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Experimental and epidemiologic investigations suggest that certain pesticides may alter 
sex steroid hormone synthesis, metabolism or regulation, and the risk of hormone-related 
cancers. Here, we evaluated whether single-nucleotide polymorphisms (SNPs) involved 
in hormone homeostasis alter the effect of pesticide exposure on prostate cancer risk. 
We evaluated pesticide–SNP interactions between 39 pesticides and SNPs with respect 
to prostate cancer among 776 cases and 1,444 controls nested in the Agricultural Health 
Study cohort. In these interactions, we included candidate SNPs involved in hormone 
synthesis, metabolism or regulation (N  =  1,100), as well as SNPs associated with 
circulating sex steroid concentrations, as identified by genome-wide association studies 
(N = 17). Unconditional logistic regression was used to estimate odds ratios (ORs) and 
95% confidence intervals (CIs). Multiplicative SNP–pesticide interactions were calculated 
using a likelihood ratio test. We translated p-values for interaction into q-values, which 
reflected the false discovery rate, to account for multiple comparisons. We observed 
a significant interaction, which was robust to multiple comparison testing, between 
the herbicide dicamba and rs8192166 in the testosterone metabolizing gene SRD5A1 
(p-interaction  =  4.0  ×  10−5; q-value  =  0.03), such that men with two copies of the 
wild-type genotype CC had a reduced risk of prostate cancer associated with low use of 
dicamba (OR = 0.62 95% CI: 0.41, 0.93) and high use of dicamba (OR = 0.44, 95% CI: 
0.29, 0.68), compared to those who reported no use of dicamba; in contrast, there was 

Abbreviations: AHS, Agricultural Health Study; CI, confidence interval; FDR, false discovery rate; OR, odds ratio, PNCC, 
prostate nested case–control study; SNP, single-nucleotide polymorphism.
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inTrODUcTiOn

Farmers have a greater risk of prostate cancer than the general 
population or other occupational groups (1–3). Investigations 
within the Agricultural Health Study (AHS), a large prospective 
cohort of pesticide applicators, have identified links between 
prostate cancer, including aggressive forms of the disease, and 
pesticide exposure (4). Previous studies within the AHS have sug-
gested that pesticides may interact with single-nucleotide poly-
morphisms (SNPs) along several different biological pathways to 
influence the risk of prostate cancer (5–9); however, additional 
biological pathways, including those involving hormones, have 
yet to be examined.

Prostate cancer has long been thought to be a hormonally 
modulated disease (10–12). Experimental and epidemiologic 
investigations suggest that certain pesticides may alter sex steroid 
hormone synthesis, metabolism and regulation, and thereby may 
interfere with sex steroid hormone homeostasis and alter risk of 
hormone-related cancers (13–18). Therefore, it is possible that 
variants in genes along this pathway may alter or amplify pes-
ticide effects on hormone homeostasis and alter prostate cancer 
disease risk.

In the present hypothesis-generating study, we investigated 
genetic variation along the sex steroid hormone candidate path-
way, as well as SNPs that have been associated with circulating 
sex steroid concentrations in genome-wide association studies 
(GWAS) as potential modifying factors of the relationship 
between pesticide exposure and prostate cancer risk.

MaTerials anD MeThODs

study Population and genotyping
Criteria for selection into this case–control study have been 
described elsewhere (9). Briefly, this case–control study is 
nested within the AHS cohort, a prospective study that includes 
private and commercial pesticide applicators in Iowa and North 
Carolina (19). Cases were white male AHS pesticide applica-
tors that were cancer free at enrollment, provided a buccal cell 
sample, and diagnosed with prostate cancer between enrollment 
(1993–1997) and 2004. Cancer incidence information, as well as 
tumor characteristics (Gleason score, stage) for the characteriza-
tion of aggressive prostate cancer in the AHS (4), was obtained 
by linkage to cancer registry files in Iowa and North Carolina. 
Controls were white male AHS pesticide applicators frequency 
matched 2:1 to cases by age (±1 year). DNA was extracted from 

buccal cells using the Autopure protocol (Qiagen Inc., Valencia, 
CA, USA) at NCI’s Cancer Genomics Research Laboratory, 
where the genotyping was also performed. Genotyping analysis 
was conducted using the Custom Infinium® BeadChip Assays 
(iSelect™) from Illumina Inc. and has been described elsewhere 
in detail (9). Exclusions due to quality control (insufficient/poor 
DNA quality or <90% completion rate for genotyping assays) or a 
genetic background that was inconsistent with European ancestry 
resulted in the final sample size of 776 cases and 1,444 controls. 
Study protocols were reviewed and approved by all relevant 
Institutional Review Boards.

exposure information
Lifetime use of 50 specific pesticides was collected via self-admin-
istered questionnaires at enrollment in the AHS. Information 
was collected through both an initial enrollment questionnaire 
(including lifetime use of 22 pesticides) and supplemented with a 
take-home questionnaire (including lifetime use of an additional 
28 pesticides). The take-home questionnaire was completed by 
60.4 and 67.2% of the cases and controls, respectively. In a previ-
ous analysis, those who did and those who did not complete the 
take-home questionnaire were found to share similar character-
istics, except for age (20).

Details of pesticide exposure assessment are presented else-
where (21). The enrollment questionnaires asked participants 
to report the number of years that they personally applied each 
specific pesticide (1 year or less, 2–5, 6–10, 11–20, 21–30, or more 
than 30 years), as well as the number of days per year that they 
applied that pesticide (less than 5, 5–9, 10–19, 20–39, 40–59, 
60–150, or more than 150 days). The number of years applied 
was multiplied by the number of days/year to construct a lifetime 
exposure days exposure metric for each pesticide. In addition, 
an intensity-weighted metric was calculated for each pesticide 
by multiplying the total lifetime days by an intensity score 
[intensity-weighted lifetime exposure days (IWLTED)]. The 
intensity score was derived from an algorithm based on several 
factors that may modify pesticide exposure, including mixing 
status, application method, equipment repair, and use of personal 
protective equipment (22, 23). This metric was subsequently 
categorized into three groups (none, low, and high IWLTED) for 
the present analysis using the median cut point of the data to 
divide low and high, based on the distribution of days among the 
controls for each of the pesticides included in the analysis. Data 
were obtained from AHS data release versions P1REL0712.04 
and AHSREL201103.00.

no significant association between dicamba and prostate cancer among those carrying 
one or two copies of the variant T allele at rs8192166. In addition, interactions between 
two organophosphate insecticides and SNPs related to estradiol metabolism were 
observed to result in an increased risk of prostate cancer. While replication is needed, 
these data suggest both agonistic and antagonistic effects on circulating hormones, 
due to the combination of exposure to pesticides and genetic susceptibility, may impact 
prostate cancer risk.

Keywords: prostate cancer, pesticides, sex steroid hormones, single-nucleotide polymorphism, interaction
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Of the 50 pesticides evaluated at enrollment, we excluded 
pesticides with less than 10% prevalence among the controls 
in the present study due to insufficient numbers for analysis 
(trichlorfon, ziram, aluminum phosphide, ethylene dibromide, 
maneb/mancozeb, chlorothalonil, carbon tetrachloride/carbon 
disulfide, dieldrin, aldicarb, and 2,4,5-trichlorophenoxypropi-
onic acid). We also constructed a single exposure variable for 
analysis of permethrin by combining information on crop and 
animal applications, which were asked about separately, leaving 
39 pesticides available for analysis.

gene and snP selection
Genes and SNPs were selected using two approaches. In the first 
approach, we selected SNPs tagged for candidate genes involved 
in hormone biosynthesis, regulation, and/or metabolism. We 
identified hormone-related genes through a search of both the 
PubMed/Gene database and also the Kyoto Encyclopedia of 
Genes and Genomes (KEGG) catalog gene search tool using the 
terms “sex steroid hormone” or “hormone” or “testosterone” or 
“androgen” or “estrogen” in the keyword search. In addition, 
we sought information through a search of recent (last 5 years) 
topical literature reviews or original research studies evaluating 
the sex steroid hormone pathway to learn of common ways 
of identifying genes along this pathway (24–27). We excluded 
SNPs with a minor allele frequency less than 5% to allow for 
robust analysis of interactions between genetic loci and pes-
ticide exposures. Following quality control exclusions, there 
were 1,100 SNPs within 56 hormone-related genes available for 
analysis.

In the second approach for SNP selection, we selected SNPs 
that were associated with circulating sex steroid hormone 
concentrations in GWAS (28–32). To identify these SNPs, we 
queried the GWAS Catalog1 for SNPs that influenced circulating 
steroid hormone concentration using the terms such as “andro-
gens,” “estrogens,” “sex hormone-binding globulin (SHBG),” 
“testosterone,” and “estradiol.” We identified 17 SNPs at a 
threshold of p < 10−5 that were related to circulating hormone 
levels,2 of which 4 were genotyped on the iSelect platform. For 
the remaining SNPs (n  =  13), we identified proxies r2  ≥  0.80 
where available using the online tool SNP Annotation and Proxy 
Search (SNAP)3 (33).

statistical analysis
We used the SAS software (version 9.1; SAS Institute Inc., Cary, 
NC, USA) to estimate the association between pesticides and 
prostate cancer and stratified effects by genotype, as well as 
interaction p-values (p-interact), and PLINK (34) to estimate 
odds ratios (ORs) for SNP main effects. Unconditional logistic 
regression was used to estimate ORs and 95% confidence inter-
vals (95% CIs) for the association between each SNP and the 
risk of prostate cancer and to estimate the statistical interaction 
between 39 pesticides and 1,100 steroid hormone pathway SNPs, 

1 http://www.ebi.ac.uk/gwas/home.
2 http://www.ebi.ac.uk/gwas/docs/about.
3 https://www.broadinstitute.org/mpg/snap/.

as well as 17 SNPs or SNP proxies related to circulating hormone 
concentrations in GWAS studies, with incident prostate cancer. 
Genotypes were categorized by the number of variant alleles: 0, 
homozygous for wild-type; 1, heterozygous; and 2, homozygous 
variant. For the SNP main effect analysis, we assumed a log-
additive genetic model (model as ordinal variable for number 
of variant alleles, 0, 1, or 2). For the interaction analysis, we 
assumed the dominant genetic model (i.e., modeling SNPs in 
two categories, zero copies of the variant allele, and one or two 
copies of the variant allele).

We examined the correlation between the 39 pesticides 
tested; in general, pesticides were not highly correlated with one 
another (pairwise Spearman correlation coefficients <0.40) (9). 
All models were adjusted for age (10-year categories) and study 
state (Iowa, NC, USA); other potential confounding variables, 
including smoking, body mass index (obesity), physical activity 
and a family history of prostate cancer, and use of correlated 
pesticide products, did not change the effect estimate signifi-
cantly (<10% change in OR) and were not retained in the final 
models. Statistical interactions between pesticides and SNPs were 
assessed by including a cross-product term and evaluated using 
the likelihood ratio test, assuming a multiplicative model.

To adjust for the multiple statistical comparisons performed 
in this analysis, we translated p-values for interaction into 
q-values reflecting the false discovery rate (FDR) following the 
method by Benjamini and Hochberg (35). This method adjusts 
for the expected proportion of false discoveries as a function of 
the number of statistical tests performed. We performed FDR 
analyses by gene to account for the differing numbers of SNPs 
by gene, such that the number of comparisons for a given gene 
was 39 (for number of pesticides) multiplied by the number of 
tag SNPs for the gene. We performed FDR analysis separately 
for the two groups of selected SNPs, those tagged for sex steroid 
hormone pathway candidate genes and those that were associ-
ated with circulating hormone concentrations in GWAS.

resUlTs

Population characteristics of the prostate cancer nested case–
control study have been previously published (5–9) and are 
also provided in Table 1. Cases and controls were similar with 
respect to age (matching factor). Prostate cancer cases and the 
cancer-free control group selected into this nested case–control 
study did not differ from the larger AHS cohort with respect 
to state of residence, pesticide applicator type, family history of 
prostate cancer, or disease characteristics for cases (i.e., stage 
and grade) (8, 36).

The main effects of pesticide exposure on the risk of prostate 
cancer among nested case–control participants are displayed in 
Table S1 in Supplementary Material. There were no statistically 
significant positive associations between pesticides and prostate 
cancer in the nested case–control set. Evidence of significant 
positive associations has been observed between fonofos, terbu-
fos, malathion, and aldrin and risk of prostate cancer in the larger 
cohort analyses (4). Tables 2 and 3, respectively, list the candidate 
genes along the hormone synthesis, metabolism, and regulatory 
pathway included in this study, and also the SNPs identified as 
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Table 2 | candidate hormonal pathway genes examined for the 
interaction between 39 pesticides and risk of prostate cancer in the ahs.

genes in steroid hormone regulation, synthesis, and metabolism 
(# of snPs)

AKR1C1 (11) CYP2E1 (21) SST (9)
AKR1C2 (22) CYP3A4 (6) STAR (4)
AKR1C3 (26) CYP3A43 (5) SULF2 (13)
AKR1C4 (17) CYP3A5 (7) SULT1A1 (3)
AKR1D1 (19) CYP3A7 (1) SULT1A2 (3)
AR (6) CYP7A1 (12) SULT1B1 (10)
COMT (12) CYP7B1 (19) SULT1E1 (18)
CYP11A1 (15) ESR1 (77) SULT2A1 (13)
CYP11B1 (6) ESR2 (33) SULT2B1 (24)
CYP11B2 (8) HSD11B1 (22) UGT1A (all) (111)
CYP17A1 (14) HSD17B1 (4) UGT2A1 (29)
CYP19A1 (80) HSD17B2 (51) UGT2A3 (6)
CYP1A1 (5) HSD17B3 (46) UGT2B10 (5)
CYP1A2 (16) HSD17B4 (29) UGT2B11 (2)
CYP1B1 (33) HSD3B1 (6) UGT2B4 (18)
CYP24A1 (36) HSD3B2 (14) UGT2B7 (11)
CYP27B1 (6) NCOA3 (11)
CYP2B6 (12) SHBG (8)
CYP2C9 (15) SRD5A1 (35)
CYP2D6 (3) SRD5A2 (23)

Table 1 | selected characteristics of the nested case–control study of 
prostate cancer in the ahs.

controls  
(n = 1,444)

Prostate cancer 
(n = 776)

selected characteristics n % n %

age at enrollment
<40 5 0.4 3 0.4
40–49 144 10.0 74 9.5
50–59 491 34.0 259 33.4
60–69 634 43.9 355 45.8
>70 170 11.8 85 11.0

state of residence
Iowa 991 68.6 520 67.0
North Carolina 453 31.4 256 33.0

applicator type
Private 1,363 94.4 741 95.5
Commercial 81 5.6 35 4.5

First degree family history
No 1,193 82.6 575 74.1
Yes 145 10.0 130 16.8

Prostate cancer stage
I Local – – 578 74.5
II Regional – – 156 20.1
III Distant – – 12 1.5
IV Not staged – – 30 3.9

Prostate cancer grade
Well differentiated – – 38 4.9
Moderately differentiated – – 547 70.5
Poorly differentiated – – 168 21.6
Undifferentiated – – 4 0.5
Not graded – – 19 2.4
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related to circulating hormone concentrations in GWAS and 
their proxies included in the present study, where applicable. 
Table S2 in Supplementary Material reports the associations 
between SNPs tagged for sex steroid hormone pathway genes 
and risk of prostate cancer.

Tables 4 and 5 present the relation between herbicide and 
insecticide exposure, respectively, and prostate cancer risk by 
genotype at certain SNPs tagged for hormone pathway genes 
or SNPs associated with circulating hormone concentration 
in GWAS. Gene by pesticide interaction results are presented 
for associations that met  all three of the following criteria: 
(1) significant interaction between the pesticide and the SNP 
with prostate cancer (uncorrected p for interaction <0.01), 
(2) significant association between the pesticide and prostate 
cancer (p  <  0.05) in one genotype stratum with an accom-
panying monotonic exposure–response pattern, and (3) no 
association between the pesticide and prostate cancer in the 
other stratum. Results for statistical interactions that were 
qualitative in nature (i.e., interactions involving increased risk 
with exposure in one genotype group and decreased risk in 
the other) are not presented.

Among men with the homozygous wild-type genotype (CC) 
at SNP locus rs8192166 in the hormone-associated gene Steroid 
Reductase 5-alpha-1 (SRD5A1), we observed a reduced risk of 
prostate cancer among men who reported low use of dicamba 
(OR  =  0.62, 95% CI: 0.41, 0.93) and high use of dicamba 
(OR  =  0.44, 95% CI: 0.29, 0.68), as compared to those who 

reported no use of dicamba (Table  3). In contrast, there was 
no significant association between dicamba and prostate cancer 
among those carrying one or two copies of the variant T allele 
at rs8192166 (p for interaction  =  4.0  ×  10−5; q-value  =  0.03) 
(Table 3). In addition, the association between dicamba use and 
prostate cancer was modified by genotype at rs4784336, located 
in an intronic region of the fat mass and obesity (FTO) gene. 
Although statistical power was limited, we repeated the same 
analyses, i.e., the two above listed interactions with dicamba 
and prostate cancer by genotype, restricting the analysis to 
more clinically significant subtype of prostate cancer and 
aggressive prostate cancer cases (distant stage, poorly differ-
entiated grade, Gleason score of ≥7, or fatal prostate cancer), 
and we observed similar results (Table S3 Supplementary 
Material). We also reported statistical interactions (uncorrected 
p-interaction <0.01) between the herbicides butylate, dicamba, 
and alachlor with SNPs that were associated with circulating 
hormone concentrations in GWAS or tagged for hormone-
related genes with prostate cancer risk, although these were 
not robust to correction for multiple statistical comparisons 
(q-value >0.05) (Table  3).

Table 4 presents insecticide associations with prostate cancer 
risk as modified by SNPs tagged for hormone pathway genes. 
We  observed interactions between the insecticides terbufos, 
fonofos, malathion, carbaryl, and genetic variation in the estra-
diol metabolizing gene, HSB17B4, although these were not 
robust to adjustment for multiple comparisons (q-value >0.05). 
We did not observe statistically significant interactions or nota-
ble exposure–response trends between GWAS identified SNPs 
and insecticide exposure with prostate cancer. We also did not 
observe statistically significant interactions or notable exposure–
response trends between fumigants or fungicides exposure and 
prostate cancer among those with certain measured genotypes 
(data not shown).
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Table 3 | genome-wide association study (gWas) snPs related to circulating level of hormone.

snP (P if proxy)a,b Original snP (r2) region Known gene/nearby gene reference hormonal relationship identified (gWas 
p-value)c

rs334698 (P) rs334699 (1.0) 1p31.3 None (nearby NFIA) (37) Testosterone (1.0 × 10−41)
rs334703 (P) rs334699 (1.0) 1p31.3 None (nearby NFIA) (37) SHBG (2.0 × 10−21)
rs1260326 (P) rs780093 (0.90) 2p23.3 None (nearby FNDC4, LOC729823,  

GCKR, and IFT172)
(28) SHBG (9.0 × 10−6)

rs6900902 (P) rs9322817 (1.0) 6q16.3 HACE1 (38) Testosterone (6.0 × 10−8)
rs9332222 (P) rs2185570 (1.0) 10q23.33 CYP2C9 (32) SHBG (9.0 × 10−6)
rs4149056 n/a 12p12.1 SLCO1B1 (28) SHBG (2.0 × 10−08)
rs727479 n/a 15q21.2 CYP19A1 (31) Estradiol (3.3 × 10−7)
rs4784336 (P) rs12596210 (0.93) 16q12 FTO (31) SHBG (9.0 × 10−6)
rs12600130 (P) rs12596210 (0.85) 16q12.2 FTO (31) Testosterone (6.0 × 10−8)
rs1799941 (P) rs12150660 (0.96) 17p13.1 SHBG (30, 28) SHBG (2.0 × 10−106)/testosterone levels (1 × 10−41)
rs1641536 (P) rs1641537 (0.85) 17p13.1 SHBG (28) SHBG (2.0 × 10−16)
rs11552708 (P) rs72829446 (0.93) 17p13.1 TNFSF13 and EIF4A1 (29) DHT (9 × 10−10)
rs6259 (P) rs72829446 (0.93) 17p13.1 SHBG (29) DHT (9.0 × 10−10)
rs2909430 (P) rs1625895 (1.0) 17p13.1 TP53/reported gene SHBG (28) SHBG (2 × 10−21)
rs9901675 n/a 17p13.1 EIF4A1 (28) SHBG (1.5 × 10−07)
rs727428 n/a 17p13.1 SHBG (31) SHBG (2.1 × 10−16)
rs1017993 (P) rs2637125 (0.92) 19q13 SULT2A1 (32) DHEAS (2.6 × 10−19)

aSNP Annotation and Proxy Search (SNAP) (r2 > 0.80, CEU, 1,000 genome project, all defaults) (April 2014: https://www.broadinstitute.org/mpg/snap/ldsearch.php).
bStatistical significance (SNP-trait p-value < 1.0 × 10−5) in the overall (initial GWAS + replication) population (http://www.genome.gov/27529028).
cGWAS p-value (http://www.genome.gov/gwastudies/index.cfm?pageid=26525384#searchForm).
SHBG, sex hormone-binding globulin; DHT, dihydrotestosterone; DHEAS, dehydroepiandrosterone.

Table 4 | interactions between herbicides and snPs with prostate cancer risk (p < 0.01).

exposure none low exposure high exposure

snP Pesticide genotype ca/co reF ca/co Or (95% ci) ca/co Or (95% ci) p-inta q-valueb

Hormonal 
pathway

Gene

rs8192166 SRD5A1 Dicamba CC 133/173 1.0 64/131 0.62 (0.41, 0.93) 49/142 0.44 (0.29, 0.68) 4.0 × 10−5 0.03
CT + TT 189/396 1.0 108/229 0.95 (0.69, 1.30) 127/218 1.15 (0.85, 1.57)

rs3798577 ESR1 Butylate TT 162/256 1.0 10/42 0.40 (0.19, 0.83) 8/42 0.30 (0.14, 0.66) 8.0 × 10−5 0.12
CT + CC 338/647 1.0 42/110 0.74 (0.50, 1.08) 64/97 1.28 (0.90, 1.80)

Hormone 
GWAS

Affected 
hormone

rs4784336 SHBG Dicamba AA 258/473 1.0 130/273 0.87 (0.65, 1.15) 152/274 1.00 (0.76, 1.32) 3.7 × 10−3 0.90
AC + CC 66/98 1.0 42/87 0.65 (0.39, 1.08) 24/87 0.36 (0.20, 0.65)

rs1017993 DHEAS Alachlor CC 182/406 1.0 135/282 1.07 (0.81, 1.41) 147/273 1.21 (0.92, 1.58) 9.2 × 10−3 1.00
CT + TT 95/140 1.0 65/106 0.92 (0.61, 1.40) 47/113 0.60 (0.39, 0.93)

ORs adjusted for age and state.
aStrata with less than five observations per cell or qualitative interactions excluded. Interactions that were statistically significant (p-int < 0.01) and for which there was a significant 
association between the pesticide and SNP (p < 0.05) with a monotonic pattern in at least one genotype stratum are included in table.
bThe q-value adjusts the p-value for multiple statistical comparisons using the false discovery rate (FDR) method.
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DiscUssiOn

In this case–control study nested within the AHS cohort, we 
evaluated evidence of statistical interaction between pesticide 
exposure and SNPs in genes involved in steroid hormone signal-
ing, metabolism, or regulation with the risk of prostate cancer. 
We observed several notable interactions which help to generate 
additional hypotheses as to how pesticides may interact with 
genetic variation in hormone-related genes to affect prostate 
cancer risk.

The interaction between dicamba and rs8192166 in SRD5A1 
and risk of prostate cancer remained significant after correc-
tion for multiple testing. We observed an inverse association 

between exposure to dicamba and prostate cancer risk among 
those carrying the homozygous wild-type genotype at a locus 
in this important hormone metabolism and regulatory gene. 
SRD5A1 is one of the three steroid reductase 5A isoforms and 
is known to play a role in the bioconversion of testosterone 
to the more biologically active dihydrotestosterone (DHT) in 
the prostate gland (SRD5A1 is highly expressed in prostate 
tissues) (39–41). DHT is involved in the transcription of 
androgen-response elements in the genome and facilitates cell 
proliferation and aspects of cell cycle control which may be 
aberrant in cancer cells. Dicamba has been shown to interact 
with hormone homeostasis in non-mammalian experimental 
systems at environmentally relevant levels (42). Among those 
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Table 5 | interactions between insecticides and snPs in hormonal candidate pathway with prostate cancer risk (p < 0.01).

none low exposure high exposure

snPa Tagged gene Pesticide genotype ca/co reF ca/co Or (95% ci) ca/co Or (95% ci) p-intb q-valuec

rs384346 HSD17B4 Malathion AA 150/308 1.0 114/229 1.04 (0.77, 1.40) 118/235 1.01 (0.75, 1.36) 2.0 × 10−3 0.16
AT + TT 75/88 1.0 48/98 0.58 (0.36, 0.92) 34/93 0.43 (0.26, 0.71)

rs384346 HSD17B4 Carbaryl AA 241/466 1.0 79/162 0.91 (0.67, 1.25) 88/177 0.78 (0.55, 1.12) 2.8 × 10−3 0.16
AT + TT 111/164 1.0 36/75 0.68 (0.42, 1.09) 14/62 0.27 (0.13, 0.55)

rs7723390 HSD17B4 Terbufos TT 335/644 1.0 112/197 1.11 (0.85, 1.46) 94/209 0.91 (0.69, 1.21) 2.1 × 10−3 0.16
CT + CC 50/121 1.0 25/37 1.58 (0.85, 2.95) 32/32 2.47 (1.36, 4.51)

rs7723390 HSD17B4 Fonofos TT 418/796 1.0 68/129 1.04 (0.75, 1.44) 62/127 0.96 (0.69, 1.34) 5.5 × 10−3 0.20
CT + CC 67/147 1.0 15/23 1.40 (0.68, 2.89) 25/21 2.51 (1.29, 4.90)

ORs adjusted for age and state.
aPesticide–SNP interaction significant after false discovery rate adjustment. No pesticide–SNP interaction statistically significant after global FDR analysis.
bStrata with less than five observations per cell or qualitative interactions excluded. Interactions that were statistically significant (p-int < 0.01) and for which there was a significant 
association between the pesticide and SNP (p < 0.05) with a monotonic pattern in at least one genotype stratum are included in table.
cThe q-value adjusts the p-value for multiple statistical comparisons using the false discovery rate (FDR) method.
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with the homozygous wild-type genotype at rs8192166 in gene 
SRD5A1, dicamba may interact with the metabolic conversion 
to the more biologically potent androgen DHT, in turn poten-
tially influencing or reducing the conversion of testosterone to 
DHT in the prostate. If so, decreased concentration of bioactive 
androgen in the prostate may reduce cell proliferation, thus 
reducing prostate cancer risk; however, there are no data to sup-
port this assertion. It may, however, help to explain previously 
observed risk estimates at and below unity for the association 
between this pesticide and prostate cancer in the larger AHS 
cohort (4).

We also observed evidence of a modifying role of SNPs 
that were previously associated with circulating hormone 
concentrations in GWAS, as well as several different statistical 
interactions between insecticides and two SNPs in the HSD17B4 
gene. These statistical interactions were not robust to multiple 
comparisons. Interestingly, we observed evidence of an appar-
ent inverse association with prostate cancer with use of several 
pesticides in the presence of certain SNPs. There is evidence in 
the literature that shows an inverse association between some 
putative endocrine disrupting chemicals and hormonal cancers, 
although the mechanism by which these might decrease disease 
development is unclear. A small number of laboratory studies 
have tested members of the organophosphate and carbamate 
class of pesticides including carbaryl and reported significant 
inhibition of the metabolism of estradiol and testosterone in the 
presence of these pesticides (14, 17, 18, 43–45). Other studies 
in humans have shown a significantly reduced risk of testicular 
cancer (46) and a reduced risk of metastatic prostate cancer 
(47) associated with polychlorinated biphenyl exposure, known 
endocrine disrupting chemicals. Thus, a role for hormonal 
perturbation is plausible.

In our study, two organophosphate insecticides, terbufos and 
fonofos, were associated with an increased risk of prostate can-
cer among those carrying one or two copies of the variant allele 
in HSD17B4 (rs7723390), which showed a low correlation with 
rs384346, and no association among men carrying two copies of 
the wild-type allele. Although there is a known role for HSD17B4 
in estradiol metabolism, laboratory studies have illustrated 
reduced metabolism of testosterone in the presence of fonofos 

(terbufos not tested) (18). Over the past decades, epidemiologic 
studies have suggested that the combined action of androgens 
and estrogens may play a role in prostate carcinogenesis and 
specifically in the development of aggressive prostate cancer (24, 
41, 48). Notably, in the AHS, both terbufos and fonofos have 
been associated with the risk of aggressive prostate cancer (4). 
Thus, the observed increases and decreases in risk of prostate 
cancer for the insecticides in Table 4, which vary by HSD17B4 
SNP, may be explained by this complex balance of androgens 
and estrogens which have been shown to effect prostate cancer 
development.

There are several strengths and limitations to note. The 
potential for information bias is low in this study for several 
important reasons. Lifetime use of pesticides among this occu-
pational cohort is measured with high validity and reliability 
(49, 50). Furthermore, given the quality of the exposure data 
and the large sample size, we were able to perform analyses at 
the individual pesticide level and not merely classes of chemical. 
There are likely few true confounding factors in the relation 
between genetic variability and disease. We were able to evaluate 
SNPs among hormone signaling, metabolism, and regulatory 
genes in this analysis comprehensively and used two methods 
to identify SNPs for inclusion into our study, i.e., tagging SNPs 
in candidate hormone pathway genes and GWAS identified 
SNPs. However, we were limited to the tagging SNPs for genes 
included in a group genotyping platform. We performed many 
different statistical tests in this evaluation, increasing the 
potential of identifying false-positive associations. However, 
we adjusted for this possibility using FDR methods. Despite 
the large sample size, we were still limited by the relatively 
small numbers of participants carrying the variant allele for 
rare SNPs, as well as small numbers for less frequently used 
pesticides such as fumigants or fungicides. Furthermore, we 
were underpowered to investigate whether there were notable 
interactions for aggressive prostate cancer (aggressive cases, 
n = 346), although much of the results presented were consist-
ent if we only considered this subgroup of cases (Table S3 in 
Supplementary Material). Additionally, the AHS study partici-
pants included in this study are all white and occupationally 
exposed to pesticides, limiting the generalizability of our study 
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results to the general population. However, our restriction to 
white men also limited the potential for population stratification 
to influence our findings.

High prior interest still remains in the hormonal pathway 
and its influence on prostate cancer initiation and progression, 
as well as the possible role of pesticides to disrupt this and other 
endocrine regulatory pathways. Future work should continue 
to consider newly identified SNPs that may affect circulating 
hormone concentrations, and further evaluation of risk of aggres-
sive prostate cancer as cases accrue in this cohort. There is also a 
need for continued laboratory analyses to investigate the possible 
biological mechanisms through which pesticides may influence 
hormone synthesis, metabolism or regulation, and ultimately 
prostate cancer risk.
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