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Synaptic plasticity, or changes in synaptic strength, is thought to underlie learning and memory. Imaging studies, mainly in
brain slices, have revealed that long-term synaptic plasticity of excitatory synapses in hippocampal neurons is coupled with
structural plasticity of dendritic spines, which is thought to be essential for inducing and regulating functional plasticity. Using
pharmacological and genetic manipulation, the signalling network underlying structural plasticity has been extensively
studied. Furthermore, the recent advent of fluorescence resonance energy transfer (FRET) imaging techniques has provided a
readout of the dynamics of signal transduction in dendritic spines undergoing structural plasticity. These studies reveal the
signalling pathways relaying Ca2+ to the functional and structural plasticity of dendritic spines.
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2pFLIM, two-photon fluorescence lifetime imaging microscopy; ACSF, artificial cerebrospinal fluid; AMPA, 2-amino-3-
(5-methyl-3-oxo-1,2- oxazol-4-yl)propanoic acid; AMPAR, AMPA-type glutamate receptor; BDNF, brain-derived
neurotrophic factor; cLTP, chemical LTP; CaMKI, Ca2+/calmodulin-dependent kinase I; CaMKII, Ca2+/calmodulin-
dependent kinase II; CaMKK, Ca2+/calmodulin-dependent kinase kinase; CaMK, Ca2+/calmodulin-dependent kinase;
Cdc42, Cell division control protein 42 homolog; dn-Ras, dominant-negative Ras mutant; DG, dentate gyrus; E-LTP,
early LTP; FLIM, fluorescence lifetime imaging microscopy; EPSC, excitatory postsynaptic current; ERK, extracellular
signal-regulated kinase; FRET, fluorescence resonance energy transfer; GAP, GTPase activation protein; GEF, guanosine
nucleotide exchange factor; GRP, general receptor for phosphoinositides; GTP, guanosine triphosphate; L-LTP, late LTP;
LatA, latrunculin A; LTD, long-term depression; LTP, long-term potentiation; MNI, 4-methoxy-7-nitroindolinyl; NMDA,
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Introduction

Synaptic plasticity in the hippocampus is a prominent cellu-
lar model of learning and memory (Derkach et al., 2007).
Information flows unidirectionally through the hippocam-

pus, entering via the dentate gyrus (DG), before reaching CA3
and finally CA1 (this last synapse is called the Schaffer Col-
lateral). In slices, specific patterns of stimulation to the Schaf-
fer Collateral can induce long-lasting increases and decreases
in synaptic strength, termed long-term potentiation (LTP)
and depression (LTD) respectively.
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The cell signalling underlying LTP at Schaffer Collateral
synapses has been intensively studied, and a multitude of
signalling molecules have been identified (Kennedy et al.,
2005). Signalling for most forms of LTP starts with the flow of
Ca2+ ions into postsynaptic sites through N-methyl-D-
asparatic acid (NMDA)-type glutamate receptors (NMDAR)
(Bliss and Collingridge, 1993). At resting membrane poten-
tial, NMDARs are blocked by Mg2+ at the channel pore, but
the Mg2+ block can be released by postsynaptic depolariza-
tion. Thus, NMDARs act as a coincidence detector for presyn-
aptic glutamate release and postsynaptic depolarization (Bliss
and Collingridge, 1993). The Ca2+ elevation in spines acti-
vates numerous signalling proteins including protein kinase
C (PKC), Ca2+/calmodulin-dependent kinase II (CaMKII) and
small GTPase proteins such as Ras and Rho (Kennedy et al.,
2005). These molecules lead to cellular processes important
for LTP and LTD such as actin polymerization and depoly-
merization, membrane trafficking and exocytosis and
endocytosis of glutamate receptors (Kennedy and Ehlers,
2006; Hotulainen and Hoogenraad, 2010). The end result of
these processes is an increase in synaptic strength, which for
Schaffer Collateral LTP is achieved by the insertion of
2-amino-3-(5-methyl-3-oxo-1,2- oxazol-4-yl)propanoic acid
(AMPA)-type glutamate receptors (AMPAR) into the synapse
(Derkach et al., 2007). It has also been reported that retro-
grade signalling from the post-synapse to the pre-synapse can
occur, increasing the probability of presynaptic transmitter
release (Lisman and Raghavachari, 2006; Enoki et al., 2009).

In the hippocampus, most excitatory postsynaptic termi-
nals reside in dendritic spines, small (~0.1 fL) mushroom-
shaped structures emanating from dendrites. Many spines are
connected to the dendrite via a narrow neck that acts as a
diffusion barrier to compartmentalize signalling in spines
(Svoboda et al., 1996; Holbro et al., 2009; Bloodgood and
Sabatini, 2005). Spine volume is tightly coupled with func-
tion: larger spines have a wider postsynaptic density, more
functional AMPARs, and likely produce larger excitatory
postsynaptic potential (Harris et al., 1992; Matsuzaki et al.,
2001; Kasai et al., 2010). The structure of spines is dynamically
regulated in an activity-dependent manner (Kasai et al., 2010).
LTP and LTD are associated with long-term enlargement (Mat-
suzaki et al., 2004; Okamoto et al., 2004; Park et al., 2006) and
shrinkage (Zhou et al., 2004) of dendritic spines respectively.
Also, the spine neck resistance has been found to be regulated
in an activity-dependent manner (Bloodgood and Sabatini,
2005; Grunditz et al., 2008; Tanaka et al., 2008). In addition to
modification of existing spines, new spine formation is asso-
ciated with some forms of LTP (Engert and Bonhoeffer, 1999;
Maletic-Savatic et al., 1999; Toni et al., 1999). These diverse
forms of structural plasticity may be important for regulating
spine function and synaptic plasticity.

Recent advances in two-photon imaging and photochem-
istry now enable one to image spine structural plasticity and
the associated functional plasticity in brain slices (Matsuzaki
et al., 2001; 2004). Furthermore, signal transduction and
molecular dynamics during spine structural plasticity have
been imaged using two-photon fluorescence resonance energy
transfer (FRET) techniques (Yasuda, 2006; Yasuda et al., 2006;
Harvey et al., 2008; Lee et al., 2009). These new techniques
have provided many insights into the mechanisms and roles
of spine structural plasticity. Furthermore, by combining these

imaging techniques with pharmacology, the signalling
mechanisms underlying different steps of structural and func-
tional plasticity of dendritic spines have been revealed.

Studying structural and functional
plasticity of dendritic spines

To image structural plasticity of spines undergoing LTP or
LTD, one must identify stimulated spines. This is not simple,
because in a typical electrophysiology experiment, 10–100
synapses are activated among ~10 000 spines. One can load a
cell with Ca2+ indicator and find stimulated spines in response
to synaptic stimulation (Mainen et al., 1999; Zhou et al.,
2004; Enoki et al., 2009), but this is technically challenging.
Alternatively, assuming that LTP is associated with spine
enlargement, one could search for spines enlarged in
response to synaptic stimulation (Kopec et al., 2006; Harvey
and Svoboda, 2007; Yang et al., 2008).

Because imaging spines during electrophysiological LTP is
difficult, multiple techniques to chemically induce LTP in
many spines have been developed. In slices, chemical LTP
(cLTP) can be induced by bath application of forskolin, rolip-
ram and picrotoxin in zero Mg2+ (Otmakhov et al., 2004;
Kopec et al., 2006). In this cocktail, forskolin (an activator of
adenylyl cyclase) and rolipram (phosphodiestratase inhibi-
tor) increase cAMP in CA3 neurons (and other neurons),
causing burst activity in Schaffer Collateral synapses onto
CA1. Picrotoxin increases the overall circuit activity by block-
ing inhibitory synapses, and removing Mg2+ unblocks NMDA
receptors. This cLTP protocol produces spine enlargements as
well as increases in excitatory postsynaptic current (EPSC)
(Otmakhov et al., 2004; Kopec et al., 2006; 2007). Another
method for cLTP uses the potassium channel blocker tetra-
ethylammonium (TEA), which depolarizes cells, increases
circuit activity and produces NMDA receptor–independent
LTP and spine structural plasticity (Aniksztejn and Ben-Ari,
1991; Hosokawa et al., 1995; Gu et al., 2010). In dissociated
neurons, bath application of glycine (which enhances NMDA
receptor response) and bicuculline (a GABAA receptor inhibi-
tor) produces spine enlargements and increase in miniature
EPSC (Lu et al., 2001; Park et al., 2006). Because cLTP proto-
cols strongly stimulate most synapses, they probably trigger
other cell mechanisms like homeostasis or cell death.

In contrast to cLTP, two-photon uncaging of caged
glutamate allows one to stimulate a single targeted dendritic
spine, thus eliminating the need to search for stimulated
spines (Matsuzaki et al., 2001). Caged glutamate does not
bind to glutamate receptors, but photostimulation removes
the caging group, releasing glutamate and activating
glutamate receptors. To stimulate a selected spine, one aims a
two-photon laser (720 nm for MNI-L-caged glutamate) near
the spine head and delivers a series of short pulses (ms),
uncaging glutamate near the spine, and activating glutamate
receptors in the spine. With this method, one can directly
measure synaptic strength by measuring the uncaging-
evoked EPSC (uEPSC) due to AMPAR activation. Typically, the
laser intensity is adjusted so that uEPSCs under the basal
condition are ~10 pA, an amplitude similar to mini-EPSCs
(Matsuzaki et al., 2001; 2004; Steiner et al., 2008; Tanaka
et al., 2008; Lee et al., 2009). Because stimulating with
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uncaging alone does not depolarize spines enough to release
the Mg2+ block of NMDAR, inducing LTP requires either
pairing with postsynaptic depolarization or the removal of
Mg2+ from extracellular solution to remove the Mg2+ block
(Matsuzaki et al., 2004; Steiner et al., 2008; Tanaka et al.,
2008; Lee et al., 2009). It should be noted that synaptic plas-
ticity induced by two-photon glutamate uncaging may be
different from that induced by presynaptic fibre stimulation,
as Ca2+ increase in presynaptic sites maybe important for
some forms of plasticity and may omit other neurotransmit-
ters. Protocols for LTD induction using two-photon
glutamate uncaging have not been found yet.

Pharmacology of spine structural
plasticity and LTP

Long-lasting synaptic plasticity and associated spine structural
plasticity share pharmacological properties, which we will
compare for individual signalling molecules. For example,
both LTP and associated spine enlargement are sensitive to
inhibitors of CaMKII and Ras–extracellular signal-regulated
kinase (ERK) signalling (Matsuzaki et al., 2004; Harvey
and Svoboda, 2007; Lee et al., 2009; Patterson et al., 2010)
(Figure 1).Actin polymerization (Matsuzaki et al., 2004;
Okamoto et al., 2004) and exocytosis of endosomes (Park et al.,
2004; 2006; Yang et al., 2008) are involved in both processes.
Similarly, LTD and associated spine shrinkage are inhibited by
activation of calcineurin (Zhou et al., 2004). However, the
pathways for LTD and spine shrinkage seem to branch from
there (Zhou et al., 2004), as protein phosphatase 1/2A blockers
calyculin A and okadaic acid inhibit LTD but not spine

shrinkage. Conversely, phosphorylation of cofilin is involved
only in spine shrinkage, but not in LTD (Zhou et al., 2004).

During LTP induced by 100 Hz tetanic electrical stimula-
tion, or low-frequency two-photon glutamate uncaging in
zero Mg2+, spines undergo enlargement in two distinct
phases: first a transient phase which lasts 1–3 min and then a
sustained plateau phase lasting more than one hour (Mat-
suzaki et al., 2004) (Figure 2). The amplitude of the sustained
volume increase measured at 20–60 min is +50–100% (Harvey
and Svoboda, 2007; Matsuzaki et al., 2004; Lee et al., 2009),
while that of the transient phase (as defined by the peak
volume change minus the sustained volume change) is +100–
300% (Harvey and Svoboda, 2007; Matsuzaki et al., 2004; Lee
et al., 2009) (Figure 2). The transient and sustained phases
have different pharmacological properties.

Other stimulus protocols, like pairing uncaging with
depolarization (either step or spikes) or electrical theta-burst
stimulation, lead to a rapid increase in spine size with negli-
gible decay (Harvey and Svoboda, 2007; Steiner et al., 2008;
Tanaka et al., 2008; Yang et al., 2008; Lee et al., 2009). While
these responses do not appear to have distinguishable tran-
sient and sustained phases, pharmacological manipulation
reveals that these phases are nonetheless distinct (Tanaka
et al., 2008; Yang et al., 2008). In the following sections, we
review pharmacological analyses of spine structural plasticity
associated with LTP under various conditions (Figure 1).

CaMKII
CaMKII is one of the most studied proteins involved in LTP
and memory (Lisman et al., 2002). CaMKII subunits combine
into a dodecamer wherein each subunit acts as a serine–
threonine kinase (Rosenberg et al., 2005). When Ca2+ enters
spines through NMDARs, Ca2+ binds to calmodulin, which in

Figure 1
Hypothetical signalling pathways. The inputs are NMDAR activation and depolarization, while the outputs are transient and sustained spine
growth and LTP. The signalling pathways in between have been studied for both LTP and for structural plasticity.
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turn binds to CaMKII (Lisman et al., 2002). Active CaMKII
subunits autophosphorylate the T286 site of adjacent sub-
units, thus allowing the enzyme to remain active even after
Ca2+/CaM dissociation. The importance of T286 phosphory-
lation in LTP, learning and memory has been demonstrated
by mutating this autophosphorylation site to alanine
(T286A) in mice; these animals have impaired LTP and
perform poorly in a Morris Water maze (Giese et al., 1998).
CaMKII’s kinase activity is also important, as mice with a
kinase-dead mutation in CaMKIIa (K42R) have impaired LTP
and memory (Yamagata et al., 2009). Furthermore, various
pharmacological inhibitors for CaMKII have been developed
with different mechanisms, and they all consistently inhibit
the induction of LTP (Malinow et al., 1989; Ito et al., 1991;
Hvalby et al., 1994; Otmakhov et al., 1997; Buard et al., 2010).
When constitutively active CaMKII is injected or expressed in
neurons, synaptic strength is potentiated, showing CaMKII
activation is sufficient to induce LTP (Lledo et al., 1995;
Hayashi et al., 2000).

The role of CaMKII in spine structural plasticity has also
been extensively studied. KN62 and KN93, small molecule
inhibitors of Ca2+-calmodulin kinases (CaMKs: they inhibit
CaMKI, II, IV and CaMK kinase; Wayman et al., 2008) inhibit
the sustained phase of structural plasticity induced by
2-photon glutamate uncaging, but not the transient phase
(Matsuzaki et al., 2004; Harvey et al., 2008; Steiner et al.,
2008; Lee et al., 2009). Some studies show almost complete
inhibition of the sustained phase (Matsuzaki et al., 2004;
Steiner et al., 2008), while others show only partial inhibition
(~50%) (Harvey et al., 2008; Lee et al., 2009) (Table 1). Over-
expression of mutant CaMKIIa (T286A) or autocamtide 2

CaMKII inhibitory peptide (AIP2) inhibits the sustained
phase of structural plasticity (Lee et al., 2009; Murakoshi
et al., 2011). Also, mice with the kinase-dead mutation in
CaMKIIa (K42R) exhibited deficits in sustained spine enlarge-
ment as well as in LTP (Yamagata et al., 2009).

Ras/ERK
One of the many downstream pathways from CaMKII is the
Ras–Raf–mitogen-activated protein kinase/ERK kinase (MEK)–
ERK (Ras-Raf-MEK-ERK) signalling pathway (Figure 1). The Ras
family of small GTPases is best known for its role in cancer
(Schubbert et al., 2007). Small GTPases are activated by gua-
nosine nucleotide exchange factors (GEFs) and inactivated by
GTPase activation proteins (GAPs). Many GEFs and GAPs
reside in or near the synapse and are activated during synaptic
plasticity. For example, the GEF RasGRF1 is neuron specific
and associates directly with the GluN2B subunit of NMDAR
(Farnsworth et al., 1995; Krapivinsky et al., 2003). For GAPs,
SynGAP associates with PSD-95, resides in the postsynaptic
density (PSD) and is phosphorylated by CaMKII, which
decreases its activity (Chen et al., 1998; Kim et al., 1998). Ras
has multiple downstream effectors, including Raf–MEK–ERK
(Thomas and Huganir, 2004) and phophotydilinositol-3
kinase (PI3K) (Qin et al., 2005). ERK signalling has been shown
to be required for LTP in Schaffer Collateral synapses and some
forms of memory by pharmacological inhibition of MEK
(English and Sweatt, 1997; Atkins et al., 1998; Selcher et al.,
1999; Selcher et al., 2003). Later, Ras was implicated in LTP:
constitutively active and dominant negative Ras increased and
decreased synaptic EPSCs respectively (Zhu et al., 2002). These
results similarly occluded and precluded LTP.
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Figure 2
Pharmacological analysis of spine enlargement induced by 2-photon glutamate uncaging in zero Mg2+. A. Characteristic images of spine growth
following 2-photon glutamate uncaging. Uncaging pulses were applied at 0.5 Hz for 1 min (30 pulses). B. Time course of spine structural plasticity.
Incubation with either KN62 (10 mM) or U0126 (20 mM) partially blocked the sustained phase of structural plasticity. Incubation with the both
KN62 and U0126 completely blocked sustained structural plasticity. C. Pharmacology of transient and sustained phases of structural plasticity. For
signalling molecules each inhibitor affects, please refer to Table 1.Panels B and C are modified from Harvey et al. 2008.
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Table 1
The pharmacology and genetics of structural plasticity

Target Drug (concentration) or gene manipulation Transient phase block Sustained phase block

Two-photon glutamate uncaging in 0 Mg2+

NMDAR AP5 (50 mM)1 + +

CPP (10 mM)2 + +

mGluR MCPG (0.5–1 mM)1,2 – –

GluN2B Ifenprodil (3 mM)2 – –

Calmodulin W7 (20 mM)1 + +

Calmidazolium(30 mM)2 Partial +

CaMKs KN62 (4 mM)1 – +

KN62 (10 mM)2,3 – Partial

KN93 (10 mM)4 – +

CaMKII CaMKII(T286A)3 – Partial

AIP25 – +

MEK U0126 (20 mM)2 – Partial

Ras DN-Ras (S17N)2 – Partial

PKC Gö6976 (1 mM)2 Partial Partial

Rho C3 transferase5 + +

shRNA5 Partial –

Rock Glycyl-H1152 (2 mM)5 + Partial

Cdc42 Wasp (210–321)5 – Partial

shRNA5 – +

Pak IAP3 (100 mM)5 – +

Actin LatrunculinA (20nM)1 – Partial

LatrunculinA (100-200nM)1,2 + +

Protein synthesis Anisomycin (5–25 mM)6, 7 – –

Cyclohexiamide (300 mM)6, 7 – –

2-photon Glutamate uncaging paired with postsynaptic spiking

TrkB K252a (200nM) 6 – +

Anti-TrkB6 – +

TrkB-Fc6 – +

Protein synthesis Anisomycin (5–25 mM)6 – +

Cyclohexiamide (300 mM)6 – +

Electric stimulation (Theta burst or 100 Hz Tetanus)

Exocytosis Botox8 – +

PKA PKI9 – +

Protein synthesis Anisomycin (20 mM)8 – +

Cyclohexiamide (60 mM)8 – +

CaMKII CaMKII (K42R knock-in)9 – +

Chemical LTP

CaMKI STO-609 (10 mM)10 NA +

DN-CaMKI10 NA +

Pak DN-PAK10 NA +

Cofilin Cofilin S3A11 NA +

Exocytosis DN-Rab11 (S25N)12 NA +

DN-Rme1 (G429R)12 NA +

AMPAR insertion GluA1 C-tail13 NA –

Drugs are listed with concentration in parentheses; mutants are listed in italics. +denotes blockade of structural plasticity by the manipulation; – denotes no block.
Stimulus protocols are as follows: Mg2+ free uncaging means glutamate uncaging on spines in ACSF lacking Mg2+, but including TTX. Theta burst stands for theta
burst protocol stimulation of Schaffer Collaterals (see (Yang et al., 2008) for details). Spike pairing means pairing glutamate uncaging with spikes delivered via
whole-cell patch clamp. Transient block refers to structural plasticity immediately following stimulation, while sustained block refers to structural plasticity
>20 min. after stimulation. Plus sign (+) indicates full inhibition (>~80%), minus sign (–) indicates no inhibition (<~20%) and ‘Partial’ indicates partial inhibition.
Many experiments have been done using NMDAR antagonists; only two were listed here. NA: not applicable.
1(Matsuzaki et al., 2004), 2(Harvey et al., 2008), 3(Lee et al., 2009), 4(Steiner et al., 2008), 5(Murakoshi et al., 2011), 6(Tanaka et al., 2008), 7(Govindarajan et al.,
2011), 8(Yang et al., 2008), 9(Yamagata et al., 2009), 10(Rex et al., 2009), 11(Gu et al., 2010), 12(Park et al., 2004; Park et al., 2006), 13(Kopec et al., 2007).

BJP M Patterson and R Yasuda

1630 British Journal of Pharmacology (2011) 163 1626–1638



For structural plasticity, uncaging on spines in the pres-
ence of the MEK inhibitor U0126 blocked sustained structural
plasticity without effecting the transient phase, in a similar
manner to KN62’s block of late, but not early, structural
plasticity (Figure 2) (Harvey et al., 2008; Patterson et al.,
2010). Overexpression of dn-Ras (Ras 17N) also blocked sus-
tained but not transient structural plasticity. These results
suggest that the Ras–ERK pathway is important for spine
structural plasticity as well as LTP. Finally, inhibitors of
CaMKs (KN62) and ERK (U0126) show additive effects
(Harvey et al., 2008): when either one of them is used, the
sustained phase of structural plasticity is inhibited only par-
tially (~50%), while when added together, it completely
inhibits structural plasticity (Figure 2C), suggesting that
CaMK and ERK are in parallel pathways.

Rho GTPases
Rho GTPases, including Rac1, Cdc42 and RhoA, regulate
actin organization (Hotulainen and Hoogenraad, 2010) and
play important roles in regulating spine morphology (Luo,
2000; Tashiro and Yuste, 2004; Saneyoshi et al., 2010) and
function (Wang et al., 2005; Asrar et al., 2009; Rex et al., 2009;
Gu et al., 2010; McNair et al., 2010). Recently, the involve-
ment of Rho GTPase proteins Rho and Cdc42 in glutamate
uncaging-induced spine enlargement has been studied
(Murakoshi et al., 2011). When Cdc42 signalling is inhibited
by expressing shRNA against Cdc42 or the Cdc42 binding
domain of Wasp [Wasp(210–321)], sustained spine growth is
inhibited, while the transient phase remains intact. Further-
more, inhibition of Pak, one of Cdc42’s downstream effec-
tors, by IAP3 showed a similar phenotype, suggesting that the
Cdc42–Pak pathway is important for maintenance of the
sustained spine growth. Also, when Rho signalling is inhib-
ited by expressing shRNA against Rho, the transient phase is
preferentially inhibited. Stronger inhibition of Rho by C3
transferase, as well as pharmacological inhibition of down-
stream factor Rock (Glycyl-H1152), inhibited both transient
and sustained phases of the spine growth, suggesting that the
Rho–Rock pathway is important for both transient and sus-
tained spine growth.

PI3K
PI3Ks are a class of phosphatidylinositol kinases that add a
phosphate group to phosphatidylinositol (4,5)-triphosphate
(PIP2), creating phosphatidylinositol (3,4,5)-triphosphate
(PIP3) (Hawkins et al., 2006). Ras, besides activating the Raf–
MEK–ERK pathway, can activate PI3K and the synthesis of
PIP3 (Qin et al., 2005). PIP3 associates with many proteins that
contain pleckstrin-homology (PH) domains specific to PIP3,
including downstream Akt (Bjornsti and Houghton, 2004).
While phosphoinositides are well known for their role in
membrane trafficking and neurite growth, PI3K and PIP3’s
roles in LTP were more recently discovered. This was first
shown when the application of the PI3K antagonist wort-
mannin blocked perforant path LTP in vivo in rats by a
presynaptic mechanism (Kelly and Lynch, 2000). PI3K’s role
in Schaffer Collateral LTP was shown soon after, as both
wortmannin and LY294002 were able to block LTP if applied
during LTP induction (Sanna et al., 2002; Opazo et al., 2003;
Qin et al., 2005). Antagonists applied during the mainte-

nance phase were able to reduce LTP but only if applied at
higher doses than necessary to block LTP induction (wort-
mannin: 200 nM vs. 5 mM; LY294002: 20 mM vs. 100 mM)
(Sanna et al., 2002; Opazo et al., 2003). These higher doses of
antagonists also caused a rundown in basal EPSC of the
unstimulated pathway (Opazo et al., 2003; Karpova et al.,
2006). Finally, transfecting neurons with PH domains of
general receptor for phosphoinositides (GRP), which binds to
and thus masks PIP3, blocks LTP (Arendt et al., 2009).

As for spine structural plasticity, the PI3K inhibitor
LY294002 effects neither transient nor sustained structural
plasticity (Table 1, Figure 3B) (Harvey et al., 2008). However,
this could be due to relatively low dose (20 mM) used in the
studies. A higher dose (100 mM) of LY294002 can inhibit the
sustained phase of structural plasticity (Patterson and Yasuda,
unpubl. data).

PKC
PKC was one of the first kinases to be implicated in LTP when
it was found that intracellular injection of PKC into a CA1
neuron increased its EPSP and lowered its firing threshold (Hu
et al., 1987). A series of papers then followed using a variety
of non-specific PKC antagonists including K-252b, mellitin,
PMB and H-7, which showed that these antagonists could
block the induction of LTP in the Schaffer Collateral as well as
the perforant path (Lovinger et al., 1987; Reymann et al.,
1988; Malinow et al., 1989). The PKC specificity of these
drugs were confirmed using the peptide inhibitor PKC(19–31)
(Malinow et al., 1989; Wang and Feng, 1992; Wang and Kelly,
1995). PKC inhibitors could effectively reduce LTP when
applied up to 3 h later (Lovinger et al., 1987; Wang and Feng,
1992). Several isoforms have been implicated in the induc-
tion and maintenance of LTP (Abeliovich et al., 1993). One
isoform in particular, the atypical, constitutively active
isoform PKMz has been found to be important specifically for
the maintenance of LTP (Ling et al., 2002) as well as some
forms of memory (Shema et al., 2007).

In contrast to the intense study of PKC in LTP, much less
is known about PKC’s role in spine structural plasticity. Appli-
cation of Gö6976, the inhibitor of Ca2+-dependent PKCa and
b, impaired both transient and sustained phases of structural
plasticity partially (Harvey et al., 2008).

Other kinases
CaMKI is activated by CaMK kinase and Ca2+/calmodulin
(Wayman et al., 2008). It has been shown to be required for
ERK activation and LTP by using specific inhibitor STO-609
(Schmitt et al., 2005). Also, during chemical LTP, CaMKI
signals to Pak, leading to spine enlargement (Fortin et al.,
2010).

Actin
In addition to the second messengers above, a variety of
cellular processes have been investigated pharmacologically,
foremost among them actin polymerization. Dendritic spines
contain high concentrations of actin, of which 80–90% are
filamentous (F-actin) (Star et al., 2002). The regulation of the
actin cytoskeleton is important for spine morphology: actin
polymerization and depolymerization are associated with
spine enlargement and shrinkage during LTP and LTD respec-
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tively (Fukazawa et al., 2003; Okamoto et al., 2004). Further-
more, spine enlargement during LTP is inhibited by the
inhibitor of action polymerization latrunculin A (LatA) in a
dosage-dependent manner: at low doses (20 nM), it inhibits
only the sustained phase (Matsuzaki et al., 2004), while at
higher doses (100–200 nM), LatA inhibits both the transient
and sustained phases of structural plasticity (Matsuzaki et al.,
2004; Harvey et al., 2008); at an extremely high dose (10 mM),
LatA causes spine shrinkage (Honkura et al., 2008; Murakoshi
et al., 2008). These are consistent with the finding that mul-
tiple forms of F-actin assembly exist in dendritic spines
(Honkura et al., 2008).

Importantly, pharmacological inhibition of actin polymer-
ization with latrunculin A/B or cytochalasin D inhibits LTP
(Kim and Lisman, 1999; Fukazawa et al., 2003) as well as spine
structural plasticity (Matsuzaki et al., 2004). Also, many signal-
ling proteins that regulate actin organization including the
Rho GTPase proteins, Pak, Rho kinase (Rock) and Cofilin have
been found to be required for inducing LTP (Wang et al., 2005;
Asrar et al., 2009; Rex et al., 2009; Gu et al., 2010; McNair et al.,
2010). Thus, unlike LTD, from which spine shrinkage can be
dissociated (Zhou et al., 2004), LTP seems to be more tightly
coupled with spine enlargement (Kasai et al., 2010).

Membrane and vesicular trafficking
One of the critical output steps of synaptic plasticity is the
fusion of recycling endosomes with the plasma membrane,

and the exocytosis of membrane proteins including AMPARs.
Blockade of exocytosis by tetanus toxin or Botox almost com-
pletely blocks LTP and structural plasticity (Lu et al., 2001;
Yang et al., 2008). Membrane trafficking between the plasma
membrane and recycling endosomes is regulated by a variety
of SNAREs (soluble N-ethylmaleimide sensitive fusion protein
attachment protein receptors), GTPases and other proteins
that confer target specificity and regulate membrane fusion.
Of the SNAREs, two have been identified as important for
plasticity: syntaxin 13, which directs traffic from early endo-
somes to the recycling endosome, and syntaxin 4, which is
involved in exocytosis at the plasma membrane. Soluble
forms of either syntaxin 4 or 13 [produced by the removal of
their transmembrane (TM) domains; Syn13DTM and
Syn4DTM], which block membrane fusion, impair AMPAR
exocytosis, structural plasticity and LTP (Table 1) (Park et al.,
2004; Park et al., 2006; Kennedy et al., 2010). Dominant-
negative mutants of proteins required for endosome traffick-
ing, Rab11a (S25N) and the Eps15 homology domain/
receptor-mediated endocytosis-1 [Rme1 (G249R)], also block
AMPAR exocytosis, structural plasticity, and LTP (Park et al.,
2004; 2006).

In addition to moving proteins to the plasma membrane,
it has been hypothesized that exocytosis in the spine could
provide additional membrane to aid spine expansion. The
total membrane of endosomes in the spine, as measured by
electron micrograph, is roughly half that of the spine itself
(Park et al., 2006). Simultaneous measurement of spine size
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and AMPAR exocytosis had been roughly measured on the
time scale of minutes with inconclusive results (Kopec et al.,
2006; Park et al., 2006). More recently, we measured indi-
vidual exocytosis events in spines and correlated this with
changes in spine size within 10 s of the exocytosis event and
found that spine size increases simultaneously with exocyto-
sis (Patterson et al., 2010). This lends credence to the idea that
endosomal fusion can provide membrane to the spine.

Protein synthesis
LTP is often delineated into two types: early LTP (E-LTP),
which lasts for 1–2 h and is independent of protein synthesis;
and late LTP (L-LTP), which persists longer, requires repeated
stimuli and is protein synthesis dependent. The role of
protein synthesis has been reviewed extensively elsewhere
(Kelleher et al., 2004; Sutton and Schuman, 2006), but the
gist of the research is that application of protein synthesis
inhibitors (typically anisomycin or cyclohexamide) during
induction can block LTP.

This work has been recently ported to imaging of struc-
tural plasticity. One group used a theta-burst stimulation
protocol to induce plasticity and measured structural plastic-
ity at many spines (Yang et al., 2008). They found that nor-
mally there is a persistent increase in spine size, but this
increase was blocked by application of either anisomycin, or
cyclohexamide. Tanaka et al. developed a modified pairing
protocol, wherein they patched onto a cell and injected
current pulses through the pipette to elicit back-propagating
action potentials ~20 ms after each uncaging pulse, in the
presence of Mg2+ (Tanaka et al., 2008). This ‘uncaging-with-
spikes’ protocol yielded a transient increase in spine size and
uncaging EPSC that increased over the next hour (Table 1). In
contrast, unpaired uncaging yielded a more typical time
course with a peak followed by a plateau (e.g. Figure 2B).
Tanaka et al. tested the protein synthesis dependence of struc-
tural plasticity and found that applying anisomycin blocked
the gradual plasticity found following ‘uncaging with spikes’
but did not affect the unpaired uncaging results. They further
showed that the ‘uncaging with spikes’ protocol was depen-
dent on brain-derived neurotrophic factor (BDNF)-tyrosine
kinase receptor B (TrkB) signalling (Table 1). Finally, it has
been reported that bath application of BDNF or forskolin
during glutamate uncaging is sufficient to induce protein
synthesis–dependent spine enlargement (Tanaka et al., 2008;
Govindarajan et al., 2011). These results show that protein
synthesis is essential for some forms of structural plasticity.

Monitoring signal transduction in
single spines

Moving beyond simply measuring structural plasticity, fluo-
rescent sensors – specifically FRET sensors – enable one to
measure the activity of signalling molecules directly. These
sensors have been optimized for imaging single spines by
using two-photon fluorescence lifetime imaging microscopy
(2pFLIM) (Yasuda, 2006; Yasuda et al., 2006). Using 2pFLIM,
the activities of CaMKII, Ras, Cdc42 and RhoA have been
imaged.

2pFLIM
Intracellular signal transduction has been visualized using
FRET-based signalling sensors. FRET is the process of energy
transfer from an excited donor fluorophore to an acceptor
fluorophore via dipole–dipole interaction (Lakowicz, 2006).
Because FRET strongly depends on the distance between
donor and acceptor and occurs only on the nanometer scale,
FRET can be used to monitor protein–protein interactions for
proteins fused to fluorophores or conformation changes of a
protein tagged with two fluorophores. The fluorescence life-
time of the donor, which is the time between the excitation
of the fluorophore and emission of a photon, shortens as
FRET increases and thus can be used to measure FRET with
high sensitivity independent of the relative concentration of
donor and acceptor (Lakowicz, 2006). 2pFLIM, which com-
bines two-photon microscopy with fluorescence lifetime
measurement, allows one to quantitatively image FRET signal
from the tiny volume of spines in light-scattering brain slices
(Svoboda and Yasuda, 2006; Yasuda, 2006). Several sensors
designed specifically for 2pFLIM have been developed and
used for imaging signal transduction in single dendritic
spines (Yasuda et al., 2006; Harvey et al., 2008; Lee et al.,
2009; Murakoshi et al., 2011).

While FRET imaging is the only method to access intrac-
ellular signalling in individual spines, because FRET imaging
relies on overexpressed sensor, one must evaluate the effects
of overexpression on the spatiotemporal dynamics of signal-
ling by measuring the relationship between the concentra-
tion of the sensor (measured from the brightness) and the
spatiotemporal parameters of signalling (e.g. decay time con-
stant, length constant) (Harvey et al., 2008; Lee et al., 2009).
Also, the degree of signal perturbation needs to be evaluated
(Harvey et al., 2008; Lee et al., 2009).

CaMKII
The dynamics of CaMKII signalling have been measured
using biochemical methods, and it was proposed that CaMKII
signals last for hours, due to Ca2+-independent, ‘autonomous’
activity produced by the autophoshorylation at T286, to
maintain synaptic plasticity (Fukunaga et al., 1993; 1995;
Barria et al., 1997; Lengyel et al., 2004). However, inhibition
of CaMKII after establishing LTP using various types of inhibi-
tors does not affect the maintenance of LTP (Malinow et al.,
1989; Otmakhov et al., 1997; Chen et al., 2001; Buard et al.,
2010) (but see Sanhueza et al., 2007). Furthermore, Lengyel
et al. (2004) reported that T286 phosphorylation persists long
term, while autonomous activity decays within ~2 min
during LTP.

The dynamics of CaMKII activity in neurons have been
measured by a FRET sensor, Camui-a (Takao et al., 2005; Lee
et al., 2009). Camui-a is a single CaMKIIa molecule tagged
with a donor–acceptor fluorescent pair such as ECFP–Venus at
each end. Inactive CaMKII subunits rest in a closed configu-
ration (Rosenberg et al., 2005; Chao et al., 2010), causing
FRET between the donor and acceptor at its ends; when
activated, CaMKII subunits open (Rosenberg et al., 2005;
Chao et al., 2010), separating the fluorophores and decreasing
FRET.

In order to image CaMKII activity in single dendritic
spines in cultured hippocampal slices, Lee et al. (2009)
applied 2pFLIM and optimized Camui-a for 2pFLIM. The
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resulting sensor, named Green Camui-a, in which the
monomeric EGFP–resonance energy transfer acceptor chro-
mophore (REACh) FRET pair (Ganesan et al., 2006; Murako-
shi et al., 2008) is used instead of ECFP–Venus pair, showed
high sensitivity sufficient for single spine imaging under
2pFLIM (Lee et al., 2009).

In response to two-photon glutamate uncaging, CaMKII
activity increased in the stimulated spines rapidly, and
decayed within 1 min. The detailed analyses showed that the
decay time constant of CaMKII is ~6 s. The role of T286
phosphorylation was also demonstrated using a Green
Camui-a mutant deficient in autophosphorylation at T286
[Green Camui-a with CaMKIIa(T286A)]. The mutant Green
Camui-a displayed fast inactivation (<2 s), and because of the
fast inactivation, the repetitive uncaging activation did not
accumulate. This study suggests that CaMKII autophospho-
rylation is a biochemical memory on the time scale of
seconds, but not hours, and helps integrate short Ca2+ signals.

Ras
Pharmacology of Ras activation in single spine. Like CaMKII,
there is a fluorescent sensor for Ras activity optimized for
2pFLIM and single spine imaging. The intermolecular FRET
sensor FRas consists of two molecules: mEGFP tagged H-Ras
(GFP-Ras) and the Ras binding domain (RBD) of Raf1 tagged
with mRFP (RFP-RBD) (Yasuda et al., 2006). When Ras is inac-
tive, these two molecules do not interact. However, when
GFP-Ras binds GTP, it binds to RFP-RBD, causing FRET. To test
Ras’s role in synaptic plasticity, this sensor was transfected
into CA1 pyramidal neurons, and glutamate uncaging was
performed.

Uncaging on spines activated Ras in the stimulated
spine within 1 min, and this activation decayed with a time
constant of ~4–5 min (Harvey et al., 2008). Unlike CaMKII,
active Ras was not restricted to the stimulated spine and
diffused into the dendrite over ~10 mm and even into adja-
cent spines.

Harvey et al. investigated the signalling pathways under-
lying Ras activation by combining Ras imaging with pharma-
cology. Ras activation was sensitive to inhibitors of CaMKII
(KN62), PI3K (LY294002) and PKC (Gö6976), which caused
a ~ 30%, 60% and 40% reduction in Ras activation respec-
tively (Figure 3). Of these, the PI3K inhibitor’s effect is most
interesting, as PI3K is a known effector of Ras, which implies
that there may be a functional Ras-PI3K feedback loop in
neurons (Carracedo and Pandolfi, 2008) (Figure 1).

AMPAR exocytosis is regulated by Ras. One of the goals of
using fluorescent sensors for signalling activity is to be able to
connect specific cellular outcomes with particular signalling
pathways. Recently, an assay for imaging AMPAR exocytosis
using pHluorin-tagged GluA1 (SEP-GluA1) has been devel-
oped (Lin and Huganir, 2007; Yudowski et al., 2007). pHluor-
ins are pH-sensitive fluorophores that are only fluorescent at
high pHs (>7), like the pH of ACSF (Miesenbock et al., 1998).
Given that the pH of endosomes is typically 5–6, SEP-GluA1
selectively labels surface AMPAR (Kopec et al., 2006). Follow-
ing the bleaching of all surface receptors, it is possible to
image changes in fluorescence due to AMPAR exocytosis (Lin
and Huganir, 2007; Yudowski et al., 2007).

Combining SEP-GluA1 with glutamate uncaging, it is pos-
sible to determine the spatial profile of AMPAR exocytosis
during LTP and structural plasticity induced in single spines
(Makino and Malinow, 2009; Patterson et al., 2010). Using
this method, it has been found that AMPAR are exocytosed in
the stimulated spine (Patterson et al., 2010) and in the parent
dendrite within ~3 mm (Makino and Malinow, 2009; Patter-
son et al., 2010), just as Ras activity spreads into the dendrite
(Harvey et al., 2008). Consistent with this spatial profile,
activity-dependent AMPAR exocytosis was inhibited by inhi-
bition of the Ras–ERK pathway by applying ERK inhibitor
U0126 or expressing dominant-negative Ras mutant, but not
by inhibition of CaMK with KN62 (Patterson et al., 2010).
Thus, these studies linked a specific sub-step of LTP (and
potentially structural plasticity), AMPAR exocytosis, to Ras
signalling (Figure 1).

Rho-GTPases
Rho GTPases are a subfamily of the Ras superfamily of pro-
teins. Because they share structural and biochemical proper-
ties with Ras, it is possible to use similar sensors for these
molecules. Murakoshi et al. (2011) recently developed sensi-
tive sensors for two Rho proteins, RhoA and Cdc42, and
measured their activity in spines during structural plasticity.
Induction of spine growth caused rapid Cdc42 and RhoA
activation that persisted more than ~30 min in the stimu-
lated spine. Notably, RhoA and Cdc42 showed contrasting
activity patterns: RhoA activity spread over several microns
along the dendrite, while Cdc42 activity was restricted to the
stimulated spine. Inhibition of CaMKII using KN62 or auto-
camtide CaMKII inhibitor peptide 2 (AIP2) inhibited the
activity of Cdc42 and RhoA partially, suggesting these mol-
ecules are downstream of CaMKII (Figure 1) (Murakoshi et al.,
2011).

Conclusion

While the use of imaging technology to measure LTP/LTD
and associated spine structural plasticity is barely a decade
old, it has provided new insights into the signalling mecha-
nisms coupling Ca2+ to the structure and function of dendritic
spines. These studies have revealed a complicated signalling
network triggering the induction of LTP and spine structural
plasticity (Figure 1). Both structural and functional plasticity
require similar signalling networks and signal via the mecha-
nisms of actin polymerization as well as the supply of recep-
tors and membrane from the exocytosis of endosomes
(Figure 1). Although these pathways are found in experi-
ments performed in slices or primary dissociated neurons,
similar pathways may also be used in in vivo spine structural
plasticity induced by experience or drug abuse (Holtmaat and
Svoboda, 2009; Russo et al., 2010).

Besides using imaging to measure plasticity, the develop-
ment of fluorescent sensors for signalling molecules has
allowed scientists to directly measure signalling activity.
Using these sensors, we have found that different signalling
molecules have strikingly different spatiotemporal profiles.
Inactivation time constants can range from 6 s (CaMKII) to
5 min (Ras) to ~30 min (RhoA, Cdc42), and perhaps even
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longer. Some molecules are activated exclusively in the stimu-
lated spine (CaMKII, Cdc42), while others are activated in the
spine before diffusing into the dendrite and neighbouring
spines (Ras, RhoA). The use of antagonists in combination
with these sensors will allow more direct testing of signalling
interactions; one example are PI3K antagonists effects on Ras
activity (Figure 1).

Besides creating opportunities to monitor signalling path-
ways, in the future optical techniques will provide new
opportunities to manipulate them. Photoactivatable proteins
for an adrenergic receptor (Airan et al., 2009), Rho-family
GTPases (Levskaya et al., 2009; Wu et al., 2009; Yazawa et al.,
2009) and WASP (Leung et al., 2008) have all been recently
developed, each of which work by different methods. These
tools will allow researchers to precisely manipulate the func-
tion of molecules in real time. As more imaging tools are
developed, we will hopefully be able to disentangle the com-
plicated signalling responsible for LTP and ultimately
memory.
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