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Abstract

This study details a method to evaluate the source size selection for small field intracranial

stereotactic radiosurgery (SRS) deliveries in Eclipse treatment planning system (TPS) for

AcurosXB dose calculation algorithm. Our method uses end-to-end dosimetric data to

evaluate a total of five source size selections (0.50 mm, 0.75 mm, 1.00 mm, 1.25 mm,

and 1.50 mm). The dosimetric leaf gap (DLG) was varied in this analysis (three DLG values

were tested for each scenario). We also tested two MLC leaf designs (standard and high-

definition MLC) and two delivery types for intracranial SRS (volumetric modulated arc

therapy [VMAT] and dynamic conformal arc [DCA]). Thus, a total of 10 VMAT plans and

10 DCA plans were tested for each machine type (TrueBeam [standard MLC] and Edge

[high-definition MLC]). Each plan was mapped to a solid water phantom and dose was cal-

culated with each iteration of source size and DLG value (15 total dose calculations for

each plan). To measure the dose, Gafchromic film was placed in the coronal plane of the

solid water phantom at isocenter. The phantom was localized via on-board CBCT and the

plans were delivered at planned gantry, collimator, and couch angles. The planned and

measured film dose was compared using Gamma (3.0%, 0.3 mm) criteria. The vendor-

recommended 1.00 mm source size was suitable for TrueBeam planning (both VMAT

and DCA planning) and Edge DCA planning. However, for Edge VMAT planning, the

0.50 mm source size yielded the highest passing rates. The difference in dose calculation

among the source size variations manifested primarily in two regions of the dose

calculation: (1) the shoulder of the high-dose region, and (2) for small targets (volume

≤ 0.30 cc), in the central portion of the high-dose region. Selection of a larger than opti-

mal source size can result in increased blurring of the shoulder for all target volume sizes

tested, and can result in central axis dose discrepancies in excess of 10% for target vol-

umes sizes ≤ 0.30 cc. Our results indicate a need for evaluation of the source size when

AcurosXB is used to model intracranial SRS delivery, and our methods represent a feasible

process for many clinics to perform tuning of the AcurosXB source size parameter.

P A C S

87.55.D, 87.55.kd, 87.55.Qr

K E Y WORD S

radiochromic film dosimetry, small field dosimetry, SRS dose delivery

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium,

provided the original work is properly cited.

© 2017 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

Received: 20 January 2017 | Revised: 13 March 2017 | Accepted: 17 March 2017

DOI: 10.1002/acm2.12091

170 | wileyonlinelibrary.com/journal/jacmp J Appl Clin Med Phys 2017; 18:3:170–181



1 | INTRODUCTION

Stereotactic radiosurgery (SRS) has become a valuable treatment

modality to treat lesions within the brain1 and spine.2 In particular,

SRS provides a non-invasive treatment approach for unresectable

tumors (such as those in the eloquent cortex or otherwise deep-

seated tumors) or for patients who are otherwise not candidates for

surgery.3

Though SRS was first performed using a specialized device, now

commercially available as the GammaKnife, technological advances

have allowed for stereotactic therapies using the linear accelerator.

Several noteworthy advances have allowed for improved precision in

linear accelerator-based SRS: (1) the advent of treatment room

stereotactic imaging systems,4–7 including stereoscopic planar imag-

ing and cone-beam CT imaging, (2) improvements in patient support

devices, including 6 degree-of-freedom capabilities in the treatment

couch8 and improvements in couch movement precision, (3) increas-

ing availability of high-intensity photon modes,9–11 such as flatten-

ing-filter free photon modes with dose rates up to 2400 MU/min,

(4) high-definition multi-leaf collimator (MLC) systems with leaf

widths as narrow as 2.5 mm,12,13 and (5) optical monitoring systems

to track patient motion throughout the treatment course.14,15

Of course, the advances in the preceding paragraph all focus on

the treatment delivery, while an accurate end-to-end treatment

delivery relies on the marriage of the dose modeling within the

treatment planning system and the physical dose delivery within the

treatment room. Along these lines, the modeling of small-field dose

delivery has garnered much interest. The accurate measurement and

modeling of small-field dose delivery (i.e., field sizes < 3 9 3 cm2 in

water-equivalent media) has many challenges, including the effects

of the finite size of the radiation source, loss of charged particle

equilibrium (CPE), and sensitivity to small changes in field size for

perturbation factors of ion chambers used for measurement.16 The

AcurosXB algorithm gives a discretized solution to the linear Boltz-

mann transport equation,17–19 which provides improvements in

regions with loss of CPE, such as heterogeneity interfaces.20,21 How-

ever, the proper selection of source size within the AcurosXB algo-

rithm is still essential for the accurate modeling of small field

deliveries. The purpose of this study was two-fold: (1) to present a

clinically achievable method to evaluate the source size for small-

field dose calculation, and (2) to use the method to evaluate the

ideal source size setting within AcurosXB for flattening-filter energy

modes for two delivery platforms (Varian Edge and TrueBeam machi-

nes), MLC leaf models (Millennium120 HD-MLC and standard Mil-

lennium120 MLC), and delivery techniques for intra-cranial SRS

planning (DCA and VMAT).

2 | METHODS

2.A | Treatment planning and beam modeling

A total of 40 cranial SRS plans were generated for analysis in this

IRB-approved retrospective study. The analysis included two

machine types with different MLC models: (1) Varian Edge machine

(SN: 2003), which was installed in 2014 with Millennium120 HD-

MLC (central bank MLC leaf width 0.25 cm), and (2) Varian True-

Beam machine (SN: 2440), which was installed in late 2015 with

standard Millennium120 MLC (central bank MLC width 0.5 cm). For

each machine, plans were generated for two delivery modalities (dy-

namic conformal arc [DCA] and volumetric modulated arc therapy

[VMAT]). Thus, for each machine type, the analysis included 10 DCA

plans and 10 VMAT plans. The two different delivery modalities

were selected to highlight potential differences between intensity-

modulated deliveries (VMAT) and deliveries similar to MLC-defined

open fields (DCA).

All planning and dose calculations were performed using Varian

Eclipse (v. 13) TPS and AcurosXB dose calculation algorithm (v. 13;

1.0 mm isotropic dose calculation grid size and dose to medium cal-

culation setting). The dose to medium setting was used in accor-

dance with recently published recommendations from the NRG

physics group.22 The current study was designed to evaluate the

source size setting for small intracranial targets, with target volumes

as small as 0.03 cc (which corresponds to approximately 4 mm diam-

eter); in addition, several other studies have used smaller dose grid

size (i.e., less than 1.5 mm) as the standard for dose calculation com-

parisons when evaluating small-field dosimetry.23–26 With this in

mind, this study used 1.0 mm dose grid size for all dose calculations.

All planning was done with 6x-FFF beam energy with nominal dose

rate set to the maximum setting (1400 MU/min). The patient treat-

ment plan was generated with beam model parameters following the

vendor recommendations for source size (spot size setting of

1.00 mm in X- and Y-directions) and our current clinical values for

MLC parameters (i.e., dosimetric leaf gap (DLG) and MLC leaf trans-

mission value).7 The details of the relevant treatment planning data

(including target volume size and location) are shown in Table 1 for

Edge linac and Table 2 for TrueBeam linac.

To study the influence of source size on the calculated dose for

cranial SRS deliveries, a total of 5 AcurosXB beam models were cre-

ated for each machine type. The user can tune the source size in the

beam configuration module through varying the effective target spot

size value, which is entered by the user separately for X- and Y-

directions.19 All beam models used the same input measured data

(percent depth-dose, cross-line profiles, and output factors), with the

source size varied from 0.50 mm to 1.50 mm in 0.25 mm increments

for each machine type. Each beam model was then calculated sepa-

rately with its unique source size value. In addition to the source size

parameter, the DLG was also varied in the analysis. In Eclipse, the

DLG represents the TPS method for modeling of the rounded MLC

leaf end.19 For small MLC-defined fields, the leaf end modeling and

the potentially partial viewing of the finite size of the radiation

source along the central axis are inherently coupled. The DLG

parameter is not included within the Beam Configuration workspace

in ARIA v. 13; rather, it is included in the machine properties of the

RT Administration workspace. Nonetheless, the DLG parameter was

also varied in our analysis: three DLG values were included in the

modeling and calculation analysis for each machine type.
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All treatment plans were mapped to a water-equivalent slab

phantom, with total phantom dimensions of 15 cm 9 30 cm 9 30 cm

(Gammex Inc., Middleton, WI, USA). The isocenter was placed in the

center of the phantom, corresponding to 7.5 cm depth. Each treat-

ment plan was calculated for all combinations of source size beam

model and DLG value. Thus, for each treatment plan, a total of 15 dose

calculations were performed to sample the various source size and

DLG values for dose calculation. All dose calculations were performed

with the same monitor unit values determined during the original plan

optimization. After dose calculation was completed, planar dose

planes were exported for analysis (512 9 512 matrix resolution,

5 cm 9 5 cm matrix size).

2.B. | Gafchromic film measurements and
calibration

Film measurements using Gafchromic EBT3 film (Film Size:

20.3 9 25.4 cm2; Ashland Inc., Covington, KY, USA) were used to

evaluate the dose calculation accuracy in this study. Gafchromic film

was selected due to several attractive detector properties: extremely

high spatial resolution, large planar detection area, minimal direc-

tional dependence, and low energy dependence. In addition, Gaf-

chromic film and associated dosimetric analysis tools are widely

available to the radiation oncology community, making our methods

described here feasible for many clinics. The films were handled

according to the recommendations of AAPM Task Group 55.27 The

phantom localization and treatment procedure followed our clinical

process for intracranial SRS treatment delivery. Specifically, the

phantom and film plane (coronal plane at mid-phantom – 7.5 cm

depth) were localized using CBCT imaging prior to dose delivery

(125 kVp, Full-fan filter, 1 mm slice thickness), and all plans were

delivered at planned gantry, collimator, and couch angles. The aver-

age delay time between irradiation and film scanning was approxi-

mately 24 hr. Films were scanned in an Epson Expression 10000XL

flatbed scanner (Seiko Epson Corp, Nagano, Japan). All films were

scanned at the center of the scanner bed with resolution settings of

150 dot per inch and 48 bit RGB mode (16 bits per color channel). A

four-way flip method was used to average out any intrinsic light

source non-uniformity of the scanner. Dosimetric analysis was done

via green channel due to its superior sensitivity at the dose levels

larger than 10 Gy.28

The film calibration and dosimetric analysis was performed using

in-house software. Calibration films were irradiated in a nine square

dose pattern (area of 2 9 2 cm2 per square). The in-house calibra-

tion routine matches the film optical densities within each square to

the TPS calculated dose for the same beam geometry. Then, a

TAB L E 1 Relevant treatment planning data for (a) DCA and
(b) VMAT planning for Edge linac.

Patient number Disease site

PTV
volume
(cc)

Rx dose
(Gy)

Max film
plane dose
(Gy)

(a) Varian edge – DCA planning

1 Lt frontal 0.04 18 13.67

2 Rt ant frontal 0.07 18 12.65

3 Lt frontal 0.03 20 14.7

4 Lt frontal 0.23 18 15.69

5 Rt parietal 0.04 18 14.65

6 Lt inf frontal 1.29 18 14.49

7 Lt temporal 0.33 18 13.01

8 Cerebellar 0.48 18 18.55

9 Rt frontal 0.32 18 14.48

10 Rt parietal 0.19 18 14.45

(b) Varian edge – VMAT planning

1 Rt parietal 0.31 20 14.47

2 Rt ant frontal 0.07 18 16.63

3 Rt temporal 0.39 18 16.23

4 Rt CPA 0.86 16 16.43

5 Lt frontal 0.03 20 17.92

6 Lt frontal 0.23 18 16.16

7 Lt temporal 1.29 18 15.6

8 Lt inf frontal 0.33 18 17.21

9 Rt acoustic 0.75 13 12.36

10 Lt brainstem 0.51 9 10.64

TAB L E 2 Relevant treatment planning data for (a) DCA and
(b) VMAT planning for TrueBeam linac.

Patient
number

Disease
site

PTV
volume
(cc)

Rx dose
(Gy)

Max film
plane
dose (Gy)

(a) Varian truebeam – DCA planning

1 Rt temporal 2.01 18 14.66

2 Rt parietal 0.85 18 12.17

3 Rt frontal 0.82 18 12.07

4 Lt cerebeller 1.01 18 15.12

5 Rt parietal 1.93 18 14.13

6 Rt cerebeller 1.64 18 15.9

7 Rt thalamus 0.69 18 17.65

8 Lt frontal 0.46 18 13.78

9 Lt cerebeller 0.49 18 19.97

10 Lt frontal 0.38 18 12.03

(b) Varian truebeam – VMAT planning

1 Lt parietal 0.67 18 15.96

2 Rt precentral 0.78 18 15.88

3 Resection cavity SRS 13.9 15 13.99

4 Rt acoustic neuroma 0.43 13 14.13

5 Rt parietal 1.22 18 16.97

6 Lt temporal 0.24 18 16.84

7 Lt inf frontal 0.33 18 18.29

8 Lt temporal 1.29 18 14.94

9 Lt acoustic 1.16 12 11.34

10 Rt frontal 2.07 18 16.62
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calibration curve was generated using cubic polynomial least squares

fitting.

2.C. | Dose distribution analysis

The film measurements were compared to the calculated dose planes

using Gamma analysis.29 Typical Gamma analysis for patient-specific

IMRT QA may use distance-to-agreement criteria of 2–3 mm. How-

ever, the measurement scale (percentage of measurement points

with passing Gamma values) is often saturated if typical Gamma cri-

teria are used. To determine the appropriate Gamma analysis criteria

for this study, the Gamma analysis passing rate results for two repre-

sentative cases were logged for a variety of dose difference and dis-

tance-to-agreement criteria and compared to qualitative visual dose

profile analysis. The best agreement between passing rate result and

visual profile analysis was found for the following Gamma criteria:

3% dose difference and 0.3 mm distance-to-agreement. It should be

noted that these criteria are likely too strict for planning with con-

ventional target sizes. But, for very small targets such as those found

in intracranial SRS planning, a distance-to-agreement criteria of

1 mm is quite large relative to the lesion radius (for example, the

radius of a 0.5 cc spherical lesion is approximately 5 mm). See Fig. 1

for comparison of the Gamma criteria for one of the representative

cases. The value for dose threshold was set to 20% of the maximum

film plane dose, which corresponds to roughly 25% of the prescrip-

tion dose for these cases.

2.D. | Statistics

Gamma analysis passing rate results for each source size setting

were compared to passing rate results for vendor-recommended

source size setting using Student’s t-test, assuming two-tailed distri-

bution with P < 0.05 significant.

3 | RESULTS

3.A. | Film dosimetry results – gamma analysis

The Gamma analysis passing rate results for Edge linac are shown in

Fig. 2 (VMAT Planning) and Fig. 3 (DCA Planning). For each plot, the

(a)

(b)

(c) (d) (e) (f) (g)

(h)

F I G . 1 . Comparison of Gamma analysis criteria for one representative case from the study. The red regions in each Gamma map represent
failing pixels for the relevant Gamma criteria used. a, Planned dose (1.50 mm source size) plane with line profile geometry (green horizontal
line). b, Green channel film dose plane. c, Gamma map for 1%,1 mm criteria. d, Gamma map for 2%, 1 mm criteria. e, Gamma map for 3%,
1 mm criteria. f, Gamma map for 3%, 0.5 mm criteria. g, Gamma map for 3%, 0.3 mm criteria. h, Line profile comparing the AcurosXB planned
dose (1.50 mm source size) and green channel film dose. Note the disagreement between planned and measured dose in the shoulder of the
high-dose region. Gamma analysis using 1 mm dose-to-agreement criteria is insensitive to such discrepancy in the dose distribution, while
Gamma analysis with tighter distance-to-agreement criteria (e.g., 0.3 or 0.5 mm) shows failing points in the shoulder of the high-dose region
that match observed dose distribution discrepancies. The Gamma analysis criteria used for this study: 3%, 0.3 mm.
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whiskers indicate the maximum and minimum passing rates for each

source size setting and DLG value. The first, second, and third quartile

values for each combination of settings are also displayed on the plot.

Of the DLG settings tested for VMAT delivery with Edge linac, the

best overall agreement between measured and planned dose occurred

for DLG value of 0.090 cm. For 0.090 cm DLG value, the 0.50 mm

source size setting yielded the highest passing rate (mean � SD):

97.51 � 2.38% (P = 0.01). The passing rates (mean � SD) for the

other source sizes were as follows: 96.25 � 3.51% (0.75 mm,

P < 0.01), 93.72 � 4.96% (1.00 mm), 84.97 � 6.93% (1.25 mm,

P < 0.001), and 78.83 � 7.10% (1.50 mm, P < 0.001).

For DCA planning with DLG value of 0.090 cm, the highest pass-

ing rate occurred for vendor-recommended source size of 1.00 mm

(mean � SD): 99.41 � 0.99%. We note a sharper decline in passing

rate for larger-than-optimal source sizes (1.25 mm and 1.50 mm)

than for smaller-than-optimal source sizes (0.50 mm and 0.75 mm)

as shown in Fig. 2 and exhibited by the passing rate results

(mean � SD): 96.36 � 4.41% (0.50 mm, P = 0.04), 98.71 � 2.21%

(0.75 mm, P = 0.17), 89.96 � 7.17% (1.25 mm, P < 0.01),

81.79 � 8.30% (1.50 mm, P < 0.001).

The Gamma analysis passing rate results for TrueBeam linac are

shown in Fig. 4 (VMAT Planning) and Fig. 5 (DCA Planning). Of the

DLG settings tested for VMAT delivery with TrueBeam linac, the

best agreement between measured and planned dose occurred for

DLG value of 0.180 cm. For this DLG value, the 1.00 mm source

size setting yielded the highest average passing rate (mean � SD):

97.98 � 3.06%. The passing rate for the remaining source sizes with

0.180 cm DLG value were as follows: 95.02 � 4.68% (0.50 mm,

P < 0.01), 97.22 � 3.76% (0.75 mm, P = 0.066), 95.91 � 4.33%

(1.25 mm, P = 0.067), 92.46 � 5.88% (1.50 mm, P < 0.01).

For DCA planning with TrueBeam linac and DLG value of

0.180 cm, the highest mean passing rate occurred for source sizes

F I G . 2 . Gamma passing rate results for VMAT planning with Edge linac (HD-MLC). Note that the highest passing rates occur for the
0.090 cm DLG setting, and the optimal source size varies with DLG setting. For DLG value of 0.090 cm, the 0.50 mm source size results in
the highest passing rate (mean � SD passing rate of 97.51 � 2.38%). The vendor-recommended source size setting (1.00 mm) with the same
DLG value (0.090 cm) yields a lower mean passing rate result with larger variation–mean � SD passing rate 93.72 � 4.96%.

F I G . 3 . Gamma passing rate results for DCA planning with Edge linac (HD-MLC). The optimal source size for these data is 1.00 mm for DLG
value 0.090 cm (corresponding to the optimal DLG value for VMAT planning). For DLG values of 0.070 cm and 0.080 cm, the highest passing
rates occurred for calculations with 0.75 mm source size setting.
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of 1.00 mm (99.16 � 2.47%) and 1.25 mm (99.45 � 0.99%), with

no statistical significance in the difference in passing rate for these

two source sizes (P = 0.62). For all but one TrueBeam DCA case, the

1.00 mm and 1.25 mm source size dose calculations yielded passing

rates in excess of 99.50%. The mean � SD passing rate for the

remaining source sizes were as follows: 96.95 � 5.23% (0.50 mm,

P = 0.04), 98.62 � 3.63% (0.75 mm, P = 0.17), and 97.94 � 2.35%

(1.50 mm, P = 0.26).

3.B. | Film dosimetry results – dose profile
comparison

To highlight the variations in dose calculation with source size setting,

line profile comparisons were also generated for several representa-

tive VMAT cases for Edge and TrueBeam linacs. A comparison of

measured and calculated dose for multiple VMAT plans (one smaller

target size and one typical intracranial SRS target size) for Edge and

TrueBeam linacs is shown in Fig. 6. For Edge linac and smaller target

volume (0.07 cc) shown in Fig. 6 (a) we note two main differences in

the high-dose region among the source size calculations. First, there

is an increase in the blurring of the shoulder of the high-dose region

as the source size is increased. In addition, there is a reduction in the

magnitude of the central high-dose region as the source size is

increased. For this case, the 0.75 mm source size calculation yields

the best agreement with the measured dose. In the low dose region

(< 40% of peak dose) for this case, there is also some difference in

dose calculation among the calculations with various source sizes.

Similar behavior within the high-dose region for VMAT planning with

TrueBeam linac and smaller target volume (0.24 cc) is shown in Fig. 6

(c). For this case, the 1.00 mm source size calculation gives the best

F I G . 4 . Gamma passing rate results for VMAT planning with TrueBeam linac (Millennium-120 MLC). Note that the highest passing rates
occur for the 0.180 cm DLG setting, and the optimal source size varies with DLG setting. For DLG value of 0.180 cm, the 1.00 mm source
size yields the highest passing rates (mean � SD): 97.84 � 3.66%. For lower DLG value (0.160 cm), the average passing rate results for
0.50 mm, 0.75 mm and 1.00 mm settings were within 0.7% of one another. The highest passing rate for DLG value 0.160 cm occurred for
smaller source size – 0.75 mm setting with mean�SD passing rate of 96.16 � 5.83%. For the larger DLG value (0.200 cm), the highest average
passing rate occurred for larger source size – 1.25 mm setting with mean � SD passing rate of 93.65 � 6.19%.

F I G . 5 . Gamma passing rate results for DCA planning with TrueBeam linac (Millennium-120 MLC). For 0.180 cm DLG value, the highest
passing rates occurred for source sizes of 1.00 mm (99.16 � 2.47%) and 1.25 mm (99.45 � 0.99%).
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agreement with measurement. For more typical intracranial lesions

with target volumes in the range of 0.5–1.0 cc (shown in Figs. 6 (b)

and 6 (d)), we note the same blurring of the shoulder of the high-dose

region, without the dramatic reduction in the magnitude of the cen-

tral high-dose region. For the larger volume case shown in Fig. 6 (b)

for Edge linac, the 0.50 mm source size setting yields the best visual

agreement between measured and calculated line profiles. For both

representative cases shown in Figs. 6 (c) and 6 (d) for TrueBeam linac,

the 1.00 mm source size setting yields the best visual agreement

between measured and calculated line profiles.

4 | DISCUSSION

The modern linac, with capabilities for online image guidance and

sub-millimeter end-to-end geometric accuracy, has become a

popular option for the delivery of stereotactic radiosurgery for

treatment of small intracranial lesions. Recently, advances in linac

design have included incorporation of stereotactic on-board imag-

ing systems,4–7 high-definition MLC,12,13 integrated 6 DOF couch,8

high-intensity flattening filter free energy modes,9–11 and surface

imaging systems for tracking.14,15 With improvements in the local-

ization and delivery systems, there remains a definite need for

accurate modeling of the small field dose delivery within the treat-

ment planning system. The purpose of this study was two-fold: (1)

to present a clinically achievable method to evaluate the source

size for small-field dose calculation, and (2) to use the method to

evaluate the ideal source size for flattening-filter energy modes for

two delivery platforms (Varian Edge and TrueBeam machines),

MLC leaf models (Millennium120 HD-MLC and standard Millenni-

um120 MLC), and delivery techniques (DCA and VMAT) used in

our clinic.

F I G . 6 . Comparison of measured dose (red solid line) with calculated dose for the source size settings tested for VMAT planning with Edge
and TrueBeam linacs. All calculations performed using optimal DLG value: 0.090 cm for Edge linac and 0.180 cm for TrueBeam linac. a, VMAT
planning for a small volume target (0.07 cc) with Edge linac. As the source size increases, the magnitude of the central high-dose region is
dramatically reduced (indicated by black arrow), the shoulder of the high-dose region exhibits blurring (light gray arrow), and the low dose region
also exhibits differences as a function of source size (gray arrow). b, VMAT planning for a typical volume target (0.86 cc) with Edge linac. Note
the similar blurring of the shoulder of the high-dose region (black arrow), but no difference in the magnitude of the central high-dose region. c,
VMAT planning for a smaller volume target (0.24 cc) for TrueBeam linac. Note the similar behavior in the central region, shoulder of the high-
dose region, and low dose region to profile comparison in (a). d, VMAT planning for a typical volume target (0.67 cc). Again, there remains
characteristic blurring of the shoulder of the high-dose region without variation in the magnitude of the central high-dose region.
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Previous studies have provided validation of the AcurosXB dose

calculation algorithm for a variety of test cases. Vassiliev et al.com-

pared the AcurosXB dose calculation to Monte Carlo for 6 MV and

18 MV beam energy in a heterogeneity slab phantom, finding that

AcurosXB and Monte Carlo calculations agreed within 2% (local dose

difference) or 1 mm (distance to agreement).30 Stathakis et al. com-

pared small field dose calculation within and beyond heterogeneities

for several commercially available dose calculation algorithms (includ-

ing AcurosXB) to Monte Carlo results, finding that AcurosXB agreed

within 2% compared to Monte Carlo calculation in lung and bone

slab geometry.31 Kron et al. evaluated the accuracy of AcurosXB

dose calculation for situations with small MLC-defined segments and

larger secondary collimation settings.24 Their study included testing

the source size (focal spot size) for values of 0 mm, 1 mm, and

2 mm. They found agreement in output factor prediction between

AAA and AcurosXB to be within 1% for field sizes ≥ 1 9 1 cm2, and

found acceptable agreement between planned and measured doses

for focal spot size settings of 1 mm or less, DLG value of 1.4 mm,

and MLC transmission value of 1.4%. Fogliata et al. evaluated the

performance of AAA and AcurosXB for small MLC-defined open

fields and VMAT deliveries.32 Their study evaluated 4 VMAT plans

in total, but the plan details, including the arc geometry (single partial

arc of 140°) and total dose per plan (2 Gy), are not fully representa-

tive of typical intra-cranial SRS VMAT planning at our institution. In

addition, the target volume range ([0.3 cc, 7.0 cc]) does not encom-

pass the target volume size that is typically treated at our institution.

In particular, our institution tends to utilize multiple arc delivery with

typical prescription dosing (on the order of 18 Gy), and the volume

of the targets at our institution can be less than 0.10 cc. Our study

results indicate that the influence of the source size selection on the

dose calculation accuracy is of particular interest for target volume

sizes less than approximately 0.30 cc. As shown in Fig. 7, use of

source sizes larger than recommended (e.g., 1.25 mm and 1.50 mm

in this study) can result in further reduction in Gamma Analysis pass-

ing rates for target volume sizes less than approximately 0.30 cc. In

addition, the Fogliata et al. study evaluated the algorithm

performance with a conventional linear accelerator (Varian Clinac

2100iX) with standard width MLC (Millennium-120) and standard

energy mode (6 MV). In this study, we evaluate various source size

settings in AcurosXB for dose calculations of small intra-cranial tar-

gets for VMAT and DCA planning with two linear accelerator deliv-

ery platforms utilizing flattening filter-free energy mode (6 MV-FFF).

For both AcurosXB and AAA, the Eclipse treatment planning sys-

tem utilizes a dual-source dose calculation model, consisting of the

primary source and extra-focal source.19 The extra-focal source is a

Gaussian plane source positioned at the edge of the flattening filter

distal to the target. For flattening-filter free beams, such as the 6

MV-FFF energy mode evaluated in this study, the extra-focal source

modeling is disabled, since the principal element contributing to the

need for extra-focal modeling (i.e., the flattening filter) is not present.

The primary source can be tuned using the effective target spot size

parameter (entered separately for X- and Y- directions in the jaw

coordinate system). The finite size of the primary source is modeled

via Gaussian smoothing of the primary energy fluence, with the spot

size parameter representing the FWHM of the Gaussian filter in the

isocenter plane. The spot size parameter is coupled with the beam-

limiting device (i.e., jaw or MLC). If the vendor-recommended spot

size parameter (1.00 mm in X- and Y-directions) is used for Acur-

osXB beam modeling, then the actual source size employed during

dose calculation depends on the beam-limiting device: (1) if the field

is delimited by jaws alone, then 1.00 mm is used for X- and Y-direc-

tions, and (2) if MLC are used, then the following are used: 1.50 mm

(X-direction) and 0 mm (Y-direction).19 In the current study, we note

the difference in behavior for the two MLC models tested. For Mil-

lennium-120 MLC with 0.180 cm DLG value, the vendor-recom-

mended 1.00 mm source size was suitable for both VMAT planning

DCA planning. For Millennium-120 HD-MLC, the 0.50 mm source

size setting yielded the highest passing rate results for VMAT plan-

ning, while the was 1.00 mm source size yielded the highest passing

rate results for DCA planning. The differences in these results high-

light the need to perform machine- and treatment intent-specific

testing, particularly for small-field delivery using VMAT. When

F I G . 7 . Difference in Gamma Analysis
passing rate for each source size tested
relative to the vendor-recommended
source size (1.00 mm) for all cases tested
(all machine types and all delivery types).
Note the sharp decrease in passing rate for
smaller target volume size
(volume ≤ 0.30 cc) for source sizes larger
than the recommended 1.00 mm value
(1.25 mm and 1.50 mm).
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selecting the optimal source size value for a clinical delivery system,

it is essential to understand the downside of using smaller source

size settings for AcurosXB (relative to the nominal recommended

source size). We note that our study findings indicate no statistically

significant difference in calculation time among the source sizes

tested. However, choosing a source size setting that is too small

could lead to overestimation of the size of the shoulder of the high-

dose region. Thus, since the prescription isodose line is often in the

shoulder of the high-dose region, this could lead to an overestima-

tion of the prescription isodose cloud in the planning system. If a

tradeoff is needed during commissioning and beam modeling, the

user should determine whether underestimating or overestimating

the dose level of the shoulder of the high-dose region is preferable.

For our clinic, there was significant interest in using one beam model

for each machine. Namely, we looked to avoid using a separate

beam model for VMAT and DCA deliveries. It is worth noting that

there was no statistically significant difference between the gamma

analysis passing rates for 0.50 mm and 0.75 mm (P = 0.057) source

size values for Edge VMAT delivery, and also no statistically signifi-

cant difference between the gamma analysis passing rates for

0.75 mm and 1.00 mm (P = 0.175) source size values for Edge DCA

delivery. In addition, qualitative line profile analysis indicated equiva-

lent agreement between planned and measured dose for the

0.75 mm and 1.00 mm source size data for DCA delivery, as well as

between the 0.50 mm and 0.75 mm source size data for VMAT

delivery. Thus, we evaluated all of our clinical goals, including: (1)

avoid under coverage of the tumor due to overestimation of the pre-

scription isodose cloud, (2) if at all possible, use a single beam model

for the Edge machine, and (3) use both quantitative gamma analysis

and qualitative line profile analysis. Taking all of these factors into

account, the 0.75 mm source size was chosen for our institutional

Edge beam model, which included use for both VMAT and DCA

deliveries. Our study using Gafchromic EBT3 film and solid water

slab phantom provides a feasible and effective method for evaluating

beam modeling parameters such as source size and DLG during

machine commissioning.

The use of gamma analysis for IMRT QA has been the subject of

much scrutiny.33–38 In particular, gamma analysis using traditional cri-

teria for distance-to-agreement (on the order of 2–3 mm) and dose

difference (on the order of 2–3%) may not be sensitive to clinically

meaningful dose errors when per-beam IMRT analysis is used. We

note several considerations regarding the use of gamma analysis in

this study. First, gamma analysis provides a binary result for each

pixel (i.e., the pixel either passes or fails the test), and the gamma

analysis does not discriminate between delivered dose that is higher

or lower than the planned dose. For this reason, commissioning of

small-field deliveries should not rely on gamma passing rates alone;

rather, the gamma map and line profile analysis should also be used

to give a better understanding of the agreement between planned

and measured doses. In this study, we present gamma analysis pass-

ing rates and line profile analyses of representative cases. Second, all

dose distributions analyzed in this study are composite dose distribu-

tions. The dose distributions for each arc are summed in the

phantom just as they would in a clinical patient. We believe this

avoids one major issue with typical IMRT QA, which is the lack of

correlation between per-beam planar measurements and clinically

meaningful dose errors. Third, our institutional film analysis program

allowed for the use of relatively small distance-to-agreement criteria

(on the order of 0.3 mm) for these cases; similar distance-to-agree-

ment criteria (0.5 mm) was previously used to validate GammaKnife

dosimetry.39 The details of our institutional practice for SRS/SBRT

QA using Gafchromic film have been published40; of note, the film

analysis procedure includes a rigid registration routine using mutual

information as the similarity metric. For each case, the result of the

film analysis image registration is reviewed. It should be noted that

the use of such small distance-to-agreement criteria (0.3 mm) in the

gamma analysis was intended for use in this study and is not part of

our institutional clinical routine; the use of such small distance-to-

agreement relies on (1) robust image registration between the

planned and measured dose planes, and (2) sufficiently fine resolu-

tion for both planned and measured dose planes. For this reason, we

used 1 mm isotropic dose grid setting (the lowest allowed in Eclipse

TPS), and exported all plans using 0.098 mm pixel size. Though not

all gamma analysis criteria are sensitive to meaningful dose errors,

we believe we have shown the 3% dose difference and 0.3 mm cri-

teria as employed in this study to be sensitive to meaningful dose

errors in cranial SRS deliveries (see Fig. 1). However, we again stress

the usefulness of other complementary analysis tools, such as the

use of the gamma map and line profile analysis, and caution against

the use of gamma passing rates alone in the commissioning or verifi-

cation process for SRS VMAT and DCA deliveries. The AAPM Task

Group 119 introduced the concept of confidence limits for determin-

ing appropriate bounds of IMRT QA results.41 The formula used for

calculating the confidence limit is as follows: Confidence

Limit = ∣mean∣ + 1.96r Applying this formula to the VMAT film

dosimetry data for (1) HD-MLC (DLG = 0.090 cm, Source

Size = 0.50 mm) yields a confidence limit of 92.9% for lower bound

of passing rate, and (2) for Millennium-120 MLC (DLG = 0.180 cm,

Source Size = 1.00 mm) yields a confidence limit of 90.7% for lower

bound of passing rate. These confidence limits are not generally

applicable to all clinics, since they are based on a single institutional

QA dataset. Rather, these confidence limits can be used as a qualita-

tive reference when performing similar measurements for commis-

sioning of small-field VMAT deliveries.

The dose profile comparison indicated two important regions of

dose distribution variation resulting from tuning of the calculation

model source size: the shoulder of the high-dose region and the cen-

ter of the high-dose region. First, we note differences in the shoul-

der of the high-dose region (Fig. 6). As the source size increases, we

note the blurring of the shoulder of the high-dose region, which

occurred for the entire range of target volume sizes tested. This

blurring is of particular importance for intracranial SRS planning,

since the prescription isodose line is typically in the shoulder region

of the dose distribution to allow for sharp dose gradients outside

the target volume. Any discrepancy in the full width at 75–85% of

the peak dose indicates that the planning system is not correctly
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calculating the volume of the prescription isodose cloud. In addition,

for very small targets (less than approximately 0.30 cc), the central

portion of the high-dose region is also impacted by the source size

selection. As shown in Fig. 8, improper selection of the source size

in the dose calculation model can result in meaningful reduction in

isocenter dose for lesions smaller than approximately 0.30 cc. For

very small targets (lesions less than 0.10 cc), we note the presence

of discrepancies in isocenter dose up to 10.8%. Of the lesions ana-

lyzed in this study with volume less than 0.10 cc, five of the six

lesions had dose discrepancies in excess of 8%. These findings rein-

force the need to perform dosimetric verification of the dose calcu-

lation model at the smallest anticipated target volume size. If the

proper source size is not used in the dose calculation model, one

potential mitigation strategy would include using a slightly larger

margin for intra-cranial lesions. Line profile analysis in this study indi-

cates that discrepancies between dose calculations with 0.5 mm and

1.5 mm source size setting can routinely approach 1 mm in the

shoulder of the high-dose region. Though an explicit recommenda-

tion on lower bound for target size treated for each MLC type is

beyond the scope of this work, we have shown that proper tuning

of the source size and DLG parameters allow for reliable modeling

of the dose delivery with (1) HD-MLC to target volumes as small as

0.03 cc, and (2) Millennium-120 MLC to targets volumes as small as

0.24 cc. Other factors, such as the resolution of imaging systems

used for planning and localization (e.g., CT, MRI, and CBCT) and the

lower bounds of the dose calculation grid size, also play a role in

determining the lower bound for target size.

Of note, this study included analysis of conventional and high-

definition MLC models. We note several interesting differences in

the passing rate trends for the Edge linac and TrueBeam linac among

the entire set of source sizes tested. First, the optimal source size

and DLG value resulted in similar mean passing rates for each deliv-

ery modality: (1) for VMAT: 97.51 � 2.38% (Edge) vs

97.84 � 3.66% (TrueBeam; P = 0.81), and (2) for DCA:

99.41 � 0.99% (Edge) vs 99.16 � 2.47% (TrueBeam; P = 0.77). We

believe these similar passing rate results (and corresponding line

profile analyses) for the optimal source size and DLG value indicate

that the optimal beam model can give similar agreement between

planned and measured doses for each MLC type. However, there

exists a sharper decrease in passing rate for the Edge data for sub-

optimal selection of source size and DLG setting. It is worth noting

the differences in lesion geometry for the two MLC types. For the

Edge linac, there were seven lesions (out of 20 total) below 0.30 cc,

with only one such lesion for the TrueBeam linac. In addition, there

were nine lesions above 1 cc for the TrueBeam linac, with only two

such lesions for the Edge linac. This was intentional, to ensure the

lesion volumes were chosen to reflect the intended clinical use of

each MLC type. As has been shown in previous studies, the HD-

MLC is better able to deliver stereotactic treatments to small

intracranial lesions as compared to standard width MLC.42 As shown

in Figs. 7 and 8, the dose calculation appears to be most sensitive to

variations in source size at the smallest lesion sizes (in this study, we

deem the lesion small if the volume is less than approx. 0.30 cc).

Under 0.30 cc, variations in source size lead to discrepancies in both

the shoulder and central area of the high-dose region. Thus, though

our results indicate no statistically significant difference in the agree-

ment between planned and measured doses in this study for the

optimal Edge and TrueBeam beam models, any selection of subopti-

mal source size (and also DLG value) has the potential to be more

impactful, on average, for deliveries involving smaller lesions. In addi-

tion, our results indicate a difference in optimal source size for

VMAT delivery with these two MLC models, which we attribute to

the combination of differences in the MLC leaf end design and the

method by which the TPS models the finites size of the source (i.e.,

a Gaussian convolution blurring). We believe that our study repre-

sents the first reporting of the differences in dose calculation as a

function of source size with changes in MLC model for Eclipse TPS.

In addition, we note the difference in optimal source size as deter-

mined using film dosimetry for intensity-modulated delivery (VMAT)

and open-field delivery (DCA). Some previous studies have charac-

terized the effects of source size using small MLC-defined open

fields with beams at normal incidence and comparing to Monte Carlo

F I G . 8 . Comparison of isocenter dose
for Edge and TrueBeam linacs for VMAT
and DCA planning. Dose difference is the
isocenter dose 1.50 mm source size
relative to isocenter dose for optimal
VMAT source size (0.50 mm for Edge linac
and 1.00 mm for TrueBeam linac). The
blue dashed lines indicate region of target
volume less than 0.30 cc and dose
difference less than �3%. The black solid
lines indicate region with target volume
less than 0.15 cc and dose difference less
than 5%. The largest dose discrepancy was
�10.80% for 0.03 cc volume target.

GARDNER ET AL. | 179



calculations, film dosimetry, or other high-resolution dosimetric

data.17,24,32 The difference in the film dosimetry results in the cur-

rent study for VMAT and DCA planning groups (particularly for Edge

linac with high-definition MLC) underscore the need to extend the

dose calculation model analysis to include intensity-modulated

deliveries.

The modeling of small-field deliveries within Eclipse is a combina-

tion of the field-specific output factor (determined from the collima-

tor back scatter factor (CBSF) table in Eclipse), modeling of the MLC

leaf end (primarily determined from the DLG value in Eclipse), and

the modeling of the source. This study analysis included evaluation

of the latter two parameters, but did not fully consider the effects

of the CBSF table. However, all beam models were generated using

output factor down to jaw sizes of 1 9 1 cm2, with small field data

measured using a stereotactic field diode. It is important to note that

all plans analyzed in this study utilized jaw settings larger than

1 9 1 cm2; the smallest jaw setting for this study was

1.6 cm 9 1.4 cm (X by Y). Additionally, MLC-defined small field

delivery was validated for field sizes down to 5 mm 9 5 mm using

multiple detectors. During commissioning, all small field data was

measured multiple times and cross-compared to several detectors

for validation, and the calculated output factor data compared favor-

ably with internal Monte Carlo testing. Thus, though we don’t explic-

itly consider the effects of the CBSF table in this study, all beam

models were generated with the appropriate selection of detector

and the data was validated in multiple ways. This study uses film

dosimetry as the primary means to evaluate the accuracy of the

dose calculation model. In our clinic, we perform film-based QA of

all intensity-modulated stereotactic deliveries. In general, the uncer-

tainty in Gafchromic film dosimetry arises from issues with film uni-

formity, scanner uncertainties, background variations, film handling,

and registration between film and calculated dose planes. Our meth-

ods, including strict protocols for handling the films, scanning the

films in multiple orientations, and keeping scan delay times consis-

tent at 24 hr, minimize the uncertainty in the film result. Through

internal testing, we have determined the uncertainty in film absolute

dose for small targets to be within 2% at all points of the calibration

curve for green channel. Further details on our institutional practice

for SRS/SBRT film QA have been published.

5. | CONCLUSION

This study highlights the need for tuning of the radiation target

source size for the AcurosXB dose calculation algorithm in the con-

text of intracranial SRS dose delivery using DCA and VMAT. In par-

ticular, we note the differences in optimal source size values for

high-definition (2.5 mm leaf width) and standard (5 mm leaf width)

MLC with flattening-filter free delivery. Improper selection of the

source size can affect the accuracy of the shoulder of the high

shoulder for a wide range of intracranial target sizes, and can also

have a drastic effect on the magnitude of the central high-dose

region for very small targets (target volume ≤ 0.30 cc).
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