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Abstract: Glyconanoparticles essentially result from the (covalent or noncovalent) association of
nanometer-scale objects with carbohydrates. Such glyconanoparticles can take many different
forms and this mini review will focus only on soft materials (colloids, liposomes, gels etc.) with a
special emphasis on glycolipid-derived nanomaterials and the chemistry involved for their synthesis.
Also this contribution presents Low Molecular Weight Gels (LMWGs) stabilized by glycoconjugate
amphiphiles. Such soft materials are likely to be of interest for different biomedical applications.
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1. Introduction

Carbohydrates are found in all living systems as simple sugars, polysaccharides or
glycoconjugates. Thanks to their molecular complexity and connectivity, this class of biomolecules
represents the third alphabet of life beside proteins and nucleic acids [1,2]. They are involved in
numerous biological processes and events, including bacterial/viral interactions, immune response,
cell proliferation/differentiation, growth regulation, cell signaling, recognition, adhesion, routing
etc. [3–9]. At the molecular level, carbohydrates interact with other molecular partners to form
supramolecular complexes, which serve as markers for signal transduction. Importantly, carbohydrates
fully express their molecular code in these complexes by interacting with ligands such as proteins
via multivalent contacts. These cooperative interactions, named the “glyco cluster effect” [4,10],
provide strong binding affinity and specificity to the carbohydrates-ligands complexes, which are
required to mediate the different biochemical and/or biological processes.

Very often carbohydrates are conjugated with lipids in living systems. The resulting amphiphilic
properties of the glycolipid conjugates favor their anchoring to biological membranes, where they
form supramolecular assemblies through morphological changes with sugar-clustered architectures,
for example [11]. Thus, biomimetic approaches have been developed to emulate natural glycolipids
anchored in biological membranes [12]. In this field, many different synthetic glycoconjugate
amphiphiles have been investigated, including glycoliposomes [13], glycodendrimers [14],
or self-assembled monolayers (SAM) [15].

In this contribution, we will present recent advances on bioinspired glycoconjugates based
amphiphiles. We wish to underline that these bioinspired molecules offer new perspectives in the
fields of biomedicine or soft materials. Metal-based (Au, Ag, etc.) glyconanoparticles, glycosylated
quantum dots or glycopolymers will not be addressed here. Comprehensive reviews can be found
elsewere [16–19]. In the first section, the synthetic access to this class of amphiphiles is presented.
Second, we summarize recent contributions on functionalized carbohydrate scaffolds. This part
includes: (1) glycocyclodextrins (2) glycocalixarenes and (3) glycodendrimers. Vesicles and liposomes
featuring glycoconjugates are highlighted in the third section. This article culminates in the last
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section with very recent developments on soft materials and in particular promising gels for
biomedical applications.

2. Glycolipids Synthesis Overview

Glycolipids (GLs) are sugar-containing lipids and as such, are amphiphilic molecules able to
self-assemble in supramolecular structures giving rise to various soft materials. Conjugation of
carbohydrates to a lipid scaffold relies on a few general methods illustrated below for simple GLs
(Table 1). Copper catalyzed azido-alkyne cycloaddition (CuAAC) also known as “click”-chemistry with
its high chemo- and region-selectivity, its tolerance to a wide variety of solvents (including water) offers
mild reaction conditions particularly useful in glycoconjugate synthesis [20]. When copper catalysis
is not desirable owing to the metal cytotoxicity or its difficult elimination from the reaction medium,
a strain-promoted azide-alkyne cycloaddition (SPAAC) with cyclooctynes, also termed ‘copper-free’
click-chemistry, has been developped by Bertozzi et al. [21] This strategy is based on the distorted
sp-bond angles in cyclooctyne derivatives (~160◦ vs. 180◦ in a linear alkyne) which dramatically
accelerates the azide-alkyne cycloaddition rate [22]. Beside CuAAC and its variants—the thiol-yne/ene
click-chemistry (a radical mediated addition of thiols to alkynes) may also be appointed—a Staudinger
reaction between glycosylated alkyl azides and fatty acid chlorides is also interesting (not to be
confused with the Staudinger ligation, see Section 4). Finally, GLs are still often formed in accordance
with standard glycosidation reactions with carbohydrate donors (thioglycosides, halogenoglycosides,
peracetylated glycosides, etc.) or a combination of one of the above methods.

Table 1. Some illustrative synthetic strategies for GL formation. More detailed examples will be
discussed in the following paragraphs.
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We will go into more details on the synthesis of more complex GLs featuring several sugar units.
Some of them—that can fall in that respect into the glycocluster category—are glycosphingolipids
with potent immunostimulant properties. They act as ligands of CD1d (a presentation protein of
antigen-presenting cells) and the resulting binding complex is recognized by the natural killer T
(NKT) cells which in turn secrete large quantities of various cytokines that mediate and regulate the
immune response [28]. For example, α-Lac Cer, Gb3 and iGb3 were synthesized by the Wang [29] and
Savage [30] groups (Table 2). Glycosphingolipids are found naturally in the cell membranes of almost
all living organisms. Their lipidic moiety is made of sphingosine. Once acetylated by a fatty acid on
their amino group, they give ceramide which in turn can be connected to one or several sugar residues
on their primary hydroxyl group. The resulting GL also known as sphingolipid is called cerebroside
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with one Glc or Gal residue, or ganglioside when attached to an oligosaccharide featuring at least one
sialic acid (N-acetylneuraminic acid Neu5Ac or N-glycosylneuraminic acid Neu 5Gc).

Table 2. Examples of sphingolipids with α-Lac Cer, α-Gb3 and α-iGb3.
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Complex glycosyl ceramides, namely gangliosides, which are present in the nerve cells [37], are 
mainly enzymatically synthesized with the help of glycosyl transferase. For example, the starfish 
ganglioside LLG-3 featuring a tetrasaccharide sphingolipid has been bioenzymatically prepared by 
an engineered endoglycoceramidase II glycosynthase (Figure 1). 
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the emergent concept of step-economy [31–34] avoiding multiple protection/deprotection steps and
is therefore especially promising in glycoconjugate chemistry. In this context, the regioselective
silyl exchange technology (ReSET) gives partially acetylated and silylated carbohydrates easily
transformed in either glycosyl donors or acceptors [35], which greatly simplifies complex GLs synthesis
(Scheme 1) [36].

Basically, per-O-silylated lactose undergoes selective exchange of TMS ethers for acetate protecting
groups in pyridine with acetic anhydride, depending on the amount of excess AcOH added and the
microwave reaction time. Compound 3 was thus obtained in two steps and selective deprotection of
the silyl ethers yielded the acceptor 6. Glycosidation with in situ prepared per-OBn galactosyl iodide
with silver triflate afforded the trisaccharide 7 further acetylated to give the iGb3 trisaccharide scaffold
8. This new strategy, giving better yields and stereoselectivity in fewer steps, should represent an
attractive alternative to more conventional methods.

Complex glycosyl ceramides, namely gangliosides, which are present in the nerve cells [37],
are mainly enzymatically synthesized with the help of glycosyl transferase. For example, the starfish
ganglioside LLG-3 featuring a tetrasaccharide sphingolipid has been bioenzymatically prepared by an
engineered endoglycoceramidase II glycosynthase (Figure 1).
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Likewise, Globo-H (Figure 2), a tumor-associated antigen, has induced the development of
a therapeutic vaccine based on this synthetic hexasaccharide chemically [38] or enzymatically
synthesized [39].
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Glycosphingolipids featuring various mono- and trisaccharide moieties were synthesized by a
combined multicomponent/click approach [40]. The ceramide skeleton synthesis involves a fatty acid,
a lipidic isocyanide, para formaldehyde and an amine (either alkynyl or azido-amine) in a one-pot
Ugi-four component reaction. The resulting ceramide mimic is then conjugated with a glycosyl azide
(or alkyne) through CuAAC “click” chemistry as illustrated below (Scheme 2).
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This novel approach to complex GLs turned out to be very efficient with average yields of
nearly 80% for both sequential steps, facilitating the rapid creation of libraries for this class of
Ugi/click glycolipids.

3. Functionalized Carbohydrate Scaffolds

Functionalized carbohydrate scaffolds are often related to the concept of multivalency.
Multivalency can be defined as the “ability of a particle (or molecule) to bind another particle
(or molecule) via multiple and simultaneous non-covalent interactions” [41]. Knowing that:
(1) carbohydrates are involved in a wide range of biological processes via non covalent interactions
with lectins (which are specific carbohydrate proteins found inside and outside cells in animals,
plants and microorganisms) [42–45]; (2) the binding affinity between carbohydrates and proteins is
very weak, then, the multivalency concept a.k.a. “cluster effect” becomes perfectly obvious: multiple
and simultaneous interactions occurring between lectins and their sugar ligands will result in a
considerably stronger binding [46,47]. In this regard, functionalized carbohydrate scaffolds are well
suited for ligand presentation as multivalent glycoconjugates. Recent reviews have described such
multivalent glycoconjugates and their therapeutic efficiency [48,49]. Cyclodextrins and calixarenes,
for example, offer intrinsic scaffolds for this purpose, owing to their numerous functionalization
opportunities, whereas dendrimers can be tailored to the desired generation and functionality.

3.1. Glycocyclodextrins

Cyclodextrins (CDs) are torus-like cyclic oligosaccharides, α-, β- and γ-CD being the most
well-known of them. Thus, α-CD is composed of six glucopyranose units linked via an α-1,4 glycosidic
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bond, β-CD is the most often used and comprises seven Glc units compared to eight units for the
larger γ-CD [50]. Their internal cavity is hydrophobic and CDs can form inclusion complexes with
guest molecules.

A β-cyclodextrin scaffold has been used to synthesize a multivalent polycationic glyco-amphiphile
cyclodextrin (pGaCD) as a gene delivery system [51,52]. The upper rim of the CD is functionalized
with a glyco-cationic moiety while the lower rim exhibits lipophilic tails (Scheme 3).
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acetone-H2O, 52%; (v) DMF, TEA, 40 ◦C, 48 h, 84%; (vi) TFA-DCM, r.t., 3 h, freeze-drying from diluted
HCl, 99%.

Starting from the known 2-azidoethyl peracetylated-α-D-mannopyranoside and
bis(2-aminoethyl)-(2-N-BOC-ethyl)amine respectively, the isocyanato sugar derivative 9 and
the orthogonally protected 10 were readily obtained. They were reacted with TEA to afford the
adduct 11 in almost quantitative yield. Acetyl and then trityl cleavage were conducted with the same
efficiency to give the amine 13 subsequently reacted with the spacer 1,6-hexamethylene diisocyanate
to afford the glyco-cationic moiety 14. A thiourea linkage between the known β-CD derivative 15 and
compound 14 was formed under TEA catalysis, and carbamate deprotection gave the final pGaCD 17
in excellent yield. Here, the chemistry involved in this synthesis uses an amine-isothiocyanate reaction
for the high yields it delivers and to provide a thiourea belt, which is expected to interact favorably
with the phosphate groups of the plasmid chain. This pGaCD was indeed able to self-assemble in the
presence of plasmid DNA leading to stable nanoparticles ranging from 70 to 150 nm in size.

3.2. Glycocalixarenes

Calix[n]arenes are macrocyclic compounds composed of n phenolic units connected by methylene
bridges [53]. They possess a vase shape with a cylindrical hydrophobic cavity able to accomodate
inclusion compounds much like CDs. Both sides of the calixarene (upper and lower rim) can
be easily derivatized—for what we are concerned here—with saccharide units giving rise to
glycocalixarenes [54].
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A typical example is the synthesis of galactosyl- and lactosylcalix[4]arenes from tetraamino
calixarenes with a CuAAC coupling as the key-step (Scheme 4) [55].Molecules 2018, 23, 89 7 of 25 
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(i) ClC(O)CH2Cl, DIPEA, DCM, room temperature, 6 h (55%); (ii) NaN3, MeOH/DMF, reflux, 1 h (75%);
(iii) CuSO4.5H2O, Na-ascorbate, DMF/H2O, MW (150 W), 80 ◦C, 20 min (81%); (iv) NaOMe/MeOH,
room temperature, 1 h (quantitative).

Calixarene derivative 18 was first treated with chloroacetylchloride and then with sodium azide
to give the tetraazido calixarene 20. Peracetylated galactopyranose was reacted with monopropargyl
triethylene glycol in the presence of BF3·OEt2 to yield the azidosugar derivative 21. Coupling the
later compound with 20 under click-chemistry conditions yielded 22 further deacetylated to the final
calixarene 23. The lactosyl cluster derivative was similarly prepared. An interesting feature with
calixarenes is their relative mobility from a conformational viewpoint. Depending on the size of the
alkyl substituents on the phenolic OH lower rim, they can actually exist in four main conformations
(the so-called cone, partial cone, 1,2-alternate and 1,3-alternate) [56]. In this regard, the 1,3-alternate
conformation was also prepared with both saccharides by the authors. Surface plasmon resonance
(SPR) experiments were then carried out on surface immobilized His-tagged Galectin-3 showing
that a better affinity was observed with the lactosyl cluster and the cone conformation over the
1,3-alternate one.

3.3. Glycodendrimers

Glycodendrimers are currently emerging as an area of growing activity as multivalent
glycoclusters as evidenced by the numerous surveys recently dedicated to this field (see reference [49]
for the most recent review).

In a recent contribution [57], a library of 12 amphiphilic Janus glycodendrimers [58] composed
of variable carbohydrate head groups and hydrophobic tail groups linked to an azobenzene core
have been synthesized using successive Steglich esterification and Hüisgen cycloaddition reactions.
The general synthesis is outlined below for one of the dendrimers 31 bearing branched alkyl chains on
one side and a D-mannose derivative on the opposite side (Scheme 5).
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Scheme 5. Synthesis of a D-mannose dendrimer amphiphile Reagents and Conditions:
(i) 4-(dimethylamino)pyridinium p-toluenesulfonate, DCC, DCM, 56–61%; (ii) pentaerythritol, PTSA,
DMF, 50 ◦C, 46–61%; (iii) 4-(dimethylamino)pyridinium p-toluenesulfonate, DCC, DCM, 46–67%;
(iv) CuSO4, sodium ascorbate, THF/water (2:1 v/v), 40 ◦C, 31–54%.

The resulting glycodendrimers self-assembled in water to give uniform cylindrical micelles of
various size as evidenced by differential light scattering (DLS) and small angle neutron scattering.
The azo-benzene core exhibiting trans-cis isomerism under UV-light, was used here to make the
glycodendrimer micelles phototunable, allowing to evaluate their potency as inhibitors of LecA and
LecB bacterial lectins. Only a moderate activity was recorded, though, a result imputed to a low light
penetration inside the micelle to reach its core.

Chevolot, Morvan et al. targeted the same Lectin A with a family of 32 glycodendrimers
of generation 0 and 1 constructed by CuAAC coupling with azido-functionalized glycosides [59].
High affinity values were obtained when aromatic aglycones were used with the carbohydrate motif,
confirming that the topology of the glycocluster is equally important as multivalency itself.

Interestingly, multivalency of small saccharide units can also be used to mimic the effect of larger
polysaccharides. Chondroitin sulfate (CS) for example, is a heterogeneous polysaccharide involved
in several diseases. CS binds to many proteins via the disaccharide GlcA-GalNAc (4,6-di-OSO3) unit.
The need for homogeneous synthetic CS is thus clear but its synthesis is challenging. Therefore,
glycodendrimers featuring the sulfated disaccharide group may be a good alternative for this purpose.
The dissacharide unit synthesis begins with the trichloroacetimidate 32 treated with 3-azidopropanol
and TMSOTf as promoter (Scheme 6). Compound 6 was then protected in two steps with a
4,6-O-di-tert-butylsilylene group leaving the 3-OH free for glycosidation with the donor 36.

The disaccharide 37 was then selectively deprotected on its 4- and 6-OH positions to allow their
subsequent sulfonation using a large excess of sulfur trioxide trimethylamine, to eventually afford the
desired compound 40 after basic hydrolysis and deacetylation. Tri-, tetra- and hexavalent dendritic
cores were then reacted with the disaccharide units under CuAAC conditions illustrated below for the
hexavalent glycodendrimer 41 (Scheme 7).
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is greater than that of the side chain—a typical situation for a single lipidic chain surfactant) their 
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Scheme 6. Synthesis of a dissacharide unit starting from trichloroacetimidate 32. Reagents and
Conditions: (i) 3-Azidopropanol, TMSOTf, DCM, 0 ◦C, 81%; (ii) NaOMe, MeOH, 96%; (iii) tBu2Si(OTf)2,
Py, 94%; (iv) TMSOTf, DCM, 0 ◦C, 80%; (v) (HF)n·Py, THF, 0 ◦C, 95%; (vi) SO3·Me3N, DMF, 100 ◦C,
MW, 85%; (vi) LiOH, H2O2, THF; NaOH, MeOH/H2O; Ac2O, Et3N, MeOH/H2O, 73%.
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CuSO4·5H2O, sodium ascorbate, TBTA, DMSO/PBS buffer, room temperature, overnight, quantitative.

All glycodendrimers were then successfully investigated for their multivalent properties against
midkine (an heparin-binding growth factor) to give IC50 up to 1.2 µM for the hexavalent compound 42.
On the other hand, the disaccharide itself exhibited a very low affinity for midkine (250 µM) confirming
the value of the glucomimetics approach developped in this work.

Many glucodendrimer syntheses take advantage of the CuAAC coupling [60–62], and not only for
connecting the saccharide moiety. Thus, Das and Mukhopadhyay [63] for example, synthesized
a propargyl-functionalized Zn-porphyrin, further conjugated with the separately constructed
azido-functionalized mannose dendritic building blocks. Synthesis of the 1st and 2nd generation
carbohydrate dendrimers involved a click reaction, as well as the coupling step with the porphyrin core.

Finally, thiol-yne coupling (TYC) or thiol-ene coupling (TEC) are mild and high-yielding
reactions which proved especially useful in glycosidation synthesis and this topic has recently been
reviewed [64].

4. Vesicles, Liposomes

It is known that the overall shape of an aggregate is driven by the shape of the amphiphilic
molecule that produced it. When the amphiphiles are wedge-shape (cross section of the polar head
is greater than that of the side chain—a typical situation for a single lipidic chain surfactant) their
self-association produces a spherical micellar structure. For truncated-cone shapes, aggregation gives
cylindrical micelles. Finally, for cylindrical amphiphiles (cross-section of the polar head roughly equals
that of the side-chain, usually when a double fatty acid chain is involved) a planar bilayer sheet
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is formed. Then, closure of the bilayer sheet yields spherical structures called vesicles, entrapping
an aqueous domain isolated from the outer aqueous medium. Artificially constructed vesicles are
called liposomes. Depending on experimental conditions, several types of liposomes are obtained:
multilamellar vesicles (MLV), small unilamellar vesicles (SUV), large unilamellar vesicles (LUV) or
giant unilamellar vesicles (GUV) [65–67].

Spherical micelles have been obtained from the self-assembly in water of a series of
macromolecular glycosylated amphiphiles. They have been prepared by CuAAC coupling of
1-O-propargyl saccharides (N-acetyl glucosamine and lactose) and various azido-terminated PEG900
esters [68–71]. In a representative work, C18PEG900GlcNAc 46 and C18PEG900Lac 47 were obtained
from a common intermediate 45 (Scheme 8). This stearate derivative was prepared in a few steps from
PEG900 by monotosylation followed by substitution of the tosyl group with sodium azide.
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Both glycoconjugates 46 and 47 spontaneously self-assembled in water into spherical micelles
with a mean diameter of 10 nm (Figure 3).
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Specific interactions of both 46 and 47 with lectins (Wheat Germ Agglutinin and Peanut
Agglutinin) proved the presence of the sugar residues at the surface of the micelles demonstrating
their potential application in drug delivery mediated by carbohydrate-protein interactions.

To efficiently link a sugar derivative to a lipidic tail, thiol-yne/ene click-chemistry already quoted
in Section 3.3) can be considered as a complementary tool to the Hüisgen (CuAAC) reaction [72]. In a
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recent publication, Goyard et al. [24] reacted 1-propargyl-2,3,4,6-tetra-O-acetyl-β-D-glucopyranoside
49 with dodecane-, tetradecane- and hexadecanethiols in the presence of AIBN to give the expected
GL derivatives (as 1:1 diastereoisomer mixtures) in very high yields (Scheme 9).
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capable of self-assembling into vesicles. Among them, vesicles prepared from 53 and 57 formed
multivalent interactions with concanavalin A (ConA) used as a model lectin. Furthermore, 57 was able
to bind to murin dendritic cells and to encapsulate hydrophobic compounds like Taxol, thus paving
the way to the vectorization of active substances to specific cells.
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The chemically-selective surface glyco-functionalization of liposomes through Staudinger ligation
was popularized by Sun and co-workers [78–80]. They recently evaluated this reaction with a lactosyl
azide and different ratios of two types of anchoring lipids in DPPC liposomes [81]. Lipids were
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synthesized from cholesterol-PEG2000-NH2 and commercially available DSPE-PEG2000-NH2 with
3-diphenylphosphino-4-methoxycarbonylbenzoic acid active ester (Scheme 10) to give functional
vesicles with respect to their stability, encapsulation and release capacity, and their lectin
binding efficiency.
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5. Gels

Hydrogels are found in our everyday life in a variety of forms and products. For example
hydrated gel materials can be used as cosmetics (shampoo, hair gel, soaps etc.). Importantly most of
the gels, if not all, are derived from polymers. This type of gels has been known for many years with
different applications in the fields of materials science, medicine, cosmetics, etc. Low molecular
weight gels (LMWGs), which were developed more recently, offer an interesting alternative to
polymer-based gels. Indeed, thanks to their supramolecular nature LMWGs are thermoreversible
and allow a rapid response to external stimuli. Also, LMWGs can be used as biodegradable systems
because of an easier clearance and/or elimination from the body compared to regular polymeric
gels. Nevertheless, the supramolecular assemblies obtained using LMWGs are still poorly controlled
and it is still difficult to properly predict the gel behaviours depending on the molecular structure of
the components. In this regard, several LMWG based bioconjugates have been investigated recently
for their supramolecular gel properties, including lipids, carbohydrates, nucleosides, amino acids or
peptide derivatives. Among them, glycoconjugates have been discovered to be interesting gelators
for biomedical applications. In this section, we present several examples of synthetic sugar based
amphiphiles forming LMWGs.

A gel can be defined as a molecular network able to immobilize a fluid (organic solvent
or water) in a very large amount (up to more than 99% w/w) giving rise to a soft, jelly-like
material [82,83]. Such material can be made of polymeric chains or from the self-assembly of small
molecules (a.k.a. low molecular weight gelators) a process driven by weak molecular interactions [84].
It is commonly believed now that gelation is a stepwise process, starting from the molecular level to the
macroscopic structure. First, non-covalent interactions (H-bonding, π-π stacking, hydrophobic forces)
must take place between gelling molecules, leading to their nanostructuration in a one-dimensional
fashion (fibers formation). Then, the growing fibers form a continuous three-dimensional entangled
network in the solvent under the same non-covalent set of forces, to eventually give rise to a
macroscopic soft material, i.e., a gel. The exact mechanism of self-organization of the gelling agents
is still poorly understood especially in water. Nevertheless, a simple packing model to mimic fiber
formation during self-assembly was recently developed [85]. The fiber is considered as the stacking of
discrete prisms exhibiting various hydrophobic and hydrophilic faces corrected with several weighting



Molecules 2018, 23, 89 13 of 25

coefficients representing free energy penalties. Use of this model demonstrated that for selected classes
of LMWGs, the fiber structure represents the thermodynamic minimum.

5.1. Glycoconjugate Based Gels

Hydrogels possess many applications in tissue engineering [86,87], biosensing, drug or gene
delivery [88–90], water depollution [91], etc. The most relevant gelling agents for biomedical
applications are biologically-inspired molecules such as peptide-amphiphiles, oligonucleotide-
amphiphiles or glycosylated-amphiphiles. In the context of this survey, only low molecular weight
glycosylated-amphiphiles will be addressed with a particular interest in glyconucleolipid amphiphiles.

For example, monolipidic disaccharides have been prepared by CuAAC cycloaddition of the
corresponding sugar azides with N-propargylpalmytoyl amide (Scheme 11) [92,93].
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Another aspect of GLs is their ability to self-aggregate with a long-range molecular ordering 
giving rise to a crystal-like structure while retaining a liquid behaviour. This state of matter is the 
distinctive feature of liquid crystals (LCs). Thus, simple GLs regarded as rod-like molecules self-
aggregate into lamellar assemblies with a tendancy to form columnar or spherical structures 
according to their tail to head volume ratio [94]. This phase change can be induced by an increase in 
temperature (thermotropic LCs) but also if their concentration is varied in a solvent (lyotropic LCs) 

Scheme 11. Synthesis of lipidic disaccharides by CuAAC cycloaddition Reagents and Conditions:
(i) C15H31CO2H, THF, DCC/HOBt, room temperature, 2 days, 75%; (ii) Malt(OAc)7-N3 or
Cell(OAc)7-N3 or Lact(OAc)7-N3, CuBr, PMDETA, 87%, 80% and 81% resp. then MeONa, MeOH,
85–90%, 77% and 80% resp.

The resulting disaccharidic GLs were efficient hydrogelators (0.5 to 1 wt %). The contribution of
the triazole ring (giving π-π stacking) and the amide-NH moiety (H-bonding) in the hydrogelation
process was evidenced by nuclear magnetic resonance (NMR). Furthermore, field emission scanning
electron microscopy (FESEM) images of a single ribbon of Cell-Tz-C16 exhibited a right-handed twist
whereas Lact-Tz-C16 showed a left-handed twist suggesting that the nature of the disaccharide polar
head influences the supramolecular chirality (Figure 4).
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Another aspect of GLs is their ability to self-aggregate with a long-range molecular ordering giving
rise to a crystal-like structure while retaining a liquid behaviour. This state of matter is the distinctive
feature of liquid crystals (LCs). Thus, simple GLs regarded as rod-like molecules self-aggregate into
lamellar assemblies with a tendancy to form columnar or spherical structures according to their tail to
head volume ratio [94]. This phase change can be induced by an increase in temperature (thermotropic
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LCs) but also if their concentration is varied in a solvent (lyotropic LCs) resulting in more mobile
structures giving rise to additional phase changes. At temperatures above 90 ◦C, Malt-Tz-C16 in the
previous example exhibits a LC behaviour. For Cell-Tz-C16 and Lact-Tz-C16 the liquid crystalline
phases (mesophases) appeared above 150 ◦C, and Smectic A phase (molecules are directionally ordered
into layers) for the latter compounds was evidenced by X-ray diffraction. Of course, dealing with
LC properties of GLs is beyond the scope of this account and further reading and examples can be
found elsewhere [95–97]. Note, however, that thermotropic LC phases were much less studied than
LC structures formed in water, and other biomolecules can form such materials [98].

Original asymmetric glyco bola-amphiphiles were obtained by Ochi et al. [99] by reacting
4-aminophenylgluco-, galacto- and manno- pyranosides with an aminododecanoic acid derivative
(Scheme 12). Despite the presence of an activated ester at one end of the hydrocarbon chain,
chlorine displacement on the maleimide moiety unexpectedly occurred with good yields.
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All bolaform GLs turned out to be excellent hydrogelators with a critical gelation concentration
(CGC) < 0.1 wt %. Interestingly, the π-conjugated 2-anilino-3-chloromaleimide is a known chromophore
with a λmax value appearing near 400 nm. As a result, the chloromaleimide GLs exhibited color change
upon gelation from warm orange (sol) to yellow (gel). Furthermore, the color change was also observed
upon gel incubation with the corresponding glycosidases, thanks to the proximity of the chromophore
with the glycoside moiety. The enzyme selectivity is therefore retained in the gel state and makes these
gels usable as sensing materials to detect an enzymatic activity by the naked eyes.

5.2. Mechanical Characterization of Gels

The increasing number of supramolecular gels require a characterization at the microscopic and
the macroscopic levels. Specific information about the structure and dynamics of the self-assembling
will be obtained. Gels are not only molecules solvated in water, oil or solvent, for hydrogels, oleogels or
organogels respectively, but also secondary and tertiary structures. These structures responsible
of the gelation phenomenom need to be highlighted, especially the number, type and strength of
the interactions. One way to investigate the viscoelactic behaviour of such material is rheology.
This technique analyses samples at their native state enabling a better understanding of the gel
macroscopic organization. Different types of setup are available for rheological studies, cone and
plate systems, parallel plates and concentric cylinders, depending of the material viscosity. In each
case, thin layer of gel will be spread between the movable and the stationary plates. The response
of the supramolecular gels to applied oscillatory stress quantifies its viscoelastic properties by three
major variables: G* (complex modulus), G’ (storage or elastic modulus) and G” (loss or viscosity
modulus). The evolution of theses variables function of the imposed stress, the frequency, the time or
the temperature will contribute to the characterization of gelation key points (i.e., linear viscoelastic
region (LVER), strength of the gel, thixotropic behaviour, Tgelsol, etc.) [82,83]. Almost all mechanical
properties are determined within the LVER. In this domain, the evolution of moduli will be independent
of the magnitude of imposed stress or strain [100]. So the macroscopic behaviour observed will
only be due to the variant factors. When this factor is the temperature, the most often reported
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parameter will be determined: temperature of gelation (Tgelsol). During the experiment, the temperature
increases and the macroscopic properties of the supramolecular gel evolve until a break of the tertiary
structure. The point when the sample goes from a gel-like state to a liquid-like state is called Tgel or
Tgelsol [82,83]. Another rheological property determines for supramolecular system, especially gel
composed of glycolipids, is the thixotropic behaviour. This unique behaviour is investigated by a time
dependent experiment. Supramolecular assembly undergoes a mechanically stimulus leading to a
collapse of the tertiary structure and to a gel-sol transition. When the external force is withdrawn,
the supramolecular gel can rebuilt to its initial state (sol-gel transition). The reversibility of the system
is called thixotropy. This phenomenon is essentially due to modifications at the macroscopic level
without chemical alterations. Supramolecular assemblies are essentially based on weak interactions
(π stacking, hydrophobic effect, H bonding) which can be disrupted and can recover from external
stress enabling this thixotropic behaviour.

All these rheological parameters are crucial for the characterization of gels and is unambiguously
required. The strength of gels could have an impact on its application, for example in the biomedical
field allowing cell proliferation and differentiation [101–103]. Supramolecular assemblies are often
compared to polymeric gels on various criteria and especially mechanical strength. Mei et al. [83]
classify hydrogels in two categories: the polymeric and the supramolecular one. Among the
polymeric classes, they distinguish the polymeric hydrogels based on covalent crosslink (Type I)
or on noncovalent crosslink (Type II). The hydrogels are compared function of numerous criteria
and especially the mechanical strength. Polymeric hydrogels are characterized by strong mechanical
strength (extremely strong for Type I/relatively strong for type II) and supramolecular systems by
weak mechanical strength.

However, the mechanical properties of a supramolecular system could be improved by the
addition to the biomaterial of a ligand. Zhang et al. [104] incorporated vancomycin in a supramolecular
hydrogel of self-assembled pyrene-D-Ala-D-Ala resulting in a 106 fold increase of the elastic modulus
(Figure 5).
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Another way to improve the mechanical strength of supramolecular gels is the synthesis of
new generations of low molecular weight hydrogelators which present high elastic modulus up to
104–105 Pa [105–108].

The molecules used to obtain such results are glycolipids based. Full rheological data about
supramolecular assemblies composed of glycoconjugates are not always found but is very useful for
the characterization of glycolipids based gels. The rheological data of self-assembled glycoconjugate
based gels are summarized in Table 4.
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Table 4. Rheological characterization of low molecular weight hydrogelators self assembled of glycolipids and their applications.

Solvent Concentration %
(w/w)

Morphological
Structure G’ (Pa) Thixotropic Behaviour Tgelsol (◦C) Applications Ref.
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Except for the molecule developed by Prasad et al. [107], the glycolipids are solvated in water
allowing potential applications in the medical field. They are all prepared with low concentrations
of gelator molecules (<10% (w/w)) compared to the polymeric gels. Fitremann et al. [109] developed
a weak hydrogel presenting a low biocompatibility for neural cell culture. It’s a first approach for
this generation of glycolipids, which will need tuning to improve the biocompatibility but also the
Tgelsol for biomedical applications. Barthélémy’s group found a way to design specific glycolipids
allowing biomedical applications and personalization of the biomaterial with various mechanical
strengths. The incorporation of a nucleoside in the glycolipid structure add a coding information
and these inspired molecules present high cytocompatibility [101,102]. The glyconucleolipid is the
basic structure and different generations were synthetized from this skeleton: Glycosyl-Nucleoside
Fluorinated amphiphiles (GNF) [101,102,110,111] and also Glycosyl-Nucleoside Bola-Amphiphiles
(GNBA) [103,105,106]. Each hydrogel obtained with this glyconucleolipid structure presents specific
rheological parameters, which were used to tune the molecule design. This tuning was done to
improve the mechanical strength essentially to widen the biomedical applications (scaffold for stem
cells, osteoblastic cells, etc.) [102–104,107]. These modifications could also affect other parameters
such as the Tgelsol. Indeed, for the GNBA carbamate, an increase of the mechanical strength was
observed compared to the previously synthetized GNBA [105] but also a decrease of the Tgelsol
(36.3 ◦C) preventing biomedical applications for the moment. That’s why the association of organic
chemistry and physico-chemical characterization (rheology) is essential to guide the design of new
glycolipid molecules able to self-assemble.

The viscoelastic behaviour could also be analyzed by indentation and not only rheology.
Ikeda et al. used atomic force microscopy (AFM) indentation to characterize the elastic modulus
of their strong hydrogel for an application on prostate cancer cells [108].

Glycoconjugate are not only forming gel in water but also in various solvents and vegetal oils.
The organogel obtain in cyclohexane exhibits a mechanical strength comparable to polymeric gels at
very low concentrations (0.6% (w/w)) [107]. Even if no real applications are proposed for this new
LMWG, it is a very promising new way to obtain glycolipids from renewable resources. The gelification
of such molecules in vegetable oils open the way to new applications in the pharmaceutical and
cosmetic fields for example.

The rheological parameters of a gel are very important for the potential biological applications:
scaffold for cell’s culture, drug delivery systems, and regenerative medicine. Moreover with the
examples presented here, the impact of the chemical structure on the LMWGs is clearly identified.
Rheological characterization need to be compulsory for supramolecular gels allowing molecular
screening and fine-tuning to adapt the chemical structure to the application.

6. Conclusions

Despite the substantial progress in the synthesis of soft materials, i.e., the formation of
supramolecular gels with low molecular weight gelators, there is still a significant need to design,
synthesize, and evaluate new glycoconjugate amphiphiles for an access to biomaterials possessing
the required properties for different biomedical fields, including regenerative medicine, drug delivery
or tissue engineering. Much of this activity is mainly driven by the current weak viscoelastic
properties of the synthetic amphiphile gelators as well as the lack of biocompatibility for in vivo
applications. With this in mind, polymer-free biomaterials that can overcome these two major hurdles
are highly sought after. It is clear that the modulation of the elastic modulus (G’) and the thixotropy
propreties are important limiting parameters of supramolecular biomaterials. Therefore, the design
of glycoconjugate that self-assemble in a controlled manner would provide new biomaterials for
constructing sophisticated supramolecular gels.

Although the control of supramolecular gel properties is still under investigation, it is important
to avoid inflammatory response once this type of bioinspired material is injected or implanted
in vivo. Nevertheless the chemistry of glycoconjugate amphiphiles has much to offer to the vast
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domain of biomedicine. Indeed, playing with the chemical diversity of the sugar code can modulate
and/or trigger biological responses. The role of synthetic carbohydrate chemistry for designing and
synthesizing carbohydrate derivatives featuring biological properties can be illustrated in the context
of vaccines with two recent reports. In a recent publication Gauthier et al. hypothesized that the
chemical modification of lipopolysaccharide (LPS)-based vaccines antigen could have a strong impact
on immune responses [112]. To validate this hypothesis they prepared several oligosaccharides with
the aim of deciphering the immunogenic epitopes of surface polysaccharides. They demonstrated that
synthetic chemistry and sugar modifications were crucial for recognition. In another recent report
Guler et al. investigated the physico and biological properties of novel mannosylated glycopeptides.
Interestingly, the nanofibers resulting from the self-assemblies of these amphiphiles were well adapted
for the delivery of immunogenic mimetic antigens [113].

The future development of the glycoconjugate amphiphiles, in particular the synthetic access to a
large diversity of molecular and supramolecular structures, will certainly witness exciting discoveries
in different biomedical areas, including biomaterials, medicinal chemistry or vaccination.
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