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Abstract: Organic contaminants (OCs), such as pharmaceuticals, personal care products, flame
retardants, and plasticisers, are societally ubiquitous, environmentally hazardous, and structurally
diverse chemical compounds whose recalcitrance to conventional wastewater treatment necessitates
the development of more effective remedial alternatives. The engineered application of ligninolytic
oxidoreductase fungal enzymes, principally white-rot laccase, lignin peroxidase, and manganese
peroxidase, has been identified as a particularly promising approach for OC remediation due to
their strong oxidative power, broad substrate specificity, low energy consumption, environmental
benignity, and cultivability from lignocellulosic waste. By applying an understanding of the
mechanisms by which substrate properties influence enzyme activity, a set of semi-quantitative
physicochemical criteria (redox potential, hydrophobicity, steric bulk and pKa) was formulated,
against which the oxidoreductase degradation susceptibility of twenty-five representative OCs
was assessed. Ionisable, compact, and electron donating group (EDG) rich pharmaceuticals and
antibiotics were judged the most susceptible, whilst hydrophilic, bulky, and electron withdrawing
group (EWG) rich polyhalogenated compounds were judged the least susceptible. OC susceptibility
scores were in general agreement with the removal rates reported for experimental oxidoreductase
treatments (R2 = 0.60). Based on this fundamental knowledge, and recent developments in enzyme
immobilisation techniques, microbiological enzymic treatment strategies are proposed to formulate a
new generation of biological wastewater treatment processes for the biodegradation of environmentally
challenging OC compounds.
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1. Introduction

Wastewater treatment plant (WWTP) effluents and biosolids are regularly found to contain
a wide variety of heterogeneously structured novel micropollutants as chemically engineered
production of anthropogenic compounds continues to diversify. Environmental organic contaminants
(OCs) can be broadly characterised by their prevalence as ubiquitous necessities (e.g., antibiotics,
pharmaceuticals, personal care products, hormones, plasticisers, flame retardants, surfactants, biocides,
and preservatives), their recalcitrance to conventional wastewater treatment and natural degradation
processes, their environmental persistence and bioaccumulation, their ubiquity at analytically
challenging yet ecologically harmful ppb/ppt environmental concentrations, and their general lack of
current source control legislation [1]. Importantly, whilst the environmental impacts of OC emission
include endocrine disruption, food-web accumulation, ecological toxicity/mutagenicity/teratogenicity,
and antibiotic resistance dissemination, the continuous discharge of OCs in wastewater effluent allows
for even the least persistent OCs to potentially impart some degree of ecological harm upon receiving
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waters [2]. Thus, the development of effective, systematic, and economically and environmentally
sustainable techniques that facilitate OC removal within the confines of WWTPs is urgently needed.

Recently, the application of isolated enzymes has gathered particularly significant attention for OC
degradation [3]. Enzymatic treatment can have higher specificity for very low concentration and highly
recalcitrant OCs and it produces less harmful by-products as compared to other physicochemical
technologies, such as dense membrane filtration, advanced oxidation, and granular activated carbon
adsorption [4,5]. Fungi oxidoreductase enzymes, including white-rot laccase, lignin peroxidase
(LiP), and manganese peroxidase (MnP), which are synergistically employed to oxidatively and
non-selectively cleave the resilient polyphenol structures of lignin during the decomposition of wood,
distinguish themselves as promising candidates to remove OCs. For example, Alharbi et al. found
that 5 mg/L of diclofenac, trimethoprim, carbamazepine, and sulfamethoxazole can be effectively
degraded by laccase from Trametes versicolor, with the efficiency reaching 100%, 95%, 85%, and 56%,
respectively [6]. Singh et al. reported that up to 75% of another OC, triclosan (1.5–0.375 mg/L), can be
degraded by the free laccase produced from the same species of bacteria [7]. Similarly, Lip and MnP
were also reported to be capable of degrading various phenolic and/or nonphenolic compounds under
certain conditions [8–11].

The reaction of these oxidoreductase enzymes follows a radical reaction mechanism, driven by the
redox potential differential between the enzyme active site and substrate. Laccase catalysis, for example,
is initialised by a cycle of four single outer-sphere electron transfers between four phenolic substrate
molecules, being sequentially bound at the primary electron accepting active site (with redox potential
at 0.43–0.78 V [12]), which results in substrate oxidation and the generation of polymerisation prone
phenoxy free radicals. Phenolic and aromatic compounds, which usually show relatively low redox
potential, can be non-specifically decomposed by laccase, Lip, and MnP. Moreover, these enzymes also
have ability to expand their specificity towards other non-phenolic and non-aromatic substrates (with
redox potentials of up to 1.5V under certain circumstances [13,14]).

However, future deployment of enzymatic treatment of OCs is strongly dependent on the ability
to rapidly screen enzymes possessing specificity to the contaminants of concern [15]. This in itself
must be founded upon an improved understanding of the factors controlling the susceptibility of a
compound to enzymatic catalysis.

Currently, no established and rational technique exists, by which the susceptibility of OCs to
enzymatic degradation can be systematically predicted, a fact that restricts the rationalisation of
oxidoreductase treatment process design. This study aimed to construct a framework for assessing
the susceptibility of OCs to fungal enzyme degradation, founded upon an understanding of the
interrelationships between the physicochemical properties of the contaminant, the catalytic mechanism
of the enzyme, and the conditions of the environment, and then apply this to recommend key criteria
to consider in the design of enzymic treatment systems for OC removal from wastewater.

2. Materials and Methods

2.1. Shortlist of Target OCs for Assessment

Twenty-five representative contaminants (Table 1) were shortlisted to undergo detailed enzymatic
susceptibility assessment. Each compound was selected due to it possessing a combination of a high
detection frequency in wastewater/biosolids, a low average wastewater removal percentage relative to
other compounds of the same subgroup, and a degree of environmental persistence, bioaccumulation
and/or toxicity.
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Table 1. Shortlisted chemicals and their abbreviations.

Chemical Abbreviation Chemical Abbreviation

Sulfamethoxazole SMX Triclosan TRC
Erythromycin ERY 3,3′,4,4′,5,5′,6,6′-decabromodiphenyl ether BDE-209
Tetracycline TET Pentabromoethylbenzene PBEB

Ofloxacin OFL Tris(1,3-dichloroisopropyl) phosphate TDCPP
Trimethoprim TMP Diethylhexyl phthalate DEHP

Diclofenac DCF 2-Hydroxybenzothiazole OBT
Carbamazepine CBZ Tributyltin TBT

Metoprolol MTP Perfluorooctanoic acid PFOA
Gemfibrozil GMF Perfluorooctanesulfonic acid PFOS

Benzophenone-3 BZP Tetrachlorodibenzo-p-dioxin TCDD
Fluoxetine FLX 2,3,6,7-Pentachloronaphthalene 2,3,6,7-PCN
Oestrone OST 2,3,4,6,7,8-Hexachlorodecane CP-10

Galaxolide GLX

2.2. Criterion Selection and Its Rationale

Four physicochemical properties of contaminants that affect their suitability as fungal enzyme
substrates are considered as criteria for the assessment process and are described, as follows.

• Criterion 1 (C1): Net electron donating group density

As the one-electron oxidation reactions oxidoreductases employ initialise substrate transformation
are driven by the redox potential differential (∆E) between the enzyme and its substrate, substrate
molecules with lower redox potentials, weaker electron affinities, and, thus, greater electron transfer
tendencies will be more susceptible to enzymatic oxidation, and subsequent transformation/removal [16].
Unfortunately, the structural density of electron donating groups (EDG) and electron withdrawing
groups (EWG) was adopted as a proxy for redox potential, as the availability of redox potential data
for the shortlisted contaminants is extremely limited. Here, the term: Net Electron Donating Group
Density, represents the presence, balance, and strength of donating and withdrawing groups within a
given contaminant.

• Criterion 2 (C2): Hydrophobicity

Hydrophobicity represents the tendency of a compound to partition and sorb from the aqueous
phase into the nonaqueous phase [17]. Hydrophobicity is known to heavily impact upon the removal
rates that were observed in wastewater treatment processes [18,19] and also upon the susceptibility of
contaminants to purified enzyme degradation [20,21].

• Criterion 3 (C3): Steric hindrance

For substrates only containing small substituents (-OH, -CH3, -OCH3, C2H5, etc.), electron
donating/withdrawing strength dominates enzyme activity determination. However, for compounds
possessing longer chained substituents, the enzyme-substrate (E-S) complex formation at the active
site might be severely interfered via steric hindrance effects [22,23].

• Criterion 4 (C4): pKa

Some studies [24,25] showed that compounds with lower pKa values display faster oxidation
rates under physiological pH conditions and micropollutants can be more readily degraded by
oxidoreductase at a pH that is higher than its pKa.

2.3. Criteria Weighting

The weightings of the criteria were determined by considering the relative ability of each criterion
to influence the enzymatic oxidation rate of the target OCs. Based on the supporting literature available,
the relative importance ranking of each criterion was listed as:
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(1) Net electron donating group density [16,21,23,26–28];
(2) Hydrophobicity [20,21] and Steric Hindrance [22,23]; and,
(3) pKa [24,25].

As such, the criteria weightings were set to 9-3-3-1 for net electron donating group density,
hydrophobicity, steric hindrance, and pKa, respectively.

2.4. Scoring for Each Criteria

2.4.1. Criterion 1: Net Electron Donating Group Density

To produce a value of C1, the following methodology was adopted:

• Firstly, each donating and withdrawing substituent within the molecular structure of the shortlisted
contaminants was identified and then assigned a score of 3, 2, or 1, relative to its classification as a
strong, medium, or weak group, respectively (Table 2).

• The donating and withdrawing group scores of each contaminant were separately tallied and the
difference between these summations calculated.

• This difference was then divided by the contaminants molecular weight before being multiplied
by 100 to provide a final normalised density-based parameter with units of net donating group
score per 100 g/mol.

Overall, the contaminants with a final net electron donating group density value >1 (strong
donating group dominance), 0–1 (slight/moderate donating group dominance), or <0 (withdrawing
group dominance) were assigned a susceptibility score of 9, 6, or 3, respectively. Contaminants only
containing withdrawing groups were assigned a score of 0. However, it must be clarified that, as
donating and withdrawing substituents influence redox potential via electron density modification
of the aromatic moiety to which they are attached, only the redox potential of aromatic compounds
is influenced by their presence. The functional groups that are attached to aliphatic molecules are,
therefore, considered to have no positive impact on oxidoreductase susceptibility in this criterion
category and, as such, aliphatic contaminants were assigned a net electron donating group density
susceptibility score of 0.

2.4.2. Criterion 2: Hydrophobicity

Hydrophobicity of a substance is quantified by the log octanol-water partition coefficient (Log
Kow). The hydrophobic nature of a compound can be broadly classified, as follows: Log Kow < 2.5 = low
hydrophobicity, Log Kow 2.5–4 = moderate hydrophobicity, and Log Kow > 4 = high hydrophobicity [29].
As such, shortlisted contaminants possessing high, moderate, and low log Kow values were assigned
susceptibility scores of 3, 2, and 1, respectively.
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Table 2. Electron donating/withdrawing strength and steric bulk of shortlisted organic contaminant
(OC) substituents.

Substituent Electron Donating/Withdrawing
Strength 1 Steric Bulk 2

Electron Donating Groups
-OH (hydroxyl) Strong Low

-R (Alkyl) Medium Medium (<3 C), high (≥3 C) *
-NH2, -NHR, -NR2 (amine) Strong Medium

-ROR (ether) Medium Low
-SCH3 Weak Low

Electron Withdrawing Groups
-COOH (carboxyl) Medium Medium

-C6H5 (phenyl) Weak High
-F, -Br, -Cl (Halogen) Medium Low

-CONH2, -CONHR, -CONR2 (amide) Strong Medium
-COOR (ester) Medium Medium

-COR (acyl) Medium Medium
-SO2OH Medium Unknown

-SO2NHR Strong Unknown
1 source: [30]; 2 source: [31,32]; * refers to the number of carbon of the substituent.

2.4.3. Criterion 3: Steric Bulk

The steric bulk of a substituent is numerically represented by its A-value. Highly, moderately,
and minimally bulky substituents were defined as those with A-values >3, between 3–1 and <1,
respectively (Table 2). Contaminants with high, medium, and low steric bulks were, respectively,
assigned susceptibility scores of 1, 2, and 3, respectively.

2.4.4. Criterion 4: pKa

Shortlisted contaminants possessing pKa values that were above and below the typical pH
of wastewater (pH 7.5) were assigned susceptibility scores of −1 and 1, respectively. The score of
contaminants that was devoid of ionisable functional groups was left unchanged.

2.5. Data Collection and Analysis

For assessing the susceptibility of the OCs, Appendix A (Table A1) presents the detailed breakdown
of EDG/EWG content, log Kow, steric bulk, and pKa data used to derive susceptibility scores for each
shortlisted contaminant. Relevance analysis was carried out by statistical linear regression.

3. Results and Discussion

3.1. Susceptibility Assessment Results

Figure 1 presents the shortlisted contaminants in order of their assessed susceptibility to
oxidoreductase degradation within a wastewater treatment context. The higher the total susceptibility
score, the greater the predicted susceptibility to oxidoreductase degradation.
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Figure 1. Shortlisted OCs in order of their assessed susceptibility to oxidoreductase degradation. The
breakdown of individual criteria scores is represented by patterned bars.

From a possible total susceptibility score of 16, Gemfibrozil, a lipid regulating pharmaceutical,
scored the highest (14/16), whilst CP-10, which is a short-chained halogenated paraffin/polychlorinated
naphthalene, scored the lowest (2/16). The ten most susceptible contaminants comprised four
non-halogenated antibiotics (trimethoprim, erythromycin, tetracycline, and sulfamethoxazole), five
non-halogenated pharmaceuticals/personal care products (gemfibrozil, metoprolol, benzophenone-3,
galaxolide, and oestrone), and one non-halogenated plasticiser (DEHP). Conversely, the fifteen least
susceptible contaminants comprised two halogenated surfactants (PFOA, PFOS), four halogenated
flame retardants (PBEB, TDCPP, BDE-209, and 2,3,6,7-PCN), one halogenated plasticiser (CP-10), one
halogenated antibiotic (ofloxacin), three pharmaceuticals (carbamazepine, diclofenac and fluoxetine),
three biocides (OBT, TBT, triclosan), and one combustion by-product (TCDD).

Overall, the halogenated contaminants possessed, on average, a 32% lower susceptibility score
(6.6/16) than non-halogenated compounds (9.7/16). This is consistent with the fact that the halogen
(-X) groups are electron withdrawing groups; if not balanced with other electron donating groups
within the molecule, they tend to increase the redox potential and electrophilicity of a compound by
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withdrawing electron density away from the aromatic ring [16]. The resulting electron sufficiency of
the aromatic moiety decreases the compounds’ susceptibility to oxidative catabolism.

3.2. Comparison between the Susceptibility Scores of OCs and Their Removal by Oxidoreductase Treatment

The results of the susceptibility assessment were compared with the published studies of the
removal rates that were attained by various oxidoreductase treatment strategies (Figure 2). Linear
regression analysis of the relationship showed that the degradation potential of a diverse range of
OCs showed good agreement with the susceptibility scores for the compounds and gave an R2 = 0.60
(p value = 0.002), providing confidence in the assessment framework to predict the susceptibility of
OCs to oxidoreductase degradation.
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Carbamazepine received a relatively low susceptibility score (3/16) due to its moderate
hydrophobicity, high pKa, moderate steric bulk, and lack of EDGs, which is strongly supported
by reports of enzymatic recalcitrance. A GAC-immobilised Aspergillus oryzae laccase, for example, was
reported to achieve 40% carbamazepine removal when compared to 60%, 60%, and 98% for diclofenac
(7/16), sulfamethoxazole (10/16), and bisphenol-A, respectively [4]. Similarly, whilst carbamazepine
was reported to be negligibly removed by crude laccase (5–37%), LiP (< 10%) and MnP (14–20%),
oestrone (10/16) showed much greater degradability under the same treatment conditions (70–100%,
60%, and 99%) [33]. Furthermore, Tinea versicolor laccase has been reported to achieve 82% removal of
Galaxolide (11/16) [34] and 100% removal of gemfibrozil (14/16) [35], whilst tetracycline (11/16) has
been reported to undergo 70% and 72% removal by magnetically crosslinked Cerrena laccase [36] and
crude MnP [3], respectively. Moreover, Ganoderma lucidum laccase, after one day of incubation, was
able to degrade 95% of DEHP (13/16) [37], whilst Pleurotus ostreatus laccase, after 36 days of incubation,
could only degrade 24% of PFOA (6/16) [38]. Finally, removal efficiencies of 43% for carbamazepine
(3/16), 64% for diclofenac (7/16), 86% for BDE-209 (9/16), 100% for sulfamethoxazole (10/16), 100%
for oestrone (10/16), 100% for benzophenone-3 (11/16), and 100% for erythromycin (12/16) have been
reported for the whole-cell T. versicolor treatment of thermally dried sewage sludge [39].

However, for certain shortlisted contaminants, susceptibility scores and experimental removal
reports did not always fully agree. The oxidoreductase degradation of triclosan, in particular,
is more efficient (70–90%) than is expected from its susceptibility score (8/16) [40]. Triclosan is,
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however, the only shortlisted OC to bear a combination of halogen and phenolic substituents and,
as such, the poor association between susceptibility score and the removal rate could arise from the
idiosyncratic suppression of halogenic electron withdrawing effects by the donating and polymerisation
inducing phenolic substituent [41]. More generally, such inconsistencies might be explained by the
non-incorporation of additional known (e.g., reorganisation energy [42]) and ionisation potential [3]
and unknown susceptibility criteria.

Furthermore, low susceptibility OCs, such as carbamazepine (3/16), PFOS (6/16), PFOA (6/16),
Triclosan (8/16), BDE-209 (9/16), and TCDD (9/16) can still be degraded by the oxidoreductase enzymes
under certain conditions, since the enzymes have the ability to expand their specificity towards low
susceptibility OCs (e.g., non-phenolic and non-aromatic substrates). Many researchers have reported
that the degradation of lower scoring OCs is more strongly predicated in the presence of redox mediators
and other complimentary chemical constituents. With the addition of the “redox mediators”, i.e., small
diffusible redox-active phenolic co-substrates, such as 2,2′-azinobis(3-ethylbenzthiazoline-6-sulfonate)
(ABTS) [43], 1-hydroxy-benzotriazole (HBT) [38,44], and p-coumaric acid (PCA) [45], free radicals
generated from the oxidation of these redox mediators can non-specifically shuttle electrons towards,
and abiotically oxidise, nearby non-phenolic molecules [21].

3.3. Susceptibility Assessment Derived Design Recommendations

3.3.1. Enzyme Reactors and Enzyme Stabilisation

Oxidoreductase enzymes have been applied experimentally within a wide array of engineered
systems. Different types of enzymatic reactor have been reported, including: aqueous-phase orientated
batch or continuous stirred tank, packed bed, fluidised bed, suspended nanoparticle, hollow fibre
microfilter and hybrid membrane-nanoparticle suspension bioreactor systems, as well as solid-phase
centric bioslurry and biopile technologies [33,39,46]. However, high rates of pH/thermal enzyme
denaturation and low rates of enzyme retention, recovery, and reusability challenge the contaminant
removal efficiency and the economic feasibility of enzymatic wastewater treatment [47]. Therefore,
the stabilisation of the enzymes is necessary for practical implementation of enzymic treatment.
Crucially, immobilisation facilitates the combinatory aggregation or successive application of disparate
enzymes, which, in turn, provides the versatility that is required to treat complex pollutant mixtures
under fluctuating or poorly defined conditions, which is often the case in wastewater matrices [46].
Conventional immobilisation of enzymes onto solid-supports/carriers (e.g., mesoporous silica and
organic gels) by physisorption, entrapment, or encapsulation is regularly reported to reduce enzyme
washout from continuous processes, widen enzymatic temperature and pH stability ranges through
intermolecular stabilising forces, increase substrate availability by consolidative adsorption, and provide
protection from inhibitory molecules [48–50]. Recently, an alternative, carrier-free immobilisation
technique has been developed to stabilise the enzymes by moderate, covalent bonding with a
cross-linker. This immobilisation approach reduces the activity losses that are associated with the
inaccessibility of enzymes situated deep within the pores of conventional solid-supports, and it
has shown potential for producing enzymatic microreactors to remove organic contaminants from
wastewater [51]. For example, Lai et al. prepared nanotubes with laccases that were cross-linked to the
surface to remove azo dyes. It was found that a decolourisation rate of 74–96% was possible and 90%
of the initial decolourisation rate of the reactor was maintained after 10 sequential batch reactions [52].
Similar results were reported in [53] while using enzymatic membrane reactors that were produced
by cross-linking. Lassouane et al. [54] also found that crosslinking of laccases prior to a conventional
entrapment method increased the immobilisation efficiency by 30%, and that more than 99% of the
contaminant, Bisphenol A, was removed from aqueous solution by cross-linked enzymes.
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3.3.2. Optimisation of Enzymatic Treatment

The susceptibility assessment results that are presented here provide a rationale towards
establishing potential process design recommendations for the enzymatic treatment of OCs: the
treatment performance might be optimised by selecting and manipulating enzymes and wastewater
conditions to exploit the fundamental OC susceptibility relationships, as follows.

• Redox Potential: If the typical OC content of a given wastewater stream can be established,
and the redox potential of these OCs approximated from EDG/EWG analysis, an enzyme, or
redox mediator can be selected that delivers the redox potential that is required for oxidation.
The treatment of polyhalogenated OCs in wastewater, for example, is more likely to require
the application of lignin peroxidase (1.0–1.2 V) over laccase (0.3–0.8 V), or ABTS (0.68 V) over
syringaldehyde (0.51 V) [55], when compared to a predominantly antibiotic/pharmaceutical
contaminated influent.

• Steric Bulk/Hindrance: Apart from stabilising the enzymes, the immobilisation techniques were
also reported to minimise the steric hindrance of E-S complex formation. PEG, for example, can be
employed as a flexible spacer that tethers and non-directly spatially disseminates enzymes across
some solid-supports [56]; employment of these flexibly spaced enzymes in a treatment process
may orientate certain subunits of OCs towards the enzymes active site in a more favourable way.

• pKa: If enzymatic stability ranges allow, the treatment unit should be operated at a pH that
maximises the deprotonation and radicalisation potential of contaminant substituents. For
example, an antibiotic and pharmaceutical rich hospital wastewater effluent could be treated
by a laccase reactor (pH stability 2–10) at pH ~ 9 to ensure the deprotonation and enhanced
susceptibility of sulfamethoxazole (pKa 5.81), trimethoprim (pKa 7.20), erythromycin (pKa 8.90),
ofloxacin (pKa 7.65), diclofenac (pKa 4.20), gemfibrozil (pKa 4.70), and fluoxetine (pKa 8.70).

4. Conclusions

Twenty-five representative OCs were shortlisted for susceptibility assessment to degradation by
lignin degrading fungal enzymes. The physicochemical properties that determine the ability of OCs
to act as fungal oxidoreductase substrates, namely redox potential, hydrophobicity, steric bulk, and
pKa, were translated into semi-quantitative assessment criteria. The susceptibility scores suggested
that oxidoreductase treatment systems are the most effective at degrading EDG-rich, hydrophobic,
compact, and ionisable aromatic contaminants, e.g., oestrone, and least effective at degrading EWG-rich,
hydrophilic, bulky, and non-ionisable aliphatic contaminants, e.g., PFOS.

The assessment framework successfully incorporated the major criteria that control the efficacy of
oxidoreductase OC degradation relative to the reported oxidoreductase treatment removals (R2 = 0.60,
p value = 0.002). Although susceptibility scores and oxidoreductase treatment removal rates largely
agreed, the susceptibility of triclosan was underestimated. The accuracy of susceptibility scores may be
improved by incorporating additional criteria, or by calibrating criteria weightings by experimentally
determining the relative importance of each physicochemical property.

As far as we know, this study is the first to construct a theoretical framework for predicting
contaminant susceptibility to oxidoreductase degradation. As such, it has demonstrated the potential
for, and practical utility of, theoretically linking the fundamental characteristics of disparate molecules
towards deriving a value that broadly signifies the degree to which they will interact. Reasonably,
this concept could be adapted for assessing the susceptibility of the contaminants to other treatment
processes e.g., advanced oxidation, etc.
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Overall, as novel contaminants continue to emerge, the swift and strategic design and deployment
of targeted wastewater treatments will become increasingly necessary, this will be more effective if
based on theoretical, fundamental assessment frameworks that are similar to that proposed here, to
provide rapid and reliable estimations of compound susceptibility and process efficacy. Ultimately,
frameworks that predict the performance of oxidoreductase systems could, if developed alongside
systems for improving mass enzyme producibility and immobilisation, make the application of fungal
enzymes for sustainable wastewater treatment feasible.
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Appendix A

Table A1. Representative OCs shortlisted for susceptibility assessment and their respective assessment criteria data.

Organic
Contaminant

Chemical
Formula Chemical Structure ε Molecular Weight

(g/mol) EDG Score EWG Score Net Electron Donating
Group Density pKa Log Kow Steric Bulk

Sulfamethoxazole C10H11N3O3S
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Table A1. Cont.

Organic
Contaminant

Chemical
Formula Chemical Structure ε Molecular Weight

(g/mol) EDG Score EWG Score Net Electron Donating
Group Density pKa Log Kow Steric Bulk

Trimethoprim C14H18N4O3

Microorganisms 2020, 8, x FOR PEER REVIEW 12 of 20 

 

Ofloxacin C18H20FN3O4 

 

361.37 8 6 0.55 7.65 6 0.00 5 Low 

Trimethoprim C14H18N4O3 

 

290.32 12 0 4.13 7.20 7 0.91 2 Medium 

Diclofenac C14H11Cl2NO2 

 

296.15 3 6 −1.01 4.20 2 0.70 2 Medium 

Carbamazepine C15H12N2O 

 

236.27 0 2 -0.85 13.9 8 2.25 5 Medium 

Metoprolol C15H25NO3 

 

267.36 11 0 4.11 9.60 2 2.15 2 High 

290.32 12 0 4.13 7.20 7 0.91 2 Medium

Diclofenac C14H11Cl2NO2

Microorganisms 2020, 8, x FOR PEER REVIEW 12 of 20 

 

Ofloxacin C18H20FN3O4 

 

361.37 8 6 0.55 7.65 6 0.00 5 Low 

Trimethoprim C14H18N4O3 

 

290.32 12 0 4.13 7.20 7 0.91 2 Medium 

Diclofenac C14H11Cl2NO2 

 

296.15 3 6 −1.01 4.20 2 0.70 2 Medium 

Carbamazepine C15H12N2O 

 

236.27 0 2 -0.85 13.9 8 2.25 5 Medium 

Metoprolol C15H25NO3 

 

267.36 11 0 4.11 9.60 2 2.15 2 High 

296.15 3 6 −1.01 4.20 2 0.70 2 Medium

Carbamazepine C15H12N2O

Microorganisms 2020, 8, x FOR PEER REVIEW 12 of 20 

 

Ofloxacin C18H20FN3O4 

 

361.37 8 6 0.55 7.65 6 0.00 5 Low 

Trimethoprim C14H18N4O3 

 

290.32 12 0 4.13 7.20 7 0.91 2 Medium 

Diclofenac C14H11Cl2NO2 

 

296.15 3 6 −1.01 4.20 2 0.70 2 Medium 

Carbamazepine C15H12N2O 

 

236.27 0 2 -0.85 13.9 8 2.25 5 Medium 

Metoprolol C15H25NO3 

 

267.36 11 0 4.11 9.60 2 2.15 2 High 

236.27 0 2 -0.85 13.9 8 2.25 5 Medium

Metoprolol C15H25NO3

Microorganisms 2020, 8, x FOR PEER REVIEW 12 of 20 

 

Ofloxacin C18H20FN3O4 

 

361.37 8 6 0.55 7.65 6 0.00 5 Low 

Trimethoprim C14H18N4O3 

 

290.32 12 0 4.13 7.20 7 0.91 2 Medium 

Diclofenac C14H11Cl2NO2 

 

296.15 3 6 −1.01 4.20 2 0.70 2 Medium 

Carbamazepine C15H12N2O 

 

236.27 0 2 -0.85 13.9 8 2.25 5 Medium 

Metoprolol C15H25NO3 

 

267.36 11 0 4.11 9.60 2 2.15 2 High 267.36 11 0 4.11 9.60 2 2.15 2 High

Gemfibrozil C15H22O3

Microorganisms 2020, 8, x FOR PEER REVIEW 13 of 20 

 

Gemfibrozil C15H22O3 

 

250.33 8 2 2.40 4.70 2 4.77 2 High 

Benzophenone-3 C14H12O3 

 

228.24 5 3 0.88 7.10 3.79 9 Medium 

Fluoxetine C17H18F3NO 

 

309.33 5 3 0.65 8.70 10 4.05 10 High 

Oestrone C18H22O2 270.37 3 2 0.74 
10.34 

2 3.13 2 Low 

250.33 8 2 2.40 4.70 2 4.77 2 High

Benzophenone-3 C14H12O3

Microorganisms 2020, 8, x FOR PEER REVIEW 13 of 20 

 

Gemfibrozil C15H22O3 

 

250.33 8 2 2.40 4.70 2 4.77 2 High 

Benzophenone-3 C14H12O3 

 

228.24 5 3 0.88 7.10 3.79 9 Medium 

Fluoxetine C17H18F3NO 

 

309.33 5 3 0.65 8.70 10 4.05 10 High 

Oestrone C18H22O2 270.37 3 2 0.74 
10.34 

2 3.13 2 Low 

228.24 5 3 0.88 7.10 3.79 9 Medium



Microorganisms 2020, 8, 122 13 of 19

Table A1. Cont.

Organic
Contaminant

Chemical
Formula Chemical Structure ε Molecular Weight

(g/mol) EDG Score EWG Score Net Electron Donating
Group Density pKa Log Kow Steric Bulk
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Table A1. Cont.

Organic
Contaminant

Chemical
Formula Chemical Structure ε Molecular Weight

(g/mol) EDG Score EWG Score Net Electron Donating
Group Density pKa Log Kow Steric Bulk
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Table A1. Cont.

Organic
Contaminant

Chemical
Formula Chemical Structure ε Molecular Weight

(g/mol) EDG Score EWG Score Net Electron Donating
Group Density pKa Log Kow Steric Bulk
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