, we reconstructed 

a centerline CC curve by following a direction with the maximum metric ω towards the 

direction of interest, d i as shown in Fig. 2 using an adapted version of the Hofer-Frahm CC 

parcellation scheme to label the arcs of the CC curve as I, IIa, IIb, III, IV, and V in the order 

starting from the genu (I) to the splenium (V), as shown in Fig. 2d. Neighboring voxels of 

the curve were included in the parcellation using a modified version of the metric ω of the 

Algorithm 1, as given in Equation (1)3, if a certain threshold criteria ω′ > δ  was met. The 

green regions shown in Fig. 2(a, b, and c) depict the voxels which met ω′ > δ condition. The 

threshold parameter δ was chosen heuristically as 0.15 to include all white matter voxels for 

seeding the tract.

ω′ = CCrecon( x )FA( x )⟨V 1( x ), [1, 0, 0]⟩ (1)

2.4. Tractography seeding and tract density imaging

The fiber tractography from each CC region was initiated using 50000 seeds to densely 

cover the entire region, respectively. The IFOD2 probabilistic tractography algorithm 

(Tournier et al., 2010) was used to reconstruct fiber pathways using the white matter mask 

obtained from 5ttgen script of the MRtrix as the mask to generate a border at which to 

terminate the tracts. Track density maps (Calamante et al., 2010) were reconstructed to 

measure the density of interhemispheric bundles traversing through each of the six regions 

of the CC (shown in Fig. 3).

2.5. Definition of a projection plane for tract density images

D(X) was defined as the mapping from ℝ3 to ℝ, to show tract density for a voxel coordinate 

X ∈ ℝ3, and j  be the unit vector, which runs as depicted in Fig. 4a towards the normal 

vector to the tangent of the CC curve at the centroid of the CC region, cs . We defined 

3For the neighbor inclusion metric, ❬,❭ denotes the dot product and x  is a voxel along the perpendicular direction to the tangent of the 
curve.
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the projection plane, P, by rotating the coronal image plane, for which the normal vector 

was [0, 1, 0], towards the anterior, about the origin point cs  and fixed axis i = [1, 0, 0], 
which was to the left of the brain, so that P was defined with cs  and the unit vectors i , 

j  and k , where i  and j  on the plane, and k  is normal to the plane as depicted in Fig. 

4. A Cartesian coordinate space defined on P, and for each point on P, the tract densities, 

D(X), were integrated along the depth axis (k = i ⊗ j ) of the coordinate point in both 

towards and the opposite ( − k ) directions to form a projection image I(X (a, b)), as depicted 

in Fig. 4 for the CC regions, showing the projection sum of the tract density at each point 

(X (a, b) = cs + a i + b j ) sampled on P, such that I(X (0,0)) is located at the origin and shows the 

sum of the tract densities along the direction of the normal vector at the point c s. Field of 

view for I(X (a, b)) was adjusted large enough to include all brain regions.

2.6. Directional tract density pattern

Once the tract densities were projected and summed on the plane P producing an image 

I(X (a, b)), the projection image I was subdivided into equal angular pieces centered at the 

cs , and the integral of the density values for each angular piece formed a two-dimensional 

polar function, which we named as the directional tract density pattern (dTDP). Let Q (kα)
represent the dTDP function showing the sum of tract densities along each kth angular 

portion, where α = 2π/K is the small delta angle, K is the number of angular portions, 

and k ∈ 0, 1, 2, …, K − 1 . First, Q(kα) was initialized to 0.0 ∀ k. Then, all the sampled 

points X (a, b) on the image I(X (a, b)) were iterated, and each tract density value, I(X (a, b)), was 

added to the sum Q(kα), where kα was the corresponding angular portion of (a, b) in polar 

coordinates. For this study we had K = 64 angular portions sampled over 2π. Ultimately, 

Q(kα) becomes a polar function showing the directional tract densities along the angular 

portion (kα) thereby forming the dTDP of the CC region.

This is shown in Fig. 5. In this case, we overlaid the dTDP of CC region III on the projection 

sum image, I(X (a, b)), from a healthy subject. We also defined the surface and side lobe of 

the dTDP, such that surface lobes represent the total density of fibers that traverse to the 

cortical regions of the brain as identified by Hofer and Frahm (2006), whereas the side lobes 

represent the total density of tracts traversing from the seeded region to the left and right and 

that then run towards also the inferior brain regions. Note that dTDP provides an indirect 

quantification for the interhemispheric connectivity of cortical regions.

2.7. Reliability and variability metrics of dTDPs

To determine the reliability of the dTDPs for the datasets, pairwise dTDPs were evaluated 

using a Pearson correlation coefficient, and the coefficients of each region was averaged to 

demonstrate the similarity (score of 1.0 designated that the dTDPs were identical).

In addition, to evaluate between-subject variability between the human datasets, we 

computed a quartile coefficient of dispersion (QCD) metric (Bonett, 2006) weighted with the 
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median for the dTDPs using Equation (2), where {Q1
k, Q2

k, Q3
k} are the first quartile, median, 

and the third quartile of the dTDP values for the given angular portion (k) respectively.

QCD = k = 0
K − 1Q2

k(Q3
k − Q1

k)

k = 0
K − 1Q2

k(Q3
k + Q1

k)
(2)

For the group analysis, we utilized the quartile statistics plotted on the polar coordinate 

space, such that each angular portion (k) had 25tℎ percentile (1st quartile), median (50tℎ

percentile), and 75tℎ percentile (3rd quartile), and the area between the 1st and 3rd quartiles 

was shaded to show the variability of each dataset. We used a paired t-test to determine 

if there were significant differences in the density distributions along each angular portion. 

Since we were mostly interested in inter-hemispheric cortical connectivity, reflected by 

metrics along the upper directions, we ignored the lower (π/2 < kα < 3π/2)K /2 directions 

as well as the directions that likely reflect noisy dTDP magnitudes, as observed in central 

directions (0, π/2, 3π/2).

3. Results

3.1. Evaluations of the synthetic dataset: analytical fiber stream

We computed the correlations between pairwise dTDPs obtained for the synthetic CC data, 

and found that all the pairwise correlations were greater than 0.99, depicted in Fig. 6. We 

depicted 9 of the dTDPs in Fig. 6, such that each column image represents data from a 

different gradient orientation scheme. By comparing the first row images to the second 

row, i.e. Fig. 6a vs. 6d, 6b vs. 6e, and 6c vs. 6f, we observed that changing the voxel 

resolution did not change the dTDP, irrespective of whether an 8 mm or 12 mm CC radius 

size was used. The second and third row images (d-i) of Fig. 6 were depicted the patterns for 

different bundle radius sizes, where the voxel resolution was fixed to 1 mm. To summarize 

the comparisons, we stacked all the dTDPs in Fig. 6j, k showing the dTDPs overlaid on the 

same polar space separately for 8 mm and 12 mm bundle sizes. Here, we can observe for the 

bundle radius size of 12 mm that the given diffusion scheme and image resolution presets 

produced a synthetic data which had almost identical dTDPs. However, for the bundle size 

of 8 mm, the multi-shell scheme produced smaller directional tract density compared to the 

b700 and b2000 scheme for the left and right side lobes of the dTDP; even in this case, the 

pairwise correlations were greater than 0.99.

3.2. Evaluations of the human datasets

3.2.1. Variability of dTDPs—In Fig. 7, the quartile statistics of dTDP for the CDMD 

and HHSD-A demonstrated that dTDPs for the two datasets were not significantly different 

from each other, with the exception of random directions of the CC regions IIa, IIb, III, 

and IV. The quartile dTDP statistics for the CC regions I and V were also not significantly 

different for any direction, suggesting that these measures were largely unaffected by the 

diffusion acquisition parameters.
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Fig. 8 depicts the quartile statistics for the HHSD-B dataset providing the normative dTDPs 

of each CC region. For this dataset, the QCD scores of the CC regions were {0.13, 0.18, 

0.17, 0.16, 0.22, 0.17} respectively for the regions I, IIa, IIb, III, IV, and V. The mean 

dTDP magnitudes for the surface and side lobes, estimated using the heuristically assigned 

directions as shown in Fig. 8, are provided in Table 1.

3.2.2. Reliability and reproducibility of dTDPs—Fig. 9 demonstrates the Pearson 

correlations within and between the CDMD and HHSD. Within group dTDP correlations 

were greater than 0.75 for 98%, 99%, and 97% of the total number of pairwise correlations 

respectively for HHSD-A, HHSD-B, and CDMD (Fig. 9a–c). We also observed that the 

correlations between the individuals of CDMD and HHSD-A were greater than 0.75 for 97% 

of the total number of pairwise correlations (Fig. 9d).

In the test-retest analysis, we used scans from six subjects from the CDMD, who had been 

scanned twice on the same day, to compare the dTDPs of each CC region between the 

consecutive scan sessions for each subject. Reproducibility was expressed as the respective 

Pearson correlations as provided in Table 2. The test-retest sessions had dTDPs for which 

the pairwise correlations were greater than 0.97 (Table 2).

We also evaluated the test-retest performance results for our CC parcellation scheme using 

the dice overlap score (2( X ∩ Y )/( X + Y )) between the parcellated CC regions of two 

scans from the same subject. The dice scores were greater than 0.9 for most of the 

comparisons (Table 3).

3.2.3. Motion estimations—We also estimated head motion parameters using the eddy 

QC, as diffusion imaging measures can be affected by head motion during scanning 

(Bastiani et al., 2019). As shown in Fig. 10, both the HHSD-A and the CDMD (Tian et 

al., 2022) had less than 1 mm relative average motion, suggesting that the dTDP measures 

are not affected by subject motion.

4. Discussion

In this study, we used a novel algorithm, dTDP, to evaluate the directional characteristics of 

tract density patterns of distinct CC regions in healthy subjects. We found that our results 

provided an unbiased, reliable, and sensitive approach insensitive to variations in acquisition 

parameters and without the need for a priori assumptions of connectivity with topologically 

selective cortical regions. A major strength of this approach is that, unlike graph-based 

approaches, which provide a connectivity score between two regions (Rubinov and Sporns, 

2010), dTDP interprets the interhemispheric connectivity across the entire structure and 

provides a directional density pattern at the macroscopic scale. dTDP is unique as, unlike 

orientation-independent shape features, such as the mean length (Schmied et al., 2020; Yeh, 

2020), it utilizes probabilistic trajectory of an individual pathway and quantifies the density 

towards the directions starting from the mid-sagittal center of the CC region. Therefore, 

dTDP provides an orientation-dependent measure of interhemispheric connectivity.
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This study is important for several reasons. As demonstrated, dTDP provides a distinct 

assessment information measure for interhemispheric connectivity with high reliability both 

within and across datasets. It also provides information without the need for a priori 
designations of cortical regions of interest, in contrast to prior connectivity studies, which 

have been considered cortical regions as seeds or targets (Liu et al., 2017; Mars et al., 2018). 

We also demonstrated that using an indirect approach, we could obtain information about 

interhemispheric connectivity representing both the density of fibers able to reach cortical 

regions (surface lobes) and the density of those that reached only mid-way (side lobes). In 

this way, our method is able to generate an estimate of the density of CC fibers as they 

turn/realign and merge with other bundles to run towards the cortical surface. This suggests 

that, using these dTDPs, it may be possible to monitor the structure of the crossing bending 

regions within the CC prior to reaching their cortical destination using standard diffusion 

acquisition parameters, something that cannot be accomplished with the current available 

methods.

Alterations in the white matter integrity and connectivity have been recognized as both 

prominent and significant in several neurodegenerative diseases including Alzheimer’s, 

Parkinson’s, and Huntington’s disease (Nir et al., 2013; Wu et al., 2020; Rosas et al., 2010). 

Our results suggest that the dTDP might provide the needed sensitivity and reliability to be 

of use in clinical applications, including age- or disease-related changes in interhemispheric 

architecture, providing opportunities to detect early pathological change. Additional future 

work will be required to fully explore the applicability of this approach to neurodegeneration 

in both cross-sectional and longitudinal analyses.

4.1. Limitations

As tractography provides an ill-posed solution to estimate the anatomical structure of the 

whole-brain white matter fiber trajectories, it may be prone to inconsistent reconstructions, 

mostly identified as false-positive fibers, which are often discarded when using region 

sensitive filtering operations (Maffei et al., 2021). Since dTDP is reconstructed by 

carefully seeding the tractography from the mid-sagittal CC, the existence of false-positive 

connections is a less likely concern. Instead, false positive fibers could instead represent 

an indicator of damaged connections in clinical applications, but this requires additional 

evaluation.

Since the dTDP framework does not require identification of a specific cortical target 

regions, the proposed framework provides a course end region analysis. However, we should 

note that the uncertainty of the fibers is greatest at target/cortical surface regions (Behrens et 

al., 2003; Friman and Westin, 2005), which is an issue for all tractography applications. This 

is because tractography streamlines have branching fibers along the commissural pathway 

closer to the surface, where tractography is known to be biased (Schilling et al., 2018). By 

projecting the tract densities on an optimal plane to reflect only directional density of the 

fibers along the dominant directions of CC (left to right), we aimed to partially reduce the 

branching bias.
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5. Conclusion

In this study, we developed a novel algorithm to evaluate interhemispheric connectivity 

of regionally selective regions of CC, that provides information about different locations 

along the callosal trajectory. Variability and reproducibility experiments performed using 

two human datasets suggest that this method is sensitive, reliable, and reproducible, and 

support its use in clinical applications to evaluate interhemispheric connectivity.

Acknowledgments

Funding for this research provided by: the National Institutes of Health R01:NS106384 and R01:NS114562.

We are grateful Dr. Qiyuan Tian and Dr. Susie Y. Huang for providing the demographics information. We also thank 
Dr. Shahin Nasr for scientific feedback and editorial comments.

Data availability

The original contributions presented in the study are included in the article, further inquiries 

can be directed to the authors. The code and compiled binaries will be available to public.

Appendix A.: CC centerline curve fitting algorithm

Algorithm 1.

Centerline CC curve reconstruction

Require: Fractional anisotropy map, FA : ℝ3 ℝ; Principle direction of diffusion tensor map, V1 :ℝ3 ℝ3

Freesurfer reconstruction of CC, CCrecon:ℝ3 ℝ Anterior CC landmark, c1 ∈ ℝ3 Posterior CC landmark, 

cn ∈ ℝ3; 3D vector dimensions [Left-to-Right,Anterior-to-Posterior, Foot-to-Head].

(Note that principal direction of diffusion tensor (V1) and fractional anisotropy (FA) maps were reconstructed 

in MNI152 space particularly for this step. di  parameterized using the tangent vectors of a partial 2D ellipse 

(
dy
dt = cos(t),dx

dt = − 3sin(t), and t ∈ 9π/8, …, 0 .)

v cn − c1 ; CCcurve {c1 }; REACHED ← false;

whileREACHED ≠ truedo

 ci  last voxel added to the list CCcurve; si ci − c1 ;

 ti (9π/8)(1 − ∥ si ∥
∥ v ∥

)

 di 0, 3sin(ti), − cos(ti)
 N ; Nall [0, − 1, − 1], [0, 0, − 1], [0, − 1, 0], [0, 0, 1], [0, 1, 0], [0, 1, 1] ;

 for all n ∈ Nalldo

  if〈 di , n 〉 > 0.0then

   N {N, n };

  end if

 end for

 ni [0, 0, 0]
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 for all n ∈ Ndo

  if ci + n == cn then

   ni n ; REACHED true; break;

  end if

  ℛ 5.0
‖ di ‖

( 〈 di , n 〉
‖ di ‖ ∥ n ∥

)

  ω CCrecon( ci + n )FA( ci + n )⟨V 1( ci + n ), [1, 0, 0]⟩ + ℛ
  ifω > ρthen

   ni n
  end if

 end for

 CCcurve {CCcurve, ( ci + ni )}
end while

Abbreviations:

CC Corpus callosum

dTDP Directional tract density pattern

MRI Magnetic resonance imaging

FA Fractional anisotropy

AD Axial diffusivity

RD Radial diffusivity

QCD Quartile coefficient of dispersion

HHSD Healthy human subjects dataset

CDMD Comprehensive diffusion MRI dataset

FOD Fiber orientation distribution
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Fig. 1. 
Synthetic CC data created using a preset multi-shell scheme, 2 mm voxel resolution, and 8 

mm bundle radius: (a) Yellow points demarcates control points used to reconstruct a tubular 

structure of the CC, and (b–d) demonstrate orientations of the reconstructed fibers along the 

structure. Yellow regions A and B showed in (b) are zoomed in (c) and (d).
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Fig. 2. 
Parcellation of CC for a healthy subject.
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Fig. 3. 
Volume rendering of tract densities traversing each CC region for a healthy human subject. 

The 3D directions X shows the right, Y shows the anterior, and Z shows the superior 

directions.
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Fig. 4. 

The CC subdivision given in (a) shows the axis j  on mid-sagittal view, whereas the 

projection planes, defined using i  and j  (red frame), are shown on upper images of (b–h) 

together with the corresponding projected tract densities, I(X (a, b)) in the bottom images, 

where the red cross shows cs .
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Fig. 5. 
dTDP of CC region III from a healthy human subject shows: (a) the angular parcellation 

of the region (green lines) together with the yellow curve depicting the dTDP, Q(kα), the 

sum of tract densities along each angular portion (kα) of the projection image (I(X (a, b )), 
where c s is at the origin of the coordinate space (the background is sliced mean b0 image 

at the projection plane). (b) the dTDP (red curve) on the polar coordinate space in order to 

demonstrate the directional density magnitudes.
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Fig. 6. 
dTDPs for different CC bundle size, diffusion scheme, and resolution. (a–i) show dTDPs, 

such that, while resolution and bundle radius are fixed in each row, in columns left to right, 

dTDPs for b700, b2000, and multi-shell schemes are depicted (background image is the 

projection of tract densities). The first and second rows compare different resolutions (1 and 

2 mm), and the second and third rows compare the bundle radius of 12 and 8 mm. (j–h) 

overlays all dTDPs separately for bundle sizes of 12 mm and 8 mm.
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Fig. 7. 
Comparison of directional tract density patterns (dTDPs) between CDMD (blue) and 

HHSD-A (red) for each CC region. The datasets were not significantly different from each 

other noting that a few number of “*” symbols demonstrate sparse/inadequate directions of 

difference (p < 0.05) at the end of the radial axis.
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Fig. 8. 
Directional tract density patterns for the CC regions in the HHSD-B cohort, depicting 

heuristically assigned principal directions for the surface and side lobes (L: Left, R: Right, 

Surf: surface lobe, Side: side lobe) and the variability in the dataset for each direction 

(shaded region).
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Fig. 9. 
Correlation matrices of the HHSD and CDMD datasets. (a–c) show the between subject 

correlations of individual dTDPs in the datasets ((a) HSSD-A, (b) HHSD-B, and (c) 

CDMD). (d) demonstrates the correlation between CDMD and HHSD-A. In all cases, 

correlation coefficients were greater than 0.75 for at least 97% of total number of pairwise 

correlations, demonstrating excellent within and between dataset reliability. We used viridis 
color palette: dark blue (−1.0) to yellow (1.0) from python matplotlib package in color bar 

showing high correlations in yellow.
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Fig. 10. 
Head stability during the diffusion acquisition for all the subjects in HHSD-A: Total outliers 

were shown to reveal the percentage of dropout slices detected in diffusion data. Individual 

head motion parameters were also shown with average motion, rotation, and displacement in 

all dimensions.
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Table 1

dTDP variability of HHSD-B: Directional tract densities (mean ± standard deviation) for the side and surface 

lobes marked in Fig. 8. Density values are given on the order of 106.

CC region Side-Right Surface-Right Surface-Left Side-Left

I 3.65 ± 0.59 3.40 ± 0.58 3.41 ± 0.55 3.76 ± 0.61

IIa 4.32 ± 0.91 2.97 ± 0.71 2.89 ± 0.87 4.34 ± 0.90

IIb 3.91 ± 0.91 2.79 ± 0.60 2.53 ± 0.69 3.47 ± 0.71

III 4.07 ± 0.83 2.90 ± 0.67 3.19 ± 0.64 4.16 ± 0.90

IV 4.14 ± 0.94 2.89 ± 0.80 3.06 ± 1.07 4.45 ± 1.24

V 4.62 ± 0.80 2.24 ± 0.51 2.25 ± 0.63 5.11 ± 0.93
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Table 2

Test-retest reproducibility of the dTDP. S-# shows the subject index.

CC region S-1 S-2 S-3 S-4 S-5 S-6 Mean ± Std

I 0.999 0.991 0.998 0.997 0.992 0.998 0.993±0.009

IIa 0.998 0.984 0.984 0.962 0.990 0.992 0.980±0.021

IIb 0.999 0.986 0.997 0.979 0.979 0.998 0.989±0.009

III 0.995 0.987 0.999 0.986 0.982 0.999 0.990±0.008

IV 0.989 0.985 0.999 0.975 0.988 0.996 0.984±0.014

V 0.999 0.985 0.998 0.988 0.992 0.999 0.993±0.006
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Table 3

Dice scores of CC parcellation for the subjects with repeated scans.

CC region S-1 S-2 S-3 S-4 S-5 S-6

I 0.968 0.889 0.960 0.914 0.966 0.943

IIa 0.942 0.800 0.964 0.807 0.966 0.939

IIb 0.949 0.867 0.942 0.814 0.924 0.985

III 0.904 0.900 0.939 0.853 0.926 0.945

IV 0.846 0.780 0.969 0.773 0.938 0.939

V 0.946 0.902 0.981 0.910 0.966 0.955
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