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Mechanical metamaterials are artificial composites that exhibit
a wide range of advanced functionalities such as negative Pois-
son’s ratio, shape shifting, topological protection, multistability,
extreme strength-to-density ratio, and enhanced energy dissi-
pation. In particular, flexible metamaterials often harness zero-
energy deformation modes. To date, such flexible metamaterials
have a single property, for example, a single shape change, or
are pluripotent, that is, they can have many different responses,
but typically require complex actuation protocols. Here, we intro-
duce a class of oligomodal metamaterials that encode a few
distinct properties that can be selectively controlled under uni-
axial compression. To demonstrate this concept, we introduce a
combinatorial design space containing various families of meta-
materials. These families include monomodal (i.e., with a single
zero-energy deformation mode); oligomodal (i.e., with a con-
stant number of zero-energy deformation modes); and plurimodal
(i.e., with many zero-energy deformation modes), whose number
increases with system size. We then confirm the multifunctional
nature of oligomodal metamaterials using both boundary tex-
tures and viscoelasticity. In particular, we realize a metamaterial
that has a negative (positive) Poisson’s ratio for low (high) com-
pression rate over a finite range of strains. The ability of our
oligomodal metamaterials to host multiple mechanical responses
within a single structure paves the way toward multifunctional
materials and devices.
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F lexible metamaterials use carefully designed arrangements
of deformable building blocks to achieve unusual and tun-

able mechanical functionalities (1). Such mechanical responses
rely on on-demand deformation pathways that cost a relatively
low amount of elastic energy. A useful and widely applicable
paradigm for the design of such pathways leverages the limit in
which their elastic energy is zero—these pathways then become
mechanisms or zero-energy modes. Flexible metamaterials based
on such principle are, so far, either monomodal (Fig. 1A) or
plurimodal (Fig. 1C). On one hand, monomodal metamateri-
als feature a single zero-energy mode and a single functionality
(2–8), which is typically robust and easy to control with a sim-
ple actuation protocol, that is, a protocol that requires a single
actuator, for example, uniaxial compression. On the other hand,
plurimodal metamaterials feature a large number of zero-energy
modes, which increases with system size (9, 10). The presence
of these multiple zero modes offers multiple possible function-
alities in principle, but they are hard to control in practice;
that is, they require complex actuation protocols—protocols that
require more than one actuator—for successful execution (9).
The challenge we address here is whether it is possible to find
a middle ground between monomodal and plurimodal metama-
terials. In other words, can we design and create metamaterials
that have more than one zero-energy mode, but not a number
that grows with system size? For convenience and clarity, we
term such metamaterials oligomodal (Fig. 1B). Could oligomodal
metamaterials be actuated in a robust fashion with a simple actu-

ation protocol (Fig. 1B)? Could oligomodal metamaterials host
distinct mechanical properties within a single structure?

Combinatorial Analysis
To first design oligomodal architectures, we turn toward combi-
natorial metamaterials, which is a particularly fruitful paradigm
for the design of advanced mechanical functionalities (4, 11,
12). In combinatorial metamaterials, the structural complexity
is reduced to a discrete design space, typically, by controlling
the orientation of the constitutive unit cells. Such discreteness
makes the design space much easier to explore and has recently
been leveraged to create nonperiodic metamaterials with shape-
changing (4, 11) and topological properties (12), yet only for
single zero-energy mode metamaterials so far. Here, we gener-
alize this combinatorial approach to metamaterials with more
than one zero-energy mode. To this end, we introduce a unit
cell (Fig. 2A) with two zero-energy modes (Fig. 2 B and C). A
central ingredient in combinatorial design is that the unit cells
have fewer symmetries than that of the lattice they live on. In the
present case, the unit cell does not have any planar rotational
symmetry. Thereby, it can be tiled in four different orientations
on a square lattice (Fig. 2D), in turn, allowing us to construct a
wide range of combinatorial metamaterials.

We first analyze the combinatorial landscape of the meta-
materials and notice that the design space is extremely large;
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Fig. 1. Oligomodal materials. (A) Monomodal materials have a single
zero-energy mode, hence a single property, that can be obtained via
a simple actuation protocol. (B) Oligomodal materials have a small but
fixed number of zero-energy modes larger than one, hence a few dis-
tinct properties, that can be selected with a simple actuation proto-
col, for example, uniaxial compression. (C) Plurimodal materials have a
large number of zero-energy modes that grows with system size, and
hence are kinematically able to host a large number of properties, but
they often require complex actuation protocols, for example, multiaxial
loading.

that is, for an n ×n tiling, there are 4n2

possible configurations.
It is thus impossible to sample all of the possible configura-
tions, even numerically. Therefore, we restrict our attention to
a subset of configurations. Namely, we will focus on periodic
tilings of 2× 2 supercells (Fig. 2E), which is a very small frac-
tion of the design space; we discuss an example of quasiperiodic
tilings in SI Appendix. Any choice of four orientations defines
a 2× 2 supercell and thus a tiling; hence there are 256 pos-
sible configurations. By using the isometries of the square, we
can reduce these to only 10 mechanically nonequivalent config-
urations (Fig. 2F). A numerical study of the kinematics (Mate-
rials and Methods) then reveals a rich spectrum of zero-energy
modes. This spectrum contains the three classes of metamateri-
als defined in Fig. 1. For system sizes n > 4, monomodal tilings
(Fig. 2 G and H, red) have a single zero-energy mode; oligo-
modal tilings have a constant zero-energy mode number larger
than one (Fig. 2 G and I, green); and plurimodal tilings have
a number of zero-energy modes that increases linearly with n
(Fig. 2 G and J, blue).

All three classes of tilings share a common zero-energy mode,
which is the rotating-squares mechanism (13), which spans the
size of the system, and where the unit cells have the same defor-
mation in an alternating manner with a lattice spacing periodicity
of two (Fig. 2H). Monomodal tilings only have this zero-energy
mode, while oligomodal and plurimodal tilings have additional
zero-energy modes. In particular, plurimodal tilings include most
periodic tilings and feature modes that are typically localized
along lines (Fig. 2J and SI Appendix), which we term line modes.
The existence of line modes in a periodic tiling implies that such a
tiling is plurimodal, and explains why the number of modes grows
with the size of the sample n . Such lines modes have, in fact, pre-
viously been identified in highly symmetric lattices (14, 15), and
highly localized deformations related to line modes have been
observed in foams under compression (16–22). We discuss a par-
ticularly intriguing example of nonperiodic plurimodal tilings, in
SI Appendix, namely, a quasi-crystalline tiling that gains a single
zero-energy line mode when its side length is doubled, thus lead-
ing to a number of modes that scales logarithmically with the size
of the sample n .

Oligomodal Tilings
In contrast to the highly localized line modes, the additional
zero-energy modes present in oligomodal tilings are markedly
different: They typically exhibit deformations covering the whole
sample (Fig. 2I). By definition, their number remains constant
with increasing system size. There is, in principle, no upper
bound on the number of modes in an oligomodal tiling, but, by
construction, this number of modes in the tiling cannot exceed
the number of modes in the supercell. These spatially extended
deformations, which, to the best of our knowledge, have not
been reported before, offer the prospect of unconventional bulk
properties.

In the following, we focus on the simplest oligomodal config-
uration that we uncovered: the bimodal tiling of Fig. 3J, which
hosts two bulk zero-energy modes irrespective of system size. In
order to understand the nature of these zero-energy modes (and,
in fact, also to interpret and classify all three classes of tilings; see
SI Appendix), we introduce a vertex representation that maps out
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Fig. 2. Combinatorial design space. (A) Bimodal unit cell that has two
zero-energy deformation modes. (B) Mode 1, actuating four angles, with
constant square angle indicated. (C) Mode 2, actuating all five angles, with
dashed symmetry line. (D) The 2× 2 supercell made up from stacking the
unit cell in four possible orientations. (E) Periodic 6× 6 metamaterial made
from stacking a 2× 2 supercell. (F) All mechanically nonequivalent 2× 2
supercells, featuring monomodal (red), oligomodal (green), and plurimodal
(blue) mode scalings. (G) Mode scaling, NM, with the tiling’s side length,
n, for all 10 tilings in D and the average of random tilings (red triangular
crosses). (H) Rotating-squares mechanism of monomodal tilings. (I) Spatially
extended mode typical of oligomodal tilings. (J) Line localized mode typical
of plurimodal tilings.
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Fig. 3. Oligomodal metamaterials. (A–I) Unit cell of Fig. 2A in vertex (A, D, and G), 3D-printed (B, E, and H), and schematic representation (C, F, and I) in
undeformed (A–C), deformed in its first mode (D–F), and deformed in its second mode (G–I) configurations. (J–L) The 8× 8 schematic oligomodal metama-
terial design (J), with rotating-squares mode (K) and bidomain mode (L) visualized in vertex representation. (M–O) The 16× 16 oligomodal metamaterial
sample at rest (M), and subjected to textured boundary conditions 1 (N) and 2 (O) (white arrows). Colored ellipses indicate hole polarization Ω defined in
Selective Actuation by Textured Boundaries. See also Movie S1.

angle deformations onto a directed graph, that is reminiscent of
vertex models found in two-dimensional (2D) statistical physics
(23–25) (Materials and Methods). This representation allows for
a simple graphical representation of single-cell deformations.
Each vertex corresponds to a unit cell, each edge corresponds to
a hinge, and the number of arrowheads on each edge quantifies
the hinge deformation (Fig. 3 A, D, and G). In this represen-
tation, the geometric constraints can be formulated as follows:
Only linear combinations of the two vertices shown in Fig. 3
D and G are allowed. These geometric constraints are propa-
gated from one vertex to its neighbors via the edges, through
a combinatorial search. Unlike the standard structural analysis
computation that we used to predict the number of zero-energy
modes shown in Fig. 2G (Materials and Methods), the vertex
model provides direct insight into the spatial shape of the possi-
ble soft deformation modes. Performing such an analysis on the
oligomodal tiling shown in Fig. 3J reveals two distinct system-
spanning zero-energy modes. First, we find the rotating-squares
mode (Fig. 3K) as expected, using the first unit cell mode of Fig.
3 D–F only. Second, we find a new bulk bidomain zero-energy
mode, which features a symmetry axis going from southwest
to northeast, splitting the deformation into two domains (Fig.
3L), combining both unit cell modes of Fig. 3 D–I. This mode
spans the size of the system, with a constant gradient of defor-

mation along the southeast to northwest axis. Therefore, for a
tiling that would be twice as large, the gradient of deformation
would the same, and the deformation would be twice as large. If
the tiling were rectangular, the gradient of deformation would
remain the same, oriented in the southeast to northwest axis.
In the remainder of the paper, we use the oligomodal geometry
with two distinct zero-energy modes to create flexible metamate-
rials with two distinct soft deformation modes. We demonstrate
that we can selectively actuate these soft deformation modes—
and thus obtain two distinct effective mechanical properties—
by using either boundary texture or strain rate-dependent
viscoelasticity.

Selective Actuation by Textured Boundaries
First, we demonstrate that sets of suitably chosen textured
boundary conditions under simple uniaxial compression allow
preferential exciting of a zero-energy mode of choice while frus-
trating the others. Using multimaterial 3D printing, we create a
metamaterial made of 16× 16 unit cells (Fig. 3M), following the
oligomodal tiling of Fig. 3J. The 3D-printed unit cells are made
of rigid curved struts and compliant hinges (Fig. 3B; see Materi-
als and Methods for details), such that their shapes coincide with
the idealized unit cell (Fig. 3C). Crucially, the 3D-printed unit
cells have two soft deformation modes (Fig. 3 E and H) that
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closely mimic the zero-energy modes of the idealized unit cell
(Fig. 3 F and I). Following the deformation prescribed by the
vertex representation (Fig. 3 K and L), we then compress our
metamaterial using two sets of eight indenters on each side, that
apply the load on every other unit cell and where the bottom
set of indenters is either antialigned (Fig. 3N) or aligned (Fig.
3O) with the top set of indenters. To quantify the deformations
of each unit cell, we use particle tracking (OPENCV [a computer
vision library] and Python) and custom-made tracking algorithms
to quantify the flattening f and orientation φ with respect to
the horizontal of each pore and calculate the polarization (26)
Ω := (−1)nx+ny f cos 2φ, where nx (ny) is the unit cell’s column
(row). Using this protocol, we observe that we can actuate either
the rotating-squares mode (Fig. 3N) or the bidomain mode (Fig.
3O) by changing the location of load application (see also Movie
S1). This example demonstrates that the zero-energy modes of
oligomodal metamaterials can be selectively actuated by tuning
the boundary texture. In the following, we build on this result to
achieve mode selection under a simpler actuation protocol that
does not resort to boundary texture.

Selective Actuation by Dissipation
To achieve this goal, we leave the realm of static responses and
harness viscoelastic dissipation to tune the dynamical response of
our metamaterial (26–28), previously applied to alter the direc-
tion of a mechanical mode (26, 28). Instead, we now harness
viscoelasticity to switch between modes altogether. To this end,
we use the oligomodal metamaterial design of Fig. 3J, which
we rotate by 45◦ (Fig. 4 A–D). With this rotation of the lat-
tice, we expect the domain wall seen in Fig. 3O to rotate by
45◦ (Fig. 4 B and D), and thus to become perpendicular to the
loading axis as well as to provide mirror symmetry about the
transverse axis.

The selective actuation of modes via viscoelasticity is possible
because the two modes—the rotating-square mechanism (Fig. 4
A and C) and the bidomain mode (Fig. 4 B and D)—involve dis-
tinct sets of hinges. While, in the rotating-square mechanism, all
hinges but the one at the center of the supercell are actuated
(white hinges in Fig 4A), in the bidomain mode, all hinges includ-
ing the one at the center of the supercell are actuated (white and
black hinges in Fig 4B). Therefore, in order to favor the actuation
of the rotating-squares mechanism (respectively, the bidomain
mode), the central hinge should be stiffer (respectively, softer)
than the other hinges. Conversely, in order to favor the actua-
tion of the bidomain mode, the central hinge should be softer
than the other hinges. To obtain a selective actuation of the
modes, we tune the stiffness of hinges by making them viscoelas-
tic. Specifically, we use 1) viscoelastic hinges—whose stiffness
increases with the strain rate at which they are actuated—for
the hinges that are actuated in the rotating-squares mechanism
(white hinges in Fig 4 A and B) and 2) elastic hinges—whose
stiffness does not depend on the strain rate at which they are
actuated—for the hinge that is only actuated in the bidomain
mode (black hinge in Fig 4B).

Next, we prove the feasibility of the concept described above
with finite element simulations (Abaqus; see Materials and Meth-
ods and SI Appendix). In order to selectively actuate one mode
or the other, we use a combination of stiff material for the rigid
parts and soft material for the compliant hinges. In particular,
we dress our metamaterial with two types of elastic and vis-
coelastic hinges (see Fig. 9B) whose properties correspond to
(visco)elastic elastomers we will use in the experiments (Fig. 5
A and B; see Materials and Methods for details about the simula-
tions). For slow actuation rates, both types of compliant hinges
have a very similar torsional stiffness (Materials and Methods).
When the actuation rate increases, the viscoelastic hinges stiffen
dramatically: They become more than 5 times stiffer than the
elastic hinges (Materials and Methods). As expected, we find that,

BA

DC

FE

HG
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Fig. 4. Mode selection using strain rate. (A–D) Schematic supercell represen-
tation (A and B) and schematic and vertex model representation (C and D) of
the rotating-squares mode expected under slow actuation (A and C) and of
the bidomain mode expected under fast actuation (B and D). The tiling design
follows Fig. 3, but is rotated by 45◦. (E and F) Numerical realization of the
schematic sample of C and D, numerically compressed in vertical direction to
7% strain with an average strain rate ε̇= 9.3 · 10−6 s−1 (E) and ε̇= 0.11 s−1

(F). The legend indicates the Von Mises stress (megapascals). Insets contain
enlarged views of an individual hinge. (G and H) For the cases of E and F,
respectively, the average hole row polarization Ω as function of strain ε, up to
10% strain, and normalized vertical coordinate yn. The polarization is defined
as Ω := (−1)ny f cos 2φ, where ny is the unit cell’s row, starting at zero at the
bottom; f is the flattening of the ellipse; andφ is the orientation of the ellipse
with respect to the first diagonal. (I) Absolute value of the average sample
polarization Ω as function of strain ε and strain rate ε̇. The legend indicates
the average row hole polarization Ω for G–I.
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Fig. 5. Experimental validation of mode selection mediated by strain rate.
(A) Oligomodal metamaterial made of rigid (white), elastic (green) and vis-
coelastic (transparent) material at rest, following the sample design of Fig.
4 E and F. (B) Close-up of A, on a 2× 2 supercell. (C–F) Response of oligo-
modal metamaterial under slow (C and E) and fast (D and F) compression
rates. (C and D) Snapshot of the metamaterial and overlaid reconstructed
pores after a compression ε= 0.056 at a strain rate ε̇= 9.3 · 10−6s−1 (C)
and ε̇= 0.11 s−1 (D). The colors of the ellipses indicate the polarization, in
line with the legend, as defined in Fig. 4. While Ω = 0 (black) corresponds
to no polarization and hence no deformation, Ω =±1 (red and blue) corre-
spond to highly polarized and deformed pores. See also Movie S2. (E and F)
Corresponding average sample polarization Ω with maximum and minimum
spread as function of strain ε: experimental results in blue, and numerical
results, following the results of Fig. 4, in orange.

on the one hand, compressing the metamaterial at a low strain
rate with respect to the relaxation timescales of the viscoelastic
material of ε̇= 9.3 · 10−6 s−1 leads to deformations that follow
the rotating-squares mechanism (Fig. 4 E and G). On the other
hand, compressing the metamaterial at a large strain rate with
respect to the relaxation timescales of the viscoelastic material
of ε̇= 0.11 s−1 leads to deformations that follow the bidomain
mode (Fig. 4 F and H). A closer look at the central hinge of the
supercell (Fig. 4 E and F, Insets) reveals that this hinge is not
actuated for low strain rates (Fig. 4 E, Inset) and actuated for
large strain rates (Fig. 4 F, Inset), which is consistent with the
mechanism of mode selection described above.

Moreover, we confirm that the mode selection is applica-
ble across a wide range of strains, including at large strains

(10% strain). Both small and large strain rates initially buckle
at a strain of ε≈ 0.02 into the bidomain deformation (Fig. 4
G–I), as can be seen from the presence of two domains of
opposite polarization Ω in the top and bottom of the sample
(blue and red regions in Fig. 4 G and H), which then builds
up an average polarization that remains close to zero (light red
region in Fig. 4I). This first deformation mode is due to the
fact that the sample has been designed with a small imperfec-
tion aimed at favoring the bidomain mode (see SI Appendix).
At low strain rates, however, the sample ultimately deforms into
the rotating-squares mode, as can be seen from the uniform
distribution of polarization (red region in Fig 4G), which then
builds up a large average polarization (red region in Fig 4I). A
systematic scan of various strain rates (Fig 4I) reveals the fol-
lowing: 1) We find a sharp transition between the actuation of
the rotating-squares mode (at low strain rates) and the actu-
ation of the bidomain mode (at large strain rates). While the
fact that strain rate allows selection of the mode was expected
from our arguments above, the fact that the transition is sharp
is more surprising. At this transition, the deformations abruptly
snap from the bidomain mode toward the rotating-squares
mode, as can be seen from the drastic change of polarization.
2) We find that the onset of buckling toward the rotating-
squares mode is shifted to larger values of strains at larger strain
rates.

This shift is the result of a relatively lower stiffness of the
bidomain actuated elastic hinges with respect to the viscoelas-
tic hinges. Hence, the imperfection favoring the bidomain mode
is more difficult to overcome at higher strain rates, and buckling
occurs at larger strains.

We use the numerical results described above for the design
of our experiments, and we fabricate a metamaterial with plas-
tic rigid parts, viscoelastic hinges, and elastic hinges (Fig. 5 A
and B) using a combination of 3D-printing, molding, and cast-
ing techniques (see Materials and Methods). We compress the
metamaterial slowly at a strain rate of ε̇= 9.3 · 10−6s−1 and
indeed observe that the metamaterial responds in the rotating-
squares mode (Fig. 5C). The polarization Ω, overlaid on the
experimental pictures, allows clear visualization of the over-
all negative polarization corresponding to the rotating-squares
mode (see also Movie S2). We also compress the metamate-
rial fast at a strain rate of ε̇= 0.11 s−1 and now observe that
the metamaterial responds in the bidomain mode (Fig. 5D).
Indeed, the overlaid polarization clearly splits into two domains
separated by a relatively undeformed region. Tracking the polar-
ization in Fig. 5 E and F for small and large strain rates,
respectively, shows that the simulations and experiments are in
qualitative agreement. First, the applied bidomain mode imper-
fection (see Materials and Methods and SI Appendix) always
induces a bidomain mode deformation, with a widening polar-
ization range, centered around Ω = 0. Then, small strain rates
excite increasing average polarizations postbuckling toward the
rotating squares mode above ε> 0.03 in Fig. 5E, while the sym-
metry of the bidomain mode keeps the average polarization close
to zero at all strain values in Fig. 5F. However, in both cases,
it appears that buckling occurs earlier numerically than exper-
imentally. This could be because the numerical model neglects
the hinge bonds’ flexibility and is therefore more prone to
buckling, or the experimental imperfections favor the bidomain
deformation less.

In conclusion, the combination of oligomodal architectures
and viscoelastic hinges provides a robust strategy to achieve
mode selection by strain rate, which can be designed with the
help of finite element methods. Employing an oligomodal tiling
is crucial to achieve such controlled mode selection; indeed, the
many additional localized modes present in plurimodal tilings
could introduce unwanted degrees of freedom that perturb the
mechanical response.
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Strain Rate-Dependent Poisson’s Ratio
In this last section, we ask whether the selection of distinct modes
can also lead to selection of distinct mechanical properties.
Specifically, we probe whether the rotating-squares mechanism
and the bidomain modes lead to distinct values of the Poisson’s
ratio, and, therefore, whether one can obtain distinct values of
the Poisson’s ratio using strain rate. Intuitively, we expect the
presence of the domain wall to frustrate the overall lateral defor-
mation and therefore to induce a larger Poisson’s ratio for the
bidomain mode than for the rotating-squares mechanism—see
Materials and Methods.

We measure, both experimentally and numerically, the Pois-
son’s ratio as a function of the strain ε for the same different
strain rates as before. While we always find a positive Poisson’s
ratio in the prebuckling phase, we find that compressing at a
small strain rate leads to a response with a negative nonlinear
Poisson’s ratio at strains ε> 0.04 (Fig. 6A, blue), while compress-
ing at large strain rate induces larger values of the Poisson’s
ratio (Fig. 6B, blue). To obtain more insight on these results,
we measure the Poisson’s ratio as a function of the strain ε
and the strain rate ε̇ from the numerical simulations (Fig. 6 A
and B, orange and Fig. 6C) and find that the Poisson’s ratio
remains positive in the prebuckled region, while it becomes neg-
ative in the buckled region. The rotating-squares mechanism and
the bidomain mode both exhibit negative Poisson’s ratios, yet
the Poisson’s ratio is larger and therefore less negative in the
case of the bidomain mode, which is consistent with the experi-
ments. Notably, the Poisson’s ratio in the rotating-square mode
shows larger spatial dispersion; this is a signature of the snap-
ping transition that occurs when the deformation snaps from the
bidomain mode into the rotating-square mode. Interestingly, as
the buckling strain is pushed to larger values for larger strain

Fig. 6. Strain rate-dependent Poisson’s ratio. (A and B) The average Pois-
son’s ratio ν, as function of ε for the experimental sample of Fig. 5 C and
D (blue, with error bars) and numerical sample Fig. 4 E and F (orange, with
spatial spread) at a strain rate of ε̇= 9.3 · 10−6 s−1 (A) and of ε̇= 0.11 s−1

(B). (C) The absolute value of the average sample Poisson’s ratio ν as func-
tion of strain ε and strain rate ε̇ for the numerical sample of Fig. 4 E and
F. The hashed area indicates the range of ε and ε̇, where positive–negative
Poisson’s ratio switching can be observed.

rates, there is a range of strains ε∈ [0.3, 0.45] for which the
Poisson’s ratio can switch from positive to negative by tuning
the strain rate. Therefore, there is a range of strains for which
our metamaterial is multifunctional, hosting several functions
that can be selected with a robust actuation protocol: auxetic
under slow compression rate and nonauxetic at fast compression
rate.

Discussion
To conclude, we have introduced a class of materials, oligomodal
metamaterials, that strike a delicate kinematic balance that
allows them to exhibit a limited number of zero-energy modes.
Based on these zero modes, we have created flexible metama-
terials, whose deformations can then be selectively and robustly
actuated using relatively simple loading protocols such as uni-
axial compression, thus providing an example of multifunctional
mechanics.

Our approach is fundamentally different from and is com-
plementary to recent developments based on poroelasticity (29)
and magnetoelasticity (30). In these works, multifunctionality is
achieved through elaborate actuation multiphysics couplings and
via loading in the bulk: The loading is exerted on the bulk by
external fields, such as a chemical potential or a magnetic field.
This is different from our case, where the deformation modes are
selected in a purely mechanical fashion, and where the loading is
exerted at the boundaries. These approaches could, in fact, ben-
efit from employing oligomodal architectures, in order to reduce
the number of involved degrees of freedom to the minimum
required by the desired functions.

Our approach is broadly applicable for the design of flexi-
ble metamaterials with low-energy strain pathways. In particular,
our approach could be further generalized to other types of
unit cells, to other lattices, and to 3D tilings and applied to
more types of functionalities such as chiral responses (31–33),
shape morphing (4, 11, 34), enhanced energy absorption (26,
35) and nonlinear wave propagation (36, 37). In particular, we
expect the switchable nature of oligomodal metamaterials to
enable the control of deformation pathways, which could be
potentially useful for dissipation of energy. Moreover, there is
no reason to assume that a zero-energy mode-based method as
we use is the only way to design flexible oligomodal metamate-
rials. Alternative analysis and design methods that can induce
clear modal separation, such as topology optimization, may be
used instead. Also, our design space, mostly restricted to peri-
odic tilings of 2× 2 supercells, could be dramatically augmented,
for instance, by considering periodic tilings of larger supercells,
by using alternative nonperiodic tiling strategies constructed via
fractal substitution rules and mirroring (see SI Appendix for an
example), or by harnessing defects (12, 38). Finally, data-driven
approaches such as machine learning could provide a powerful
alternative to better understand the structure–property relation-
ship (33) and to rationally design oligomodal tilings. Additional
open questions that remain are how to effectively design large
deformation responses, which variety of multifunctionality can
be achieved, and how to produce these materials on a large scale
effectively.

Materials and Methods
Kinematics of Multimode Combinatorial Metamaterials. Repeating our
bimode cell with arbitrary orientations on a square lattice yields a large
variety of configurations. To understand how the balance between con-
straints and degrees of freedom gives rise to zero-energy modes and states
of self-stress, we use the Maxwell–Calladine index theorem (14). It provides
a relation between the number of states of self-stress NSS, the number of
zero-energy modes NM, the dimension d, the number of hinges N, and the
number of constraints c,

dN− c =
d(d + 1)

2
+ NM −NSS, [1]
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A B

Fig. 7. Kinematics of the unit cell. (A) Counting the constraints and degrees
of freedom. Each cell contributes N = 3 points (dark blue points) and c = 7
constraints (solid red lines). Light blue points and dashed lines represent
contributions from other cells. Boundary cells additionally contribute N = 2
points and c = 2 constraints, in green. (B) Geometry and parametrization
of the five-bars linkage, which constitutes the functional backbone of the
bimodal unit cell.

which we can evaluate for arbitrary choices of cell orientations. In a tiling
of n× n cells, each cell has a contribution of N = 3 and c = 7, with an addi-
tional contribution of N = 4n + 1 and c = 4n from the boundary (Fig. 7A).
Constraining displacements to the plane, this yields

NM −NSS = 4n− n2− 1. [2]

Since the number of zero-energy modes NM cannot be negative, Eq. 2
implies a lower bound for the number of states of self-stress of n2− 4n + 1.
Thus, to leading order, the number of states of self-stress is extensive. Eq.
2 provides a negative lower bound for NM, which hence is poor. In order
to obtain more information on the number of zero-energy modes, one has
to go beyond the Maxwell–Calladine index theorem by computing the ker-
nel of the compatibility matrix explicitly (14). Applying the compatibility
matrix on a vector containing the displacements of the hinges produces a
vector that describes the corresponding stretching of the bars. Therefore,
any displacement vector in the kernel of this matrix produces no stretch-
ing whatsoever, making it a zero-energy mode. To obtain the mode scalings
displayed in Fig. 2G, we calculated the nullity of the compatibility matrix
numerically using the LAPACK (Linear Algebra PACKage) driver xGESDD (a
divide-and-conquer singular-value decomposition method).

Vertex Model. The approach described above has, however, a drawback: It
yields arbitrary superpositions of the zero-energy modes, potentially pro-
viding very little insight on the nature of the involved deformations. To
complement this standard method, we therefore introduced an approach
in Oligomodal Tilings, based on graphs with directed edges. We now derive
this approach in detail, starting from the fully nonlinear geometric con-
straints of the primitive cell. They can be encoded in three trigonometric
equations, namely,

A + B + C + D + E = 3π, [3]

1− cos(A) = 3− 2 cos(C)− 2 cos(D) + 2 cos(C + D), [4]

sin(D)−
sin(D + E)
√

2
= sin(C)−

sin(C + B)
√

2
, [5]

where the angles A, B, C, D, and E are defined in Fig. 7B. To construct
the directed graph model, we perform a few algebraic manipulations and
linearization. First, we change variables and consider

A =
π

2
+α B =

3π

4
+ β

C =
π

2
+ γ D =

π

2
+ δ E =

3π

4
+ ε. [6]

Then, we linearize Eqs. 4 and 5 in α, β, γ, δ, and ε. This linearization
around the rest position of our primitive cell yields

αδ
ε

=

−2−2
−1−2
2 3

(β
γ

)
. [7]

As expected from the index theorem, there are two free parameters. We
then pick a convenient basis(

β

γ

)
=χ

(
−1
1

)
+ ξ

(
3
−1

)
. [8]

This equation allows designing of Fig. 3 A, D, and G. We draw the cell as a
vertex with five edges, one for each hinge, and make use of the fact that
only integer coefficients appear in Eq. 7 to draw arrows on the edges. Set-
ting ξ= 0 (χ= 0), we draw n arrows on an edge if the corresponding angle
is equal to nχ (nξ). We draw the arrows as incoming for positive angles and
outgoing for negative angles. This produces the directed vertex of Fig. 3D
(Fig. 3G). Any linear combination of those two configurations also produces
a compatible vertex. The final ingredient in our model consists in remark-
ing that every hinge is also subject to angle conservation, allowing us to
concatenate single-cell graphs to obtain a directed graph describing the full
tiling (Fig. 3 K and L).

Importantly, by an angle-fixing argument, the model could be triv-
ially extended to six, seven, and eight edges per vertex by taking our
existing vertex and adding a diagonal edge in either of the three
available corners. If we then fix the value of one of these diago-
nal edges, we reduce the problem to the pentagonal case. Since this
yields three, four, or five independent vertices, it exhausts the number
of available zero-energy modes. In principle, this linearization proce-
dure is also applicable to other primitive cells, and provides a conve-
nient graphical tool in the cases for which the resulting coefficients are
integers.

Finite Mechanisms and Infinitesimal Zero-Energy Modes. We discuss here
the nature of the zero-energy modes determined above. Two classes of
zero-energy modes can exist (14): 1) the finite mechanisms, in which the
zero-energy deformations can persist in the nonlinear regime and lead to
large rotations without stretching or compressing any bars; 2) infinitesi-
mal zero-energy modes, in which the deformations are only zero-energy
in the linear range. Further deformations in the nonlinear regime typically
cost elastic energy through elongation of the rods. As demonstrated in our
experiments, such infinitesimal modes translate to soft deformation modes
in practice.

A visual inspection of the kinematics of the elementary modes in
SI Appendix, Table S1 reveals that only the rotating-squares mode is
finite. All of the other zero-energy modes require length change of
the rods to be extended into the nonlinear regime and, as such, are
infinitesimal.

Sample Design and Fabrication. The 16× 16 samples of Fig. 3 M–O are
designed following the tilings shown in Fig. 3J. The samples’ dimensions
are 192× 192× 4 mm. The 6× 6 sample of Fig. 5 is designed following the
same tiling shown in Fig. 3J, rotated by 45◦. The sample’s dimensions are
180× 180× 20 mm.

For these two types of samples, special care has been devoted to the
design of the details of the unit cells: Imperfect compliant hinges, expe-
riencing shear and tension instead of pure bending/torsion, can affect

A B

50°
90°

4

R0.2

12

1R0.3

21.2

Fig. 8. Compliant hinge geometry. (A) Hinge geometry of Fig. 3. (B) Hinge
geometry of Fig. 5. The light gray (dark gray) material is rigid (compliant).
All units are in millimeters unless otherwise specified.
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Table 1. Mechanical properties of compliant hinges of Fig. 5

Stiffness Elite double 32 Agilus 30

Fast Slow Fast Slow

Bending (Nmm/rad) 24 20 120 20
±1 ±2 ±25 ±2

Tension (N/mm) 31 24 630 44
±2 ±1 ±150 ±10

Shear (N/mm) 10 8.1 190 18
±1 ±0.4 ±30 ±3

Bending, tensile, and shear stiffness under fast (20 mm/s) and slow (0.002
mm/s) loading rate.

the linear and nonlinear deformation of mechanisms significantly (39). For
the samples of Figs. 3 and 5, we negate these effects in two ways. First
of all, the central unit cells are made from a much more rigid material
than the elastic hinges, such that the central unit cells do not deform
during loading. Next, we use tapered rigid parts as seen in Fig. 8. A
central narrow section between the rigid sections greatly increases resis-
tance to shear and tension while offering only a negligible resistance to
bending.

When the actuation is aligned with the primitive lattice, the bidomain
mode leads to shear–compression coupling. However, such a mode in a 45◦

orientation can lead to a positive Poisson’s ratio, which is markedly differ-
ent from the rotating-squares mode, that has a negative Poisson’s ratio (SI
Appendix). Therefore, we choose to rotate the sample by 45◦ in Fig. 5.
Without imperfection, the configuration in Fig. 5 would have an inherent
buckling preference toward the rotating-squares mode of Fig. 5C. How-
ever, this preference is tuned by designing an imperfection (40) favoring
the bidomain mode of Fig. 5D, which has been designed using nonlinear vis-
coelastic finite element methods (Abaqus; see SI Appendix). Furthermore, as
the samples are tested horizontally, the bottom of the sample features small
pockets with 5-mm steel ball bearings to reduce the effects of friction with
the bottom surface.

We produce the samples in Fig. 3 using additive manufacturing using
a Stratasys Objet500 Connex3 3D printer. The hinges are produced from a
highly viscoelastic rubber-like PolyJet Photopolymer (Stratasys Agilus 30),
which is cocured with the central parts, which are made from a much
stiffer Photopolymer (Stratasys VeroWhitePlus). The square hinges and cen-
tral parts of the sample of Fig. 5 are produced in the same way. However,
the triangular hinges of the sample of Fig. 5 are cast from an elastic two-
component silicon-based rubber (Zhermack Elite Double 32), and are then
glued to the sample using Wacker Elastosil E43 glue. We anticipate that
advances in additive manufacturing, using, for instance, silicone resins, will
allow single-step manufacturing of the elastic–viscoelastic samples of Fig. 5
in the near future.

Experimental Methods. We compress the periodic bimode sample in Fig. 3
M–O using a uniaxial testing device (Instron 5943 with a 500-N load cell),
with laser-cut Plexiglas indenters, denoted by the white arrows in the figure,
at a strain rate of ε̇= 1.30 · 10−3s−1 to a strain of ε= 0.026. The sample is
positioned horizontally to enhance overall mechanical stability, with gravity
preventing out-of-plane buckling. The quasiperiodic sample in SI Appendix,
Fig. S1 is produced and tested in a similar way. However, the sample is
compressed, instead, in the direction from the upper left to the bottom
right.

The sample in Fig. 5 is compressed using the same uniaxial testing
machine with straight surfaces on the top and bottom, at various strain
rates. The sample is also positioned horizontally to enhance overall mechan-
ical stability, with gravity also preventing out-of-plane buckling. For Fig.
3 (Fig. 5), the tests are recorded using a high-resolution 3,858× 2,748
(2,048× 2,048) monochrome CMOS camera Basler acA3800-14um with Fuji-
non 75-mm lens (acA2040-90um with Fujinon 50-mm lens), inducing a
spatial resolution of 0.07 mm (0.1 mm). Using particle tracking (OPENCV
and Python), we extract and track the four central holes of the stiff
sections, which we use to calculate the position and ellipticity of all
of the pores, whose reconstruction has been overlaid in Fig. 3 (Fig. 5).
For Fig. 5, we track the average horizontal (vertical) distance between
the centers of the ellipses on the sides (top and bottom) to compute
the width (height) of the sample, from which we extract the compres-
sive axial strain εaxial and the strain transverse to the loading direction,

εtransverse. We use these quantities to compute the nonlinear Poisson’s ratio
ν := − ∂εtransverse/∂εaxial averaged over applied strain deformation steps
of δεaxial = 0.005.

Hinge Material Properties. We measure the mechanical properties of a
single compliant hinge of the sample in Fig. 5 using the same uni-
axial testing device. We perform three different experiments: bend-
ing, tension, and shear. For bending, we pull on the hinge up to
0.30-rad deflection at rates of 0.002 and 20 mm/s. For tension and
shear, we pull on the hinge up to 1.0-mm deflection at rates of
0.002 and 20 mm/s. We report the average of the measured stiffnesses
in Table 1.

We observe that the stiffnesses at long timescales are similar for both
types of hinges. However, at short timescales, the stiffnesses of the elas-
tic (Elite Double 32) hinges increases only by approximately 20 to 30%
compared to long timescales, while the stiffnesses of the viscoelastic
(Agilus 30) hinges can increase by more than 1,300%. This difference
in loading-rate dependency allows us to obtain the switchable response
observed in Fig. 5.

Simulating Oligomodal Metamaterials. We use dynamic explicit nonlinear
finite element methods (Abaqus 2018, Dassault Systèmes) to predict and
design the dynamic response of oligomodal metamaterials, as well as to
study the effects of changing material and geometry parameters. We model
the geometry of the sample of Figs. 4 and 5 as seen in Fig. 9 using 2D tri-
angular quadratic elements (CPE6). Plane strain elements are used as the
rigid material to prevent the hinges from expanding and contracting in real-
ity (as in Fig. 5). A mesh density featuring at least four elements through
the hinge thickness and at least eight elements through the hinge thick-
ness at the center is used, after performing a mesh convergence study
showing that mesh refinement leads to little to no differences in global
deformation.

We model the stiff plastic components as a linear elastic material
with a Young’s modulus of E = 1 GPa and Poisson’s ratio ν= 0.3. The
hinges are modeled as flexible nearly incompressible hyperelastic mate-
rials [Abaqus specific implementation of Arruda–Boyce material (41)],
with a material large strain stiffening parameter λm = 2 and a Pois-
son’s ratio ν= 0.47, corresponding to a ratio of the bulk and shear
modulus K/µ= 15.7. The elastic hinges (black in Fig. 9B) have E = 1
MPa. The viscoelasticity of the viscoelastic hinges (gray in Fig. 9B) is
accounted for using a three-term Prony series, with relaxation strengths
η123 = (0.45, 0.26, 0.10) and timescales τ123 = (0.047, 0.97, 18) s−1 (26). To
study the effects of changing material parameters, we vary the instan-
taneous Young’s modulus between E0 = 0.25 MPa to 4.0 MPa, spanning
over the real E0 = 3.25 MPa (26), while the results of Figs. 4–6 apply
E0 = 1 MPa.

Reference points are created in the middle of the top and bottom stiff
square segments (yellow in Fig. 9A), which are rigidly coupled to all nodes
on these square elements, with the boundary conditions visualized in white.
The bottom reference nodes are restricted from moving in a vertical direc-
tion, and one is also constrained horizontally. The top reference nodes are
homogeneously compressed vertically using displacement control. All nodes
are free to rotate.

A B

Fig. 9. Dynamic oligomodal finite element model: (A) modeled geometry
with boundary conditions and nodes used for computing polarization with
(B) enlarged supercell with material correspondence.
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To prevent generating jerky stress waves, the load application
follows a smooth step in the time domain, where the first and
second derivatives of the displacement with respect to time
are zero, with average strain rates between ε̇= 6.9 · 10−7 s−1

to 0.69 s−1.
After running the analyses, we compute the polarization of the holes,

as defined in Fig. 5, by tracking the nodes corresponding to the points
highlighted in red in Fig. 9A.

Data Availability. Experimental and numerical data (codes, raw
images, and postprocessed images) have been deposited in Zenodo
(https://doi.org/10.5281/zenodo.4699990) (42) .
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