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Simple Summary: Overloading of the horse’s thoracolumbar region is a serious problem mainly
affecting sport and school horses during their daily under-saddle work. As the human population
becomes heavier, the effect of rider bodyweight on equine welfare and performance requires further
investigation. This study used infrared thermography to assess the effect of rider:horse bodyweight
ratio on the horse’s thoracolumbar region by introducing advanced digital image processing. Twelve
horses during regular work were ridden by each of six riders assigned to light (L), moderate (M), and
heavy (H) groups. Thermal images of the back region were taken before and after standard exercise
and underwent conventional analysis and texture analysis where the thermal images were separated
into red, green, and blue components. Four areas of the horse’s thoracolumbar region were annotated
to represent the withers area, the thoracic spine area, and the left and right areas of back muscles.
Among 372 returned features, 75 texture features differed between bodyweight ratio groups, whereas
the conventional thermal features did not. Contrary to conventional thermal features, the consistent
measurable differences in texture features were evidenced predominantly in the red component of
thermal images when the texture heterogeneity measures, such as InvDefMom, SumEntrp, Entropy,
DifVarnc, and DifEntrp, were considered.

Abstract: Appropriate matching of rider–horse sizes is becoming an increasingly important issue
of riding horses’ care, as the human population becomes heavier. Recently, infrared thermography
(IRT) was considered to be effective in differing the effect of 10.6% and 21.3% of the rider:horse
bodyweight ratio, but not 10.1% and 15.3%. As IRT images contain many pixels reflecting the
complexity of the body’s surface, the pixel relations were assessed by image texture analysis using
histogram statistics (HS), gray-level run-length matrix (GLRLM), and gray level co-occurrence matrix
(GLCM) approaches. The study aimed to determine differences in texture features of thermal images
under the impact of 10–12%, >12 ≤15%, >15 <18% rider:horse bodyweight ratios, respectively.
Twelve horses were ridden by each of six riders assigned to light (L), moderate (M), and heavy (H)
groups. Thermal images were taken pre- and post-standard exercise and underwent conventional
and texture analysis. Texture analysis required image decomposition into red, green, and blue
components. Among 372 returned features, 95 HS features, 48 GLRLM features, and 96 GLCH
features differed dependent on exercise; whereas 29 HS features, 16 GLRLM features, and 30 GLCH
features differed dependent on bodyweight ratio. Contrary to conventional thermal features, the
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texture heterogeneity measures, InvDefMom, SumEntrp, Entropy, DifVarnc, and DifEntrp, expressed
consistent measurable differences when the red component was considered.

Keywords: body mass index; thermograph; texture analysis; color models

1. Introduction

Equestrianism is a discipline that involves horses and humans; therefore, their pro-
ductive interaction is the key to successful, safe, and comfortable horseback riding. As
Body Mass Index (BMI) [1,2] relatively increases in the human population, appropriate
matching of rider–horse sizes is becoming an increasingly important issue for the care of
riding horses. At first glance, rider size does not seem to disturb the riding use of horses.
Rider bodyweight is mostly reported to be in the range of 50 to 90 kg in female-dominated
equestrianism [3], while horses most commonly lie in the 500–600 kg bodyweight cate-
gory [4]. Thus, there is a widespread rider:horse bodyweight ratio range between 10 and
20% of horse bodyweight. The maximum permissible load on horseback was estimated for
Japanese native horses [5], Arab endurance horses [6], and the Taishuh pony [7] at 29%, 30%,
and 43% of horse bodyweight, respectively. One might conclude that the equine potential
for carrying heavy loads is enough for horseback riding [5,6] and this misconception is
often widespread within equestrian practitioners. Therefore, it is important to make it clear
that an inappropriate rider size has been reported to have adverse implications for horse
welfare in everyday practice [8].

A comprehensive evaluation of equine welfare and equine quality of life firstly requires
evidence of the horse’s subjective experience using behavioral evidences of emotion in
the horse [9], and secondly, evaluation of the horse’s body response using physiological
indicators [10]. Within physiological indicators, heart rate [11–13], heart rate variability [14,15],
and cortisol concentration [12,16] are the most commonly measured [10]. However, these
measures are at risk of confounding by physical exertion [10,16,17]. Therefore, in the case
of horses used for riding, other more specific indicators of equine well-being are required
to assess rider:horse interaction. Recently, the infrared thermography (IRT) measurement of
the selected regions of the body surface temperature was proposed to assess both the horse’s
emotional state [18–20] and the horse’s physiological response to an effort [17,21–23], also
including the evaluation of the impact of the rider:horse bodyweight ratio on the equine
organism [24,25].

Increasing the rider:horse bodyweight ratio from 15% to 20%, 25%, and 30% in a
submaximal standard exercise test, increased basic physiological parameters and caused
post-exercise muscle pain. A significant increase in plasma creatine kinase activity was
noted when the rider:horse bodyweight ratio was changed from 25% to 30%. Similarly,
heart rates, breathing frequencies, and plasma lactate concentration increased with increas-
ing weight ratio; however, only when starting from a level of 20% rider:horse bodyweight
ratio [26]. When the rider:horse bodyweight ratio was increased from 15.3% to 17.2% and
then 18.5% by adding weights, no short-term alterations in heart rate, behavior, and gait
symmetry were observed [27]. However, an increase in salivary cortisol concentration
suggested an increase in response to higher weight [28], as saliva cortisol concentration
is a more sensitive indicator of the physical workload than heart rate and heart rate vari-
ability [28,29]. Moreover, when horses were ridden by riders of different bodyweights
representing 10–12%, >12 ≤15%, >15 <18%, and >20% rider:horse bodyweight ratio, a
temporary adverse effect on horse gait and behavior was observed for the heaviest (>20%)
and, to a smaller extent, the heavy (>15 <18%) riders in [30]. It was also shown that of
two riders representing 10.6% and 21.3% rider:horse bodyweight ratio, the horses ridden
by the heavier rider demonstrated increased heart rate and superficial body temperature
on the horse’s neck and trunk [24]. However, the effect of riders representing 10.1% and
15.3% rider:horse bodyweight ratio demonstrated no significant difference with respect to
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five conventional superficial body temperature measurement approaches in contrast with
thermal image analysis based on the gray-level matrices (GLM) [25]. As Dyson et al. [30]
highlight, following the World Horse Welfare and the British Equestrian Federation, ‘inno-
vative ways should be developed, so that riders can assess if they are the correct weight for
their horse’, advanced digital image processing (DIP) has been introduced here to explore
the effect of rider:horse bodyweight ratio on thermal images, which may be integrated into
everyday equine practice.

IRT produces colorful thermal images, where the color gradient corresponds to the
emitted infrared radiation and thus to the distribution of surface body temperatures [21].
Conventional thermal features, such as average, maximal, or minimal temperature, re-
flect one numerical value each for considered regions of interest (ROIs), whereas IRT
images of the body surface, are composed of many pixels that reflect the body’s complex
response [22,25,31]. As the pixel relations are assessed by image texture analysis, histogram
statistics (HS), gray-level run-length matrix (GLRLM) and gray level co-occurrence matrix
(GLCM) approaches have been applied in the detailed evaluation of medical images. The
texture operators explore the image by using statistics of pixel distribution to provide com-
plex descriptions of image texture [32,33]. Consequently, texture analyses have successfully
been used in advanced diagnostic imaging to improve the richness of information from
ultrasound images [34], radiographic images [35–37], magnetic resonance images [33,38],
and thermal images [25,31,39,40].

The purpose of the study was to determine if any consistent measurable differences
exist in texture features of thermal images taken from the equine thoracolumbar region
among riders representing different rider:horse bodyweight ratio.

2. Materials and Methods
2.1. Animals

Twelve Polish warmblood horses (1–12) (six geldings and six mares; mean ± SD:
age 9.3 ± 1.8 years, body weight 566.7 ± 13.7 kg, height at the withers 160.3 ± 3.9 cm)
participated in the study. All horses were owned by the Warsaw School of Life Sciences
(WULS) and were in daily leisure use in the Didactic Stable of Horse Breeding Division.
Horses were selected from 19 WULS owned horses according to the inclusion criteria as
follows: (i) the absence of clinical signs of disease in basic clinical examination; (ii) the
absence of lameness and signs of back pain in a detailed orthopedic examination; (iii) if
possible, representing uniform body weight; and (iv) if possible, representing uniform
height at the withers. One horse was excluded due to increased respiratory rate and
discharge from the nasal cavity, and three horses were each excluded due to increased
tension and pain in response to palpation of the thoracolumbar region or low body weight
(363.3 ± 15.3 kg) and height (145.3 ± 1.2 cm), respectively. The details of the horses are
summarized in Table 1. One week before the start of the study, all horses were examined,
measured, and weighed. All horses were evaluated by an experienced DVM of Equine
Clinic WULS, Specialist in Diagnostic Imaging (T.J.). A basic clinical examination, including
measurement of heart rate, respiratory rate, capillary refill time, and rectal temperature, as
well as inspection of mucous membranes and lymph nodes, was conducted according to
international veterinary standards [41]. A detailed back examination, including palpation
of the thoracolumbar region and evaluation of the presence of tension in the muscles, lumps,
abnormal hair wear and reaction to pain, was performed following Martin and Klide’s
protocol [41]. A detailed orthopedic examination was performed following guidelines
for the lameness evaluation of the athletic horse [42]. All horses were measured at the
withers with a standard equine measure (Busse Sportartikel GmbH & Co. KG, Lohne,
Germany) and weighed using equine platform weights (Baka-Wag, Bydgoszcz, Poland).
The study was approved by the II Local Ethical Committee on Animal Testing in Warsaw
on behalf of the National Ethical Committees on Animal Testing (No WAW2/034/2018,
day 27 April 2018).
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Table 1. Details of six riders (A–F), representing light (L), moderate (M), and heavy (H) groups, and
twelve horses (1–12) that participated in the study.

Rider Horse Horse

Group Sign BW High BMI Sign BW High SW Sign BW High SW

L
A 58 159 22.9 1 585 166 4.1 7 560 162 4.2

B 60 160 23.4 2 550 154 4.5 8 545 157 4.2

M
C 77 172 26.0 3 580 158 4.2 9 570 158 4.4

D 75 164 27.9 4 575 164 4.5 10 580 162 4.4

H
E 91 172 30.8 5 560 160 4.1 11 565 160 4.2

F 92 174 30.4 6 550 156 4.4 12 580 166 4.2

BW—bodyweight (kg); height (cm); BMI—body mass index (kg/m2); SW—saddle’s weight (kg).

All horses were housed in individual stalls with the same management. Horses were
fed with an individually calculated ration of hay, oats, and concentrate according to its
nutritional requirements, which was distributed over three feedings per day. A mineral salt
block and freshwater were constantly available. All horses were physically fit as general
riding school horses taking part in leisure riding for up to 2 h per day, 6 days a week.

One week before the start of the study, all saddles were fitted to each horse following
Greve and Dyson’s protocol [43]. Saddles were considered to fit properly after determina-
tion of (i) the panels of the saddle, (ii) the type of flocking, and (iii) the balance of the saddle.
When the panels were even, uniformly thick, and soft, as well as demonstrating even
contact with the horse’s back, that is, the lowest part of both the saddle and horse’s back
were aligned and the center of the seat was located horizontally, the saddle was considered
to fit. Horse’s saddles were annotated with mean and range 4.3 (4.1–4.5) kg weight, and the
rider plus saddle weights were used to calculate a percentage of horse bodyweight. The
details of the saddle’s weight are summarized in Table 1.

2.2. Riders

Six female riders (A–F) with 5–10 years riding experience and different bodyweights
participated in the study. All riders represented similar upper-intermediate training
level [44]. All riders were recreational instructors (RI) of the Polish Equestrian Feder-
ation (PEF) and currently active (A, C, E, F) or honorary members (B, D) of the Animal
Sciences Students Riding Association (ASSRA) in WULS. Rider ages were 24 (A), 42 (B),
27 (C), 35 (D), 24 I, and 31 (F) years, respectively.

On study day one, all riders were measured, and weighed. All riders were measured
with a standard equine measure (Busse Sportartikel GmbH & Co. KG, Lohne, Germany)
and weighed with the full equestrian equipment using personal weights (Soehnle, Nassau,
Germany). Based on the rider’s bodyweight, three groups were determined with mean and
range of bodyweight: (i) light (L, 59.0 (58.0–60.0) kg), (ii) moderate (M, 76.0 (77.0–75.0) kg),
and (iii) heavy (H, 91.5 (91.0–92.0) kg). The rider’s BMI for the L, M, and H groups was
23.2 (22.9–23.4) kg/m2, 27.0 (26.0–27.9) kg/m2, and 30.6 (30.8–30.4) kg/m2, respectively.
Based on BMI, riders were categorized as normal weight (BMI 18.5–24.9 kg/m2; rider A
and B in L group), overweight (BMI 25.0–29.9 kg/m2, rider C and D in M group), and obese
(BMI ≥ 30 kg/m2, rider E and F in L group) [45].

The rider:horse bodyweight ratio was calculated individually for each rider (A–F) and
horse (1–12) combination (R/H) as the ratio of the bodyweight of the horse to the rider
plus saddle weight, expressed as a percentage. The rider:horse bodyweight ratios for the
L, M, and H groups were 11.2% (10.6–11.8%), 14.2% (13.5–14.9%), and 16.9% (16.3–17.7%),
respectively. The current study was designed to pass the criteria of Dyson et al. [30] where
the rider:horse bodyweight ratio would be 10–12% (L), >12% ≤15% (M), and >15% <18%
(H). Rider details and rider:horse bodyweight ratio were used to annotate thermal images
for further evaluation and are summarized in Table 2.



Animals 2022, 12, 195 5 of 25

Table 2. The rider:horse bodyweight ratio calculated for combinations (R/H) of six riders (A–F),
representing light (L), moderate (M), and heavy (H) groups, and twelve horses (1–12).

Rider: Horse Bodyweight Ratio

Group R/H 1 2 3 4 5 6 7 8 9 10 11 12

L
A 10.6 11.4 10.7 10.9 11.1 11.3 11.1 11.4 10.9 10.8 11.0 10.7

B 11.0 11.7 11.1 11.2 11.4 11.7 11.5 11.8 11.3 11.1 11.4 11.1

M
C 13.9 14.8 14.0 14.2 14.5 14.8 14.5 14.9 14.3 14.0 14.4 14.0

D 13.5 14.5 13.7 13.8 14.1 14.4 14.1 14.5 13.9 13.7 14.0 13.7

H
E 16.3 17.4 16.4 16.6 17.0 17.3 17.0 17.5 16.7 16.4 16.8 16.4

F 16.4 17.5 16.6 16.8 17.2 17.5 17.2 17.7 16.9 16.6 17.0 16.6

2.3. Standardized Exercise Test and Thermal Images Acquisition

All riders and horses of 72 combinations underwent a standardized exercise test used
by Dyson et al. [30]. Each horse was to be ridden once by riders L, M, and H. Each horse
was to be ridden once every day, and each rider rode two horses every day, thus the
measurements were completed over a 6-day test period.

A standardized exercise test was conducted following the protocol described by
Dyson et al. [30] in Supplementary Item 2 [30]. A standardized exercise test was performed
in a familiar indoor riding arena (20 × 60 m) with constant protection from environmental
conditions, such as solar radiation and wind. Ambient temperature (◦C) and relative
humidity (RH; %) were continuously measured and maintained during the 6-day test period
at 20.1± 0.9 ◦C and 50.5± 2.8%, respectively. The riding arena was directly connected with
the horse’s stable; therefore, horses could participate in the research without having contact
with the outside environment. The standardized exercise test included a walk, rising trot,
and canter on both sides, and each bout lasted 30 min. The correct diagonal for which the
rider sat in trot as well as the correct canter lead were controlled.

All riders and horses of 72 combinations were imaged using IRT twice, pre-exercise
and post-exercise, thus 144 thermal images were obtained and further used for DIP. The
imaged area of the thoracolumbar region was brushed as to remove dirt and mud 30 min
before imaging. The horses were then led to a familiar, enclosed indoor riding arena
to acclimatize to imaging conditions. Thermal images were taken using a non-contact
thermographic camera (FLIR Therma CAM E25, FLIR Systems Brasil, Sorocaba, Brazil;
emissivity (e) 0.99; temperature range between 10.0 and 50.0 ◦C). The camera was placed at
approximately 1.2 m above the imaging area, directly above the L5 dorsal spinous process
according to a previously described protocol [25]. After the first IRT imaging, horses were
saddled, and a standardized exercise test was conducted. After a standardized exercise
test, horses were unsaddled and the second IRT image was obtained. All thermal images
were obtained by the same researcher (M.M.).

2.4. Digital Image Processing

The thermal image processing steps included: (i) image acquisition, (ii) segmentation
of ROIs, (iii) conversion to color components, and (iv) extraction features. Conventional
DIP included steps (i), (ii), and (iv), whereas advanced DIP included steps (i–iv). The first
two steps (i, ii) were the same for both DIP approaches. The last step (iv) differed between
DIPs (Figure 1).

2.4.1. Conventional Digital Image Processing

In the first step (i), the thermal images were acquired according to the protocol de-
scribed above and saved as .jpg files. The output of the thermal camera is expressed as a
thermal image and is also referred to as a thermogram, which is an image color coded for
temperature [46]. The thermal images were opened using the software FLIR Tools Profes-



Animals 2022, 12, 195 6 of 25

sional (FLIR Systems Brasil, Sorocaba, Brazil), and four ROIs were annotated manually as
shown in Figure 1. The ROIs represented the withers area (ROI 1), the thoracic spine area
(ROI 2), the left area of back musculature (ROI 3), and the right area of back musculature
(ROI 4), respectively, and the second step (ii), segmentation of ROIs, has been completed.
For the conventional DIP, the third step (iii), conversion to color components, was omitted.
Directly after segmentation, the fourth step (iv), features extraction, was conducted as
before, using the software FLIR Tools Professional (FLIR Systems Brasil, Sorocaba, Brazil).
For each of the four ROIs, the software returned three values of temperatures expressed
in oC, which represented three thermal features: the average temperature (Taver), the
maximal temperature (Tmax), and the minimal temperature (Tmin).

Figure 1. The thermal image processing steps included: (i) image acquisition, (ii) segmentation of
ROIs, (iii) conversion to color components, and (iv) extraction features for both conventional and
advanced digital image processing. WLI—white light; IRT—infrared thermal image; ROI—region
of interest; DIP—digital image processing; Min—the minimal temperature; Max—the maximal
temperature; Average—the average temperature; HS—histogram statistics and the example of image
with its histogram; GLRLM—gray-level run-length matrix with the example of horizontal matrix;
GLCM—gray level co-occurrence matrix with the example of matrix for a 1-pixel distance in the
horizontal direction.

2.4.2. Advanced Digital Image Processing

In the first (i) and second steps (ii), the thermal images were acquired, saved as .jpg
files, and segmented as described above. The thermal images were saved as .bmp files,
opened using the QMazda Software [47], and converted to red (R), green (G), and blue
(B) components as a way of image transformation to grayscale. As the result of the con-
version, each thermal image was represented by three new images, each containing only
one color component in grayscale reflecting the two-dimensional temperature assignation
of the imaged thoracolumbar region. Afterwards, the third step (iii), conversion to color
components, was completed [47,48]. After conversion, the fourth step (iv), the features
extraction, was conducted individually for red, green, and blue components as before using
the QMazda Software [47,49]. For each of the four ROIs, three analytical approaches: his-
togram statistics (HS), gray-level run-length matrix (GLRLM), and gray level co-occurrence
matrix (GLCM) were applied, thus the QMazda Software returned a total of thirty-one
texture features: 13 HS features, 7 GLRLM features, and 11 GLCH features.

In HS, the first order features (FOF) are qualitative measures from the image intensity
distribution independent of their location in the image [50]. For image I representing a
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two-dimensional function, where N and M are the image width and height, respectively,
and range of intensity K ∈ [0..2n − 1] (n is the number of bits per pixel), the normalized
histogram H is defined as:

H(k) =
1

NM ∑N−1
i=0 ∑M−1

j=0

{
1, I(i, j) = k

0, otherwise

The histogram H shows the count of pixels in the image that possess a given gray-level
value. For most digital images n = 8, therefore, the gray-level values range from 0 to 255.
Lower values represent darker gray-level (0—black) and higher values represent lighter
gray-level (255—white). The example of a digital image with its histogram is shown in
Figure 1, and the description was realized by the 13 features calculated from it [50]:

FOFmean = ∑K
k=0 k ∗ H(k)

FOFvariance = ∑K
k=0(k− FOFmean)

2 ∗ H(k)

FOFskewness = (FOFvariance)
−3 ∑K

k=0(k− FOFmean)
3 ∗ H(k)

FOFkurtosis = (FOFvariance)
−4 ∑K

k=0(k− FOFmean)
4 ∗ H(k)− 3

FOFperc01 = min(K) :
K

∑
k=0

H(k) ≥ 0.01

FOFperc10 = min(K) :
K

∑
k=0

H(k) ≥ 0.10

FOFperc50 = min(K) :
K

∑
k=0

H(k) ≥ 0.50

FOFperc90 = min(K) :
K

∑
k=0

H(k) ≥ 0.90

FOFperc99 = min(K) :
K

∑
k=0

H(k) ≥ 0.99

FOFdomn01 = k : max

(
K

∑
k=0

H(k)

)

FOFdomn10 = k : max

(
K−r

∑
k=0

(H(k + r)− H(k))

)

FOFmaxm01 =
1

NM
max

(
K

∑
k=0

H(k)

)

FOFmaxm10 =
1

NM
max

(
K−r

∑
k=0

(H(k + r)− H(k))

)
Gray-level run-length matrix (GLRLM) features determine the number of runs (the

length of similar brightness in one line) of each gray level value in the given direction
and for chosen lengths L = 2n − 1 (n—is the number of bits per pixel) [51]. Thus, given
a direction (for example, horizontal direction), the GLRLM matrix measures how many
times a run of a certain length occur for each gray-level value. The created matrix consists
of elements containing information about the brightness and the number of points in one
line, for example, p(2, 1) indicates a brightness level of 2 and 1 element in the run with
such brightness. If there is such a case in the image, the matrix point p(2, 1) is increased by



Animals 2022, 12, 195 8 of 25

one. The calculation is then performed for successive pixel brightness’s and successive run
lengths as is shown in Figure 1. The 7 features from p matrix are defined as [52]:

GRLRMgray level non−uni f ormity =
1

np
∑K

i=0

(
∑L

j=1 p(i, j)
)

GRLRMrun−length nonuni f ormity =
1

np
∑L

j=1

(
∑K

i=0 p(i, j)
)

GRLRMlong−run emphasis =
1

np
∑K

i=0 ∑L
j=1 j2 p(i, j)

GRLRMshort−run emphasis =
1

np
∑K

i=0 ∑L
j=1

p(i, j)
j2

GRLRM f raction = ∑K
i=0 ∑L

j=1
p(i, j)
jp(i, j)

GRLRMrun−length nonuni f ormity moment =
1

np2 ∑L
j=1

(
∑K

i=0 p(i, j)
)2

GRLRMgray level non−uni f ormity moment =
1

np2 ∑K
i=0

(
∑L

j=1 p(i, j)
)2

Second order features (SOF) show the mutual spatial relationship between pairs of
image pixels with specific intensity levels. The co-occurrence square matrix (GLCM) p of
KxK dimension takes into account the mutual spatial relationship between pairs of image
pixels with specific intensity levels K ∈ [0.255]. It is possible to use different distances
between pixels pairs and different directions of horizontal, vertical and diagonal neighbors
to the matrix calculation. Then, for the selected direction and the selected distance between
pixels, the number of pixel pairs that have a given distribution of gray-level values is
counted. Thus, each entry in the matrix corresponds to one such distribution of gray levels.
For example, let us define a co-occurrence matrix for an 8-bit image with a distance of
1 pixel in the horizontal direction. The size of this matrix will then be 256 × 256. Thus, the
element p(1, 2) corresponds to the number of pairs of pixels that were found in the image
with intensities 1 and 2, respectively. Conversely, the element p(2, 1) has exactly the same
value and it corresponds to the number of pixel pairs that were found in the image with
intensities 2 and 1, respectively. This results, as is shown in Figure 1, in one more element
with coordinates of both (1,2) and (2,1). The 11 Haralick features from p matrix are defined
as [53]:

SOFAngScMom = ∑K
i=1 ∑K

j=1 p(i, j)2

SOFContrast = ∑K
i=1 ∑K

j=1(i− j)2 p(i, j)

SOFCorrelat = ∑K
i=1 ∑K

j=1

ijp(i, j)− µiµj

δiδj

SOFSumOfSqs = ∑K
i=1 ∑K

j=1(i− µ)2 p(i, j)

SOFInvDefMom = ∑K
i=1 ∑K

j=1
p(i, j)

1 + |i− j|

SOFSumAverg = ∑2K
k=2 kpi+j(k)

SOFSumVarnc = ∑2K
k=2

(
k− µi+j

)2 pi+j(k)

SOFSumEntrp = −∑2K
k=2 pi+j(k) log pi+j(k)

SOFEntropy = −∑K
i=1 ∑K

j=1 p(i, j) log p(i, j)
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SOFDifVarnc = ∑K−1
k=0

(
k− µi−j

)2 pi−j(k)

SOFDifEntrp = −∑K−1
k=0 pi−j(k) log pi−j(k)

where
µi = ∑K

i=1 ∑K
j=1 ip(i, j)

µj = ∑K
j=1 ∑K

j=1 jp(i, j)

σi = ∑K
i=1 ∑K

j=1(i− µi)
2 p(i, j)

σj = ∑K
i=1 ∑K

j=1

(
j− µj

)2 p(i, j)

pi+j(k) = ∑K
i=1 ∑K

j=1i+j=k
p(i, j)

pi−j(k) = ∑K
i=1 ∑K

j=1|i−j|=k
p(i, j)

µi+j = ∑2K
k=2 kpi+j(k)

µi−j = ∑2K
k=2 kpi−j(k)

2.5. Data Analysis

Statistical analysis was performed using GraphPad Prism6 software (GraphPad Soft-
ware Inc., San Diego, CA, USA). Data from 144 images were presented as independent data
series of the conventional thermal features (3 IRT features) for the RGB images and the
texture features (13 HS features, 7 GLRLM features, and 11 GLCH features) for three image
components: red component, green component, and blue component, where each R/H
represented one realization. Data series were divided into three groups, L, M, and H, based
on the rider and horse bodyweight ratio-dependent criteria, and tested independently for
univariate distributions using a Shapiro-Wilk normality test.

The comparisons between the pre-exercise and post-exercise data series were assessed
using the Paired t-test for Gaussian data and the Wilcoxon matched-pairs signed-rank test
for non-Gaussian data. The alpha value was established as α = 0.05. The numerical data in
Supplementary Tables S1–S16 were presented as mean ± standard deviation (SD). Only
those features that differed between the pre-exercise and post-exercise imaging for all three
groups (L, M, H), simultaneously, were marked by color (light red, green, blue for L group;
moderate red, green, blue for M group; and dark red, green, blue for H group) and by a
cross (x) in appropriate figure and selected for further analysis.

The comparisons between the L, M, H data series were assessed using the ordinary
one-way ANOVA followed by Tukey’s multiple comparisons test for Gaussian data and the
Kruskal–Wallis test followed by the Dunn’s multiple comparisons test for non-Gaussian
data. The alpha value was established as α = 0.05. Only those features that differed between
the L, M, and H groups were marked using color (red, green, blue) and by a cross (x) in
appropriate figure. Data on box plots were presented using minimum and maximum
values, lower and upper quartiles, and median as well as the mean value were marked by
a cross. Additionally, each realization was displayed.

3. Results

Among 372 returned combinations of color components (n = 3) and image texture
features (n = 31; HS n = 13, GLRLM n = 7, GLCM n = 11) calculated in all ROIs (n = 4),
95 combinations of HS, 48 combinations of GLRLM, and 96 combinations of GLCH differed
significantly between the pre-exercise and post-exercise imaging. This is true for all three
groups, light (L), moderate (M), and heavy (H). Similarly, all examined conventional
thermal features (n = 3) in all ROIs differed significantly between the pre-exercise and
post-exercise imaging. These combinations are summarized in Figure 2 and considered for
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further analysis. The details of this initial comparison as well as the values (mean ± SD) of
all examined features were presented in Supplementary Tables S1–S16 available online.

Figure 2. Features of (A,E,I,M) conventional thermography, (B,F,J,N) histogram statistics,
(C,G,K,Q) gray-level run-length matrix and (D,H,L,P) gray level co-occurrence matrix for exam-
ined color components (R, red; G, green, B, blue) were found to be significantly different between
the pre-exercise and post-exercise imaging for all rider groups (L, light; M, moderate; H, heavy).
Data were presented separately for each region of interest (ROI 1-4) annotated here on the sam-
ple thermal image. Taver—average temperature; Tmax—maximal temperature; Tmin—minimal
temperature; Skewness—skewness coefficient; Perc01, Perc10, Perc50, Perc90, Perc99—percentiles;
Domn01, Domn10—dominants; Maxm01, Maxm10—maximum of moments; GLN—gray level non-
uniformity; RLN—run-length nonuniformity; LRE—long-run emphasis; SRE—short-run emphasis;
Fraction—the fraction of image in runs; MRLN—run-length nonuniformity moment; MGLN—gray
level non-uniformity moment; AngScMom—angular second moment/energy; Correlat—correlation;
SumOfSqs—sum of squares; InvDefMom—inverse different moment/homogeneity; SumAverg—
summation mean; SumVarnc—summation variance; SumEntrp—summation entropy; DifVarnc—
differential variance; DifEntrp—differential entropy.

One can observe that all conventional thermal features differed after exercise in all
examined ROIs, whereas texture features differed in ROI 1, ROI 3, and ROI 4 rather than in
ROI 2. Moreover, a high degree of symmetry was observed between the left and right area
of back musculature, thus only Perc90 of the red component as well as Perc90, Perc99, and
Correlat of the blue component were significantly different between ROIs 3 and 4.

When comparing post-exercise conventional thermal features between rider groups,
no difference was found in ROI 1, ROI 2, ROI 3, and ROI 4 (Figure 3). However, when the
post-exercise texture features were similarly compared, among 239 examined combinations,
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rider:horse bodyweight ratio-dependent differences were observed for 29 combinations of
HS, 16 combinations of GLRLM, and 30 combinations of GLCH. These combinations were
summarized in Figure 4, whereas the detailed comparisons were presented in Figures 5–14.

Figure 3. Features of conventional thermography compared between the light (L), moderate (M),
and heavy (H) groups in consecutive regions of interest (ROI 1, (A–C); ROI 2, (D–F); ROI 3, (G–I);
ROI 4, (J–L)). Differences between groups were indicated with individual p-values when p < 0.05.
Different superscripts on each plot were statistically different. (A,D,G,J) Taver—average temperature;
(B,E,H,K) Tmax—maximal temperature; (C,F,I,L) Tmin—minimal temperature.

Figure 4. Features of (A,E,I,M) conventional thermography, (B,F,J,N) histogram statistics,
(C,G,K,Q) gray-level run-length matrix and (D,H,L,P) gray level co-occurrence matrix for examined
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color components (R, red; G, green, B, blue) found to be significantly different between the light (L),
moderate (M), and heavy (H) groups. Three groups of differences (Groups Dif.) were separated:
I—groups L and H differed (marked as a, ab, b on plots); II—groups L/M and H differed (marked
as a, a, b on plots); III—groups L, M, H differed (marked as a, b, c on plots). Data were presented
separately for each region of interest (ROI 1–4) annotated here on the sample thermal image of
the red component. Taver—average temperature; Tmax—maximal temperature; Tmin—minimal
temperature; Skewness—skewness coefficient; Perc01, Perc10, Perc50, Perc90, Perc99—percentiles;
Domn01, Domn10—dominants; Maxm01, Maxm10—maximum of moments; GLN—gray level non-
uniformity; RLN—run-length nonuniformity; LRE—long-run emphasis; SRE—short-run emphasis;
Fraction—a fraction of image in runs; MRLN—run-length nonuniformity moment; MGLN—gray
level non-uniformity moment; AngScMom—angular second moment/energy; Correlat—correlation;
SumOfSqs—sum of squares; InvDefMom—inverse different moment/homogeneity; SumAverg—
summation mean; SumVarnc—summation variance; SumEntrp—summation entropy; DifVarnc—
differential variance; DifEntrp—differential entropy.

Figure 5. Analysis of texture features for the red component compared between light (L), moder-
ate (M), and heavy (H) groups in the first region of interest (ROI 1). Differences between groups
were indicated with individual p-values when p < 0.05. Different superscripts on each plot were
statistically different. (A) Mean; (B) Variance; (C) Skewness—skewness coefficient; (D) Kurto-
sis; (E–G) Perc01, Perc10, Perc50—percentiles; (H,I) Maxm01, Maxm10—maximum of moments;
(J) GLN—gray level non-uniformity; (K) SRE—short-run emphasis; (L) Fraction—a fraction of image
in runs; (M) MRLN—run-length nonuniformity moment; (N) MGLN—gray level non-uniformity
moment; (O) AngScMom—angular second moment/energy; (P) Contrast; (Q) SumOfSqs—sum of
squares; (R) InvDefMom—inverse different moment/homogeneity; (S) SumAverg—summation
mean; (T) SumVarnc—summation variance; (U) SumEntrp—summation entropy; (V) Entropy;
(W) DifVarnc—differential variance; (X) DifEntrp—differential entropy. Data are presented us-
ing minimum and maximum values, lower and upper quartiles, and median. The mean value is
marked by a cross.
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Figure 6. Analysis of texture features for the green component compared between light (L), moderate
(M), and heavy (H) groups in the first region of interest (ROI 1). Differences between groups
were indicated with individual p-values when p < 0.05. Different superscripts on each plot were
statistically different. (A) Mean; (B) Variance; (C) Skewness—skewness coefficient; (D) Kurtosis;
(E–G) Perc01, Perc10, Perc50—percentiles; (H,I) Maxm01, Maxm10—maximum of moments; (J) GLN—
gray level non-uniformity; (K) SRE—short-run emphasis; (L) Fraction—a fraction of image in runs;
(M) MRLN—run-length nonuniformity moment; (N) MGLN—gray level non-uniformity moment;
(O) AngScMom—angular second moment/energy; (P) Contrast; (Q) Correlate; (R) SumOfSqs—sum
of squares; (S) InvDefMom—inverse different moment/homogeneity; (T) SumAverg—summation
mean; (U) SumVarnc—summation variance; (V) SumEntrp—summation entropy; (W) Entropy;
(X) DifVarnc—differential variance; (Y) DifEntrp—differential entropy. Data are presented using
minimum and maximum values, lower and upper quartiles, and median. The mean value is marked
by a cross.

One can observe that among texture features, most of the rider:horse bodyweight ratio-
dependent differences are seen in ROI 1. Considering the red component in ROI 1, groups
L and H differed in Mean, Variance, Perc01, Maxm10, GLN, SRE, Fraction, MRLN, MGLN,
Contrast, SumOfSqs, InvDifMom, SumAverg, SumVarnc, DifVarnc, and DifEntp whereas,
both groups L and M differed from group H in Skewness, Kurtosis, Perc10, Perc50, Maxm01,
and AngScMo. Moreover, the values of two GLCM features, SumEntrp and Entropy, were
different in groups L, M, and H (Figure 5). Considering the green component in ROI 1,
groups L and H differed in SRE and MRLN whereas, both groups L and M differed from
group H in Mean, Skewness, Perc10, Perc50, and SumAverg (Figure 6). Considering the
blue component in ROI 1, groups L and H differed in Mean, Skewness, SRE, and SumAverg
whereas, both groups L and M differed from group H for Perc50, Maxm01, Maxm10, and
AngScMo (Figure 7).
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Figure 7. Analysis of texture features for the blue component compared between light (L), moderate
(M), and heavy (H) groups in the first regions of interest (ROI 1). Differences between groups
were indicated with individual p-values when p < 0.05. Different superscripts on each plot were
statistically different. (A) Mean; (B) Skewness—skewness coefficient; (C) Kurtosis; (D–F) Perc50,
Perc90, Perc99—percentiles; (G,H) Maxm01, Maxm10—maximum of moments; (I) RLN—run-length
nonuniformity; (J) LRE—long-run emphasis; (K) SRE—short-run emphasis; (L) AngScMom—angular
second moment/energy; (M) SumAverg—summation mean; (N) SumEntrp—summation entropy;
(O) Entropy. Data are presented using minimum and maximum values, lower and upper quartiles,
and median. The mean value is marked by a cross.

Figure 8. Analysis of texture features for the red, green, and blue components compared between
light (L), moderate (M), and heavy (H) groups in the second region of interest (ROI 2). Differences
between groups were indicated with individual p-values when p < 0.05. Different superscripts on each
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plot were statistically different. For the red component: (A) RLN—run-length nonuniformity. For
the green component: (B) Mean; (C) Variance; (D) Skewness—skewness coefficient; (E) Kurto-
sis; (F,G) Perc10, Perc50—percentiles; (H) Maxm10—maximum of moments; (I) MGLN—gray
level non-uniformity moment; (J) Contrast; (K) Correlat—correlation; (L) SumOfSqs—sum of
squares; (M) SumAverg—summation mean; (N) SumVarnc—summation variance; (O) DifVarnc—
differential variance; (P) DifEntrp—differential entropy. For the blue component: (Q) Mean; (R) Vari-
ance; (S,T) Perc50, Perc90—percentiles; (U) Maxm01—maximum of moments; (V) RLN—run-
length nonuniformity; (W) AngScMom—angular second moment/energy; (X) Correlat—correlation;
(Y) SumOfSqs—sum of squares; (Z) SumAverg—summation mean; (A’) SumVarnc—summation
variance; (B’) SumEntrp—summation entropy; (C’) Entropy. Data are presented using minimum and
maximum values, lower and upper quartiles, and median. The mean value is marked by a cross.

Figure 9. Analysis of texture features for the red component compared between light (L), mod-
erate (M), and heavy (H) groups in the third region of interest (ROI 3). Differences between
groups were indicated with individual p-values when p < 0.05. Different superscripts on each
plot were statistically different. (A) Mean; (B) Variance; (C) Skewness—skewness coefficient;
(D) Kurtosis; (E–G) Perc01, Perc10, Perc50—percentiles; (H,J) Maxm01, Maxm10—maximum of
moments; (I) Domn01—dominant; (K) GLN—gray level non-uniformity; (L) LRE—long-run em-
phasis; (M) SRE—short-run emphasis; (N) Fraction—a fraction of image in runs; (O) MRLN—run-
length nonuniformity moment; (P) MGLN—gray level non-uniformity moment; (Q) AngScMom—
angular second moment/energy; (R) Contrast; (S) Correlat—correlation; (T) SumOfSqs—sum of
squares; (U) InvDefMom—inverse different moment/homogeneity; (V) SumAverg—summation
mean; (W) SumVarnc—summation variance; (X) SumEntrp—summation entropy; (Y) Entropy;
(Z) DifVarnc—differential variance; (A’) DifEntrp—differential entropy. Data are presented using
minimum and maximum values, lower and upper quartiles, and median. The mean value is marked
by a cross.
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Figure 10. Analysis of texture features for the green component compared between light (L), moder-
ate (M), and heavy (H) groups in the third region of interest (ROI 3). Differences between groups were
indicated with individual p-values when p < 0.05. Different superscripts on each plot were statistically
different. (A) Mean; (B) Variance; (C) Skewness—skewness coefficient; (D) Kurtosis; (E–H) Perc01,
Perc10, Perc50, Perc90—percentiles; (I,K) Maxm01, Maxm10—maximum of moments; (J) Domn01—
dominant; (L) GLN—gray level non-uniformity; (M) SRE—short-run emphasis; (N) Fraction—
a fraction of image in runs; (O) MRLN—run-length nonuniformity moment; (P) MGLN—gray
level non-uniformity moment; (Q) Contrast; (R) Correlat—correlation; (S) SumOfSqs—sum of
squares; (T) InvDefMom—inverse different moment/homogeneity; (U) SumAverg—summation
mean; (V) SumVarnc—summation variance; (W) SumEntrp—summation entropy; (X) Entropy;
(Y) DifVarnc—differential variance; (Z) DifEntrp—differential entropy. Data are presented using
minimum and maximum values, lower and upper quartiles, and median. The mean value is marked
by a cross.

Contrary to ROI 1, the fewest rider:horse bodyweight ratio-dependent texture features
were observed in ROI 2, therefore comparisons of the red, green, and blue components
were displayed on one plot. In ROI 2, only two features, Maxm01, and AngScMo were
different in groups L and H (Figure 8).

With respect to ROIs 3 and 4, a much lower degree of symmetry was observed between
the left and right area of back muscles. Only Mean, SRE, Fraction, MRLN, AngScMom,
InvDfMom, SumEntrp, Entropy, DifVarnc and DifEntrp of the red component as well
as SumAverg of the blue component differed between groups L and H, for ROIs 3 and
4 (Figures 9–14). Furthermore, considering the red component in ROI 3, groups L and
H differed in Perc50, Maxm01, Maxm10, GLN, LRE, Contrast, and SumAverg (Figure 9).
Considering the green component in ROI 3, groups L and H differed in Mean, Variance,
and Perc50 (Figure 10). Finally, considering the blue component in ROI 3, groups L and
H differed in Maxm01 and Maxm10 (Figure 11). For all other examined features, no
rider:horse bodyweight ratio-dependent differences were found.
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Figure 11. Analysis of texture features for the blue component compared between light (L), moderate
(M), and heavy (H) groups in the third region of interest (ROI 3). Differences between groups were
indicated with individual p-values when p < 0.05. Different superscripts on each plot were statistically
different. (A) Variance; (B) Skewness—skewness coefficient; (C) Perc99—percentile; (D,F) Maxm01,
Maxm10—maximum of moments; (E) Domn01—dominant; (G) GLN—gray level non-uniformity;
(H) SRE—short-run emphasis; (I) Fraction—a fraction of image in runs; (J) MRLN—run-length
nonuniformity moment; (K) MGLN—gray level non-uniformity moment; (L) AngScMom—angular
second moment/energy; (M) Contrast; (N) SumOfSqs—sum of squares; (O) InvDefMom—inverse
different moment/homogeneity; (P) SumVarnc—summation variance; (Q) DifVarnc—differential
variance; (R) DifEntrp—differential entropy. Data are presented using minimum and maximum
values, lower and upper quartiles, and median. The mean value is marked by a cross.

Figure 12. Analysis of texture features for the red component compared between light (L), moderate
(M), and heavy (H) groups in the fourth region of interest (ROI 4). Differences between groups were
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indicated with individual p-values when p < 0.05. Different superscripts on each plot were statistically
different. (A) Mean; (B) Variance; (C) Skewness—skewness coefficient; (D) Kurtosis; (E–H) Perc01,
Perc10, Perc50, Perc90—percentiles; (I,K) Maxm01, Maxm10—maximum of moments; (J) Domn01—
dominant; (L) GLN—gray level non-uniformity; (M) LRE—long-run emphasis; (N) SRE—short-run
emphasis; (O) Fraction—a fraction of image in runs; (P) MRLN—run-length nonuniformity moment;
(Q) MGLN—gray level non-uniformity moment; (R) AngScMom—angular second moment/energy;
(S) Contrast; (T) Correlat—correlation; (U) SumOfSqs—sum of squares; (V) InvDefMom—inverse
different moment/homogeneity; (W) SumAverg—summation mean; (X) SumVarnc—summation
variance; (Y) SumEntrp—summation entropy; (Z) Entropy; (A’) DifVarnc—differential variance;
(B’) DifEntrp—differential entropy. Data are presented using minimum and maximum values, lower
and upper quartiles, and median. The mean value is marked by a cross.

Figure 13. Analysis of texture features for the green component compared between light (L), moderate
(M), and heavy (H) groups in the fourth region of interest (ROI 4). Differences between groups were
indicated with individual p-values when p < 0.05. Different superscripts on each plot were statistically
different. (A) Mean; (B) Variance; (C) Skewness—skewness coefficient; (D) Kurtosis; (E–H) Perc01,
Perc10, Perc50, Perc90—percentiles; (I,K) Maxm01, Maxm10—maximum of moments; (J) Domn01—
dominant; (L) GLN—gray level non-uniformity; (M) SRE—short-run emphasis; (N) Fraction—
a fraction of image in runs; (O) MRLN—run-length nonuniformity moment; (P) MGLN—gray
level non-uniformity moment; (Q) Contrast; (R) Correlat—correlation; (S) SumOfSqs—sum of
squares; (T) InvDefMom—inverse different moment/homogeneity; (U) SumAverg—summation
mean; (V) SumVarnc—summation variance; (W) SumEntrp—summation entropy; (X) Entropy;
(Y) DifVarnc—differential variance; (Z) DifEntrp—differential entropy. Data are presented using
minimum and maximum values, lower and upper quartiles, and median. The mean value is marked
by a cross.
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Figure 14. Analysis of texture features for the blue component compared between light (L), mod-
erate (M), and heavy (H) groups in the fourth region of interest (ROI 4). Differences between
groups were indicated with individual p-values when p < 0.05. Different superscripts on each
plot were statistically different. (A) Variance; (B) Skewness—skewness coefficient; (C–E) Perc50,
Perc90, Perc99—percentiles; (F,H) Maxm01, Maxm10—maximum of moments; (G) Domn01—
dominant; (I) GLN—gray level non-uniformity; (J) SRE—short-run emphasis; (K) Fraction—a
fraction of image in runs; (L) MRLN—run-length nonuniformity moment; (M) MGLN—gray
level non-uniformity moment; (N) AngScMom—angular second moment/energy; (O) Contrast;
(P) Correlat—correlation; (Q) SumOfSqs—sum of squares; (R) InvDefMom—inverse different
moment/homogeneity; (S) SumVarnc—summation variance; (T) DifVarnc—differential variance;
(U) DifEntrp—differential entropy. Data are presented using minimum and maximum values, lower
and upper quartiles, and median. The mean value is marked by a cross.

4. Discussion

The evaluation of the texture of IRT images makes it possible to identify the rider:horse
bodyweight ratio-related alterations to a horse’s organism’s physiology during standard-
ized exercise test conditions. The assessment of the correct weight of riders for their horse is
a multifactorial issue with many inter-related aspects [8]. Therefore, it is not surprising that
conventional thermal image features did not elucidate the effect of rider:horse bodyweight
ratio, which was in an acceptable range of 10–20% and the horse’s thoracolumbar region
was not overloaded >20% [26,30]. Our results do not contradict the literature that states
that overload (rider:horse bodyweight ratio 21.3%) may be reflected by an increase in heart
rate and superficial body temperature of the horse’s neck and trunk [24], as we did not
include this higher rider:horse bodyweight ratio group. Our results support the recent
findings that the effect of rider:horse bodyweight ratio (10–20%) cannot be distinguished
with conventional thermal features [25].

Wilk et al. [24] observed that the average superficial body temperature on some, but
not all, body parts of exercised horses increased more when horses were worked under
a load of >20% than under a load of 10% of their bodyweight. This early research on
the application of IRT indicated that the neck and trunk regions are the most suitable
for determination of the thermal effects of rider:horse bodyweight ratio. Therefore, our
preliminary [25] and current studies were focused on the thoracolumbar region. Moreover,
being aware of the limitations of IRT, including the influence of ambient temperature [54],
the warming effect of sunlight exposure [21], and the cooling effect of air flow during
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movement [55], the under-saddle region seems to be the least susceptible to the influence of
external factors and best reflects the thermal dynamics in the location of direct interaction
between the rider and the horse. The current research was designed to extend the recent
application of IRT imaging-based identification of the rider:horse bodyweight ratio-related
alterations, by including several riders in the same weight category [24], evaluating a larger
region of the trunk [25], and significantly broadening the DIP protocol by using three color
components [56,57], and three texture analysis approaches [50–53].

In our previous research, GLN, RLN, LRE, SRE, Fraction, MRLN, Contras, Cor-
relate, InvDefMom, Entropy, DifVarnc, and DifEntrp differed with exercise and with
rider:horse bodyweight ratio in the 10.1% and 15.3% bodyweight ratio groups [25]. In the
current study, when three bodyweight ratio groups were investigated, 11.2% (10.6–11.8%),
14.2% (13.5–14.9%), and 16.9% (16.3–17.7%), the same GLRLM and GLCM features differed
between pre-exercise and post-exercise images. However, after decomposing the thermal
image into color components and examining more ROIs, GLN, LRE, SRE, Fraction, MRLN,
and MGLN have been shown to better reflect the texture of muscle-rich areas (ROI 1, 3,
and 4), whereas RLN better reflects the texture of muscle-poor areas (ROI 2). Moreover, in
the muscle-poor area the participation of the features for the red component in the general
pattern was poor, whereas in the muscle-rich areas, the participation of the features for the
red component was predominant. In thermal images, high temperature is red annotated
and low temperature is blue annotated [21]. Therefore, red component domination in ROIs
1, 3, and 4, and lack thereof in ROI 2 is supported by the recent findings describing effort-
dependent [58] and muscle-size dependent [23,59] increases in heat emission from the body
surface in horses. It is worth noting that in the red component, SRE, Fraction, and MRLN
from the GLRLM approach and InvDefMom, SumEntrp, Entropy, DifVarnc, and DifEntrp
differed depending on the rider:horse bodyweight ratio in all three muscle-rich areas. More-
over, only the SumEntrp and Entropy for the red component in ROI 1, differed between all
three bodyweight ratio groups, 11.2%, 14.2%, and 16.9%. These entropy-related features
have been suggested to reflect the increased degree of thermal energy dissipation [25,31,40],
indicating a high heterogeneity of texture [26,60].

Dyson et al. [30] demonstrated major and minor gait asymmetries when horses were
worked under a load of >20% and >15%<18% of their bodyweight, respectively, and
suggested that there were biomechanical effects on gait asymmetry caused by a change in
load on the horse’s back. As some signs of the asymmetry in texture of thermal images
were reported here, one might expect that texture analysis may be helpful in the assessment
of the correct rider weight for their horse. Conventional IRT features did not differ between
loads. However, further research is required with simultaneous IMUs gait assessment [30]
and advanced DIP of thermal images obtained from the thoracolumbar [25], segmented
trunk, and neck [24] regions of the horse. Our results support the recent findings [25]
and suggest that the red component of IRT images may be useful in subsequent, more
application-based research on the utilization of advanced DIP of IRT as a tool to improve
the comfort of riding horses.

Dyson et al. [30] investigated inertial measurement units (IMUs), a force back-load-
mat, subjective gait assessment, and 24 behavioral markers that are difficult to use in daily
practice. Wilk et al. [24] introduced IRT for simple demonstration of differing load influence
on the horse’s body. Regardless of the measurement method used, however, it is agreed
that knowingly assessing the rider:horse bodyweight ratio will improve horse welfare as in
many riding schools and equestrian disciplines both in UK [30] and Poland [61], a horse
and pony are ridden by riders of varying BMI. Such assessment, following Dyson et al. [30],
should be useful in the everyday equine practice, where a horse performs the under-
rider overground exercise with turns and circles. As the practical application of modern
technologies is developing dynamically both in the field of equine thermal imaging [62–64]
and DIP of medical images [31,33,36–40], each new approach can ultimately reach every
horse owner.
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We believe the assessment of IRT image texture heterogeneity in the red component
may be easily and accurately transferred into typical daily riding practice since the smart-
phone thermal camera software and medical application are developing rapidly [62,65–67].
In this way, the currently described science advancement in non-invasive IRT imaging and
advanced DIP will be leveraged to improve the practical assessment of the appropriate
matching of rider:horse sizes. The direct information, if the horse’s thoracolumbar region
is not overloaded and a particular rider is not too heavy for that horse, is necessary to
assess the impact of riding and identify factors that require changes. We support the belief
that all horse owners and carers should be able to assess the horses:human interaction and
thus improve the quality of life of horses under their care [9]. Therefore, we presented
here the first step of successive development of technology, which in the long run may
improve welfare outcomes for the horses used in equestrian activities. It is worth noting
that current advancement allows detecting much more subtle changes of physiological
measures of a horse’s thoracolumbar region in response to the horses:human interaction
during riding work than has been recently available [21,24,25]. However, it should be kept
in mind that physiological measures without taking into account the behavioral evidence
of a horse’s emotion have limited use when assessing horse welfare [9,10]. Therefore, the
main limitation of this study is disregarding the evaluation of horse’s emotions and horse’s
experiences and therefore should be considered as preliminary. In further research, the rider
position in the saddle, as a function of rider size and skill [30], the effect of inappropriate
saddle fit [42,64,68], the impact of different environmental conditions [21,54,55], and most
importantly an evaluation of the equine behavior indicative of underlying mood state
and general well-being of horses [9,15,16] should be considered to explain the role of this
horses:human interaction assessment in the overall improvement of the equine quality
of life.

5. Conclusions

Based on the presented results, one may conclude that consistent measurable differ-
ences exist in texture features between thermal images taken from the thoracolumbar region
of horses worked under riders with a different rider:horse bodyweight ratio. The differ-
ences were observed primarily in the red component of IRT images and especially in texture
heterogeneity measures, such as InvDefMom, SumEntrp, Entropy, DifVarnc, and DifEntrp.
The extension of the conventional DIP of IRT images by advanced approaches proposed
here, makes it possible to identify the rider bodyweight-related alterations to a horse’s
thoracolumbar region loaded in the range of 10–12%, >12 ≤15%, >15 <18% rider:horse
bodyweight ratios.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/ani12020195/s1, Table S1: The withers area (ROI 1). Values (mean ± SD) of conventional
thermal features in light (L), moderate (M), and heavy (H) groups. The pre-exercise (pre-ex) and
post-exercise (post-ex) data series were compared; Table S2: The thoracic spine area (ROI 2). Values
(mean ± SD) of conventional thermal features in light (L), moderate (M), and heavy (H) groups.
The pre-exercise (pre-ex) and post-exercise (post-ex) data series were compared; Table S3: The left
area of back musculature (ROI 3). Values (mean ± SD) of conventional thermal features in light
(L), moderate (M), and heavy (H) groups. The pre-exercise (pre-ex) and post-exercise (post-ex) data
series were compared; Table S4: The right area of back musculature (ROI 4). Values (mean ± SD) of
conventional thermal features in light (L), moderate (M), and heavy (H) groups. The pre-exercise
(pre-ex) and post-exercise (post-ex) data series were compared; Table S5: The withers area (ROI 1).
Values (mean ± SD) of histogram statistics (HS) features for three color components (R, red; G, green;
B, blue) in light (L), moderate (M), and heavy (H) groups. The pre-exercise (pre-ex) and post-exercise
(post-ex) data series were compared; Table S6: The thoracic spine area (ROI 2). Values (mean ± SD)
of histogram statistics (HS) features for three color components (R, red; G, green; B, blue) in light
(L), moderate (M), and heavy (H) groups. The pre-exercise (pre-ex) and post-exercise (post-ex) data
series were compared; Table S7: The left area of back musculature (ROI 3). Values (mean ± SD)
of histogram statistics (HS) features for three color components (R, red; G, green; B, blue) in light
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(L), moderate (M), and heavy (H) groups. The pre-exercise (pre-ex) and post-exercise (post-ex) data
series were compared; Table S8: The right area of back musculature (ROI 4). Values (mean ± SD) of
histogram statistics (HS) features for three color components (R, red; G, green; B, blue) in light (L),
moderate (M), and heavy (H) groups. The pre-exercise (pre-ex) and post-exercise (post-ex) data series
were compared; Table S9: The withers area (ROI 1). Values (mean ± SD) of gray-level run-length
matrix (GLRLM) features for three color components (R, red; G, green; B, blue) in light (L), moderate
(M), and heavy (H) groups. The pre-exercise (pre-ex) and post-exercise (post-ex) data series were
compared; Table S10: The thoracic spine area (ROI 2). Values (mean ± SD) of gray-level run-length
matrix (GLRLM) features for three color components (R, red; G, green; B, blue) in light (L), moderate
(M), and heavy (H) groups. The pre-exercise (pre-ex) and post-exercise (post-ex) data series were
compared; Table S11: The left area of back musculature (ROI 3). Values (mean ± SD) of gray-level
run-length matrix (GLRLM) features for three color components (R, red; G, green; B, blue) in light
(L), moderate (M), and heavy (H) groups. The pre-exercise (pre-ex) and post-exercise (post-ex) data
series were compared; Table S12: The right area of back musculature (ROI 4). Values (mean ± SD) of
gray-level run-length matrix (GLRLM) features for three color components (R, red; G, green; B, blue)
in light (L), moderate (M), and heavy (H) groups. The pre-exercise (pre-ex) and post-exercise (post-ex)
data series were compared; Table S13: The withers area (ROI 1). Values (mean ± SD) of gray level
co-occurrence matrix (GLCM) features for three color components (R, red; G, green; B, blue) in light
(L), moderate (M), and heavy (H) groups. The pre-exercise (pre-ex) and post-exercise (post-ex) data
series were compared; Table S14: The thoracic spine area (ROI 2). Values (mean ± SD) of gray level
co-occurrence matrix (GLCM) features for three color components (R, red; G, green; B, blue) in light
(L), moderate (M), and heavy (H) groups. The pre-exercise (pre-ex) and post-exercise (post-ex) data
series were compared; Table S15: The left area of back musculature (ROI 3). Values (mean ± SD)
of gray level co-occurrence matrix (GLCM) features for three color components (R, red; G, green;
B, blue) in light (L), moderate (M), and heavy (H) groups. The pre-exercise (pre-ex) and post-exercise
(post-ex) data series were compared; Table S16. The right area of back musculature (ROI 4). Values
(mean ± SD) of gray level co-occurrence matrix (GLCM) features for three color components (R, red;
G, green; B, blue) in light (L), moderate (M), and heavy (H) groups. The pre-exercise (pre-ex) and
post-exercise (post-ex) data series were compared.
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