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ABSTRACT: To improve product yields in synthetic reactions, it is
important to use appropriate catalysts. In this study, we used machine
learning to design catalysts for a reaction system in which both
Buchwald−Hartwig-type and Suzuki−Miyaura-type cross-coupling reac-
tions proceed simultaneously. First, using an existing dataset, yield
prediction models were constructed with machine learning between
experimental conditions, including the substrate and catalyst and the
yields of the two products. Seven methods for calculating both the
substrate and catalyst descriptors were proposed, and the predictive
ability of the yield prediction models was discussed in terms of the
descriptors and machine learning methods. Then, the constructed models
were used to predict the compound yields for new combinations of
substrates and catalysts, and the predictions were experimentally validated
with high reproducibility, confirming that machine learning can predict
yields from experimental conditions with high accuracy. In addition, to design catalysts that will improve the yields in our dataset, we
added datasets collected from scientific papers and designed catalyst ligands. The proposed catalyst candidates were tested in actual
synthetic experiments, and the experimental results exceeded the existing yields.

■ INTRODUCTION

With the shortening of product life cycles, the development of
catalysts to promote chemical reactions is becoming important
for manufacturing highly functional chemical materials such as
pharmaceuticals and electronic materials in short time frames.
In general catalyst development, catalysts are designed based
on the knowledge and experience of experimental scientists,
who also refer to prior examples and technologies described in
scientific papers and patents. The designed catalysts are then
synthesized and used in a target chemical reaction, and the
experimental results are checked. The catalysts are then
redesigned after feedback of the results. This cycle is repeated
to develop a target catalyst with a high reaction performance
while discussing the design strategy. Importantly, this cycle of
catalyst design, synthesis, and activity evaluation/verification
can be both time- and cost-intensive, which increases the
development period.
With the improved performance of computers and molecular

simulations, it has become possible to analyze reaction
mechanisms and catalytic reaction intermediates using
computational science. However, accurate molecular simu-
lations are computationally time-consuming and thus unsuit-
able for preprocessing and simulating massive numbers of
catalyst candidates to search for a promising one. In this study,
we focused on using machine learning to accelerate catalyst

design and development. In the quantitative structure−activity
relationship1,2 and quantitative structure−property relation-
ship3,4 models, a mathematical function y = f(x) is constructed
between activities and properties y and molecular descriptors x
using a compound dataset and machine learning. Some
examples of machine learning methods used for model
construction are partial least squares (PLS),5 ridge regression
(RR),6 least absolute shrinkage and selection operator
(LASSO),6 elastic net (EN),6 support vector regression
(SVR),7 Gaussian process regression (GPR),8 random forest
(RF),9 gradient-boosting decision tree (GBDT),10 extreme
gradient boosting (XGB),11 and light gradient-boosting
(LGB)12−14 models. The prediction performance of each
method depends on the compound dataset, and trial and error
are required to select an appropriate method for a given
dataset. Physicochemical properties and pharmacological
activities have been predicted in the areas of chemistry and
drug discovery using machine learning.15,16
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When y is catalytic activity, machine learning models can be
used to estimate catalytic activities from catalyst chemical
structures without their synthesis. Even when the detailed
mechanism of the catalytic activity within the organic reaction
is unknown, if we can propose features x that are important in
explaining the catalytic activity, we can obtain the correlation
between x and y using an experimental dataset and machine
learning.
Yada et al. used LASSO to predict yields for the use of

different tungsten catalysts in the epoxidation of alkenes with
hydrogen peroxide as a model reaction.17 Ahneman et al.
predicted the reaction performance of various potentially
inhibitory ligands for the palladium-catalyzed Buchwald−
Hartwig cross-coupling of aryl halides with 4-methylaniline
using machine learning methods.18 While machine learning has
been applied to single organic synthetic reactions, it has not
been applied to multiple reactions proceeding simultaneously.
Furthermore, in actual synthetic experiments, not only the
catalyst but also experimental conditions such as the reaction
temperature, substrate, bases, and ligands can change. In such
experimental datasets, experimental conditions other than the
catalyst are also important and must be considered in machine
learning.
The objective in this study was to construct predictive

models that consider multiple experimental conditions for
multiple reactions proceeding competitively and then to search
for experimental conditions with high catalytic activities using
the constructed models. We considered not only the chemical
structures of the catalysts but also the chemical structures of
the substrates and other information as x and constructed
models between x and yields y using machine learning. Since
the appropriate way to describe structures of ligands, active
metal centers, and reactants is unclear, we propose various
methods (methods A, B, C, D, E, and F), including computing
descriptors for each of them separately, calculating descriptors
for assumed reaction intermediates, and adopting simplified
descriptors. Subsequently, we used the model to search for
promising experimental conditions such as catalysts and
substrates to improve the conventional yields. In addition,
we proposed a method to search for new experimental
conditions by utilizing not only a target experimental dataset
but also datasets collected from scientific papers. To validate
the effectiveness of the proposed method, we verified the
proposed experimental conditions by conducting actual
syntheses.

■ METHODS
After the target reaction system in this study is described,
methods A through F, which are the descriptor calculation
methods developed in this study, are explained.
Target Reaction System. In this study, we used an

experimental dataset for the reactions of aryl halides 1 with p-
toluidine 2 (3.0 mol equiv) and phenylboronic acid 3 (1.5 mol
equiv) using nickel catalysts (0.5 mol %) with/without ligands
in the presence of K3PO4 (3 mol equiv), as shown in Figure 1.
The reaction system includes two reaction pathways that occur
simultaneously: Buchwald−Hartwig-type cross-coupling
(BHCC)19 and Suzuki−Miyaura-type cross-coupling
(SMCC).20 The SMCC reaction mainly proceeds when
substrate 1 is an aryl chloride (X = Cl), whereas the BHCC
reaction mainly proceeds when substrate 1 is an aryl iodide (X
= I); however, the detailed mechanisms underlying this
selectivity are not clear.21 Therefore, we analyzed an

experimental dataset consisting of the yields of the products
of the BHCC and SMCC reactions when the functional group
X of substrate 1 is changed to Cl, Br, and I, the functional
group R of substrate 1 is changed to Me and OMe, and the
transition-metal catalyst is changed. All experimental con-
ditions were the same except for substrate 1 and the transition-
metal catalyst. The objective variables y were the yields [%] of
compound 4 (product of the BHCC reaction) and compound
5 (product of the SMCC reaction). There were 73 samples in
our dataset.

Method A. In method A, the molecular descriptors are
calculated from the chemical structures of substrate 1 and the
catalyst, and the calculated descriptors are combined to form x.
The 200 molecular descriptors for substrate 1 and those for the
catalyst are calculated with RDKit.22 The RDKit descriptors
contain basic descriptors such as the number of atoms for each
atom type and molecular weight, descriptors including
fragment information, topological descriptors, and physico-
chemical descriptors.23 When there are other chemical
structures such as ligands, their molecular descriptors are
also calculated and combined into x.

Method B. In method A, the descriptors of the two
compounds (substrate and catalyst) are simply combined,
resulting in a large x and thus the risk of overfitting. In method
B, x is reduced by assuming the reaction intermediate shown in
Figure 2. Since the BHCC and SMCC reactions proceed along

a common reaction pathway until oxidative addition, a reaction
intermediate that is expected to form in the common reaction
pathway is prepared. Molecular descriptors are calculated for
the reaction intermediate with RDKit and denoted as x,
allowing us to consider information for substrate 1 and the
catalyst simultaneously.

Method C. The size of x can be reduced from those of
methods A and B by simplifying the information for the
substrate and catalyst. In method C, the substrate functional
group R (=Me, OMe), halogen X (=Cl, Br, I), the catalyst
transition metal M (=Pd, Ni, Fe, etc.), and ligand L (=dppf,
1,5-cyclooctadiene, etc.) are represented by dummy variables
of 0 (absence) or 1 (presence). If substituents and compounds
are used, the variable is set to 1 and if not, it is set to 0. In
addition, the total number of ligands is also added to x.

Method D. In method C, when designing new substrates
and catalysts, we can use only R, X, L, and M that exist in

Figure 1. Target reaction system.

Figure 2. Assumed reaction intermediate.
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previous substrates and catalysts from the employed dataset. In
method D, the molecular descriptor of L in the catalyst is
calculated to be able to design any ligands. RDKit is used to
calculate the molecular descriptors. For catalysts with more
than one L, the weighted average of each molecular descriptor
relative to the coordination number is used as x. As a result, we
can predict the y-values for new chemical structures and their
combinations for L. The substrate and R, X, and M are
represented by 0 and 1 as in method C.

Method E. While methods A−D employ the chemical
structures of the molecules and simplified R, X, L, and M,
electronic information for each molecule is also important for
yield prediction. In method E, we use pymatgen,24 an open-
source Python library for materials analysis, to calculate the M
descriptors and Spartan,25 a molecular modeling software, to
calculate the L descriptors for the transition-metal catalysts. In
this study, five descriptors were calculated using pymatgen:
atomic weight, atomic radius, number of outermost electrons,

Table 1. Calculated rDCV
2 and MAEDCV of the Best Models for Each Yield Using Our Dataset

4 (BHCC) 5 (SMCC)

regression method rDCV
2 MAEDCV regression method rDCV

2 MAEDCV

Method A XGB 0.449 11.0 XGB 0.508 15.5
Method B XGB 0.099 15.4 GP 0.276 19.6
Method C XGB 0.783 7.4 LASSO 0.563 15.2
Method D RF 0.713 8.5 LASSO 0.495 16.4
Method E RF 0.574 10.2 RF 0.507 16.2
Method F LASSO 0.530 11.6 EN 0.446 16.1

Figure 3. Actual vs predicted yields after DCV for each descriptor calculation method for compound 4 (BHCC).
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volume, and electronegativity. Using Spartan, 18 descriptors
such as molecular weight, polar surface area, HOMO, LUMO,
polarizability, and number of hydrogen-bond acceptors and
donors were calculated. When the catalysts have two or more
L, the descriptors for each L are weighted by the coordination
number and averaged as x. The substrate descriptors are
calculated with RDKit.
Method F. If the chemical structures of the substrates and

catalysts are similar in the two experiments, the yields will also
be similar. In method F, the similarities in the chemical
structures of the substrate and catalyst in the training data are
combined into x. The similarity in this study is the Tanimoto
coefficient calculated based on Morgan fingerprints in RDKit.
When the number of samples in the training data is m, the
number of descriptors is 2m. When there are other chemical
structures such as ligands, their structural similarities are added
to x as descriptors.
Applicability Domain. Applicability domains (ADs)26 for

the yield prediction models were set since the performance of
the model is unreliable when predicting new samples in

extrapolation regions. In this study, we used the distances
calculated by the k-nearest-neighbor algorithm27 as an
indicator of an AD. When a new sample is obtained, the
average of the Euclidean distances of the k-nearest-neighbor
samples from the new sample is calculated. When the average
is lower than the threshold, the sample is inside the AD. The
threshold was set as 99.6% of the averages in the ascending
order in the training data. The threshold comes from the three-
sigma rule,28 and the probability of samples within the AD
would be 0.996.

■ RESULTS AND DISCUSSION
Our dataset consisted of 73 experiments with different
experimental conditions for the substrates and catalysts. The
y-variables are the yields [%] of compound 4 (BHCC) and
compound 5 (SMCC), as shown in Figure 1. Since the yield of
compound 4 did not exceed 10% when X was Cl (aryl
chloride) in substrate 1 in our dataset, we aimed to find
experimental conditions with yields exceeding 10% using the
aryl chloride. The proposed methods A−F were used to

Figure 4. Actual vs predicted yields after DCV for each descriptor calculation method for compound 5 (SMCC).
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investigate x. For each x, PLS, LASSO, RR, EN, SVR, GPR,
RF, GBDT, XGB, and LGB were used to construct regression
models. Because of the small sample size, we used double
cross-validation (DCV)29 to evaluate the yield predictive
ability of the models, where the outer cross-validation (CV)
was a leave-one-out CV and the inner CV was a fivefold CV.
Since the outer CV was a leave-one-out CV, there was only one
way to separate training data and test data. In other words, we
repeated one sample for test data and the rest for training data
for the total number of samples. The hyperparameter in each
regression method was optimized in the inner CV. Candidates
for the number of components in PLS were 1, 2, ..., and 20,
candidates for the regularization parameter in RR are 2−15,
2−14, ..., and 29, candidates for the regularization parameter in
LASSO are 2−15, 2−14, ..., and 2−1, candidates for the
regularization parameter in EN are 2−15, 2−14, ..., and 2−1,
candidates for the weight in EN are 0, 0.01, 0.02, ..., and 1,
candidates for the regularization parameter in SVR are 2−5, 2−4,
..., and 210, candidates for the tolerated error are 2−10, 2−9, ...,
and 20, candidates for the parameter in the Gaussian kernel
function are 2−20, 2−19, ..., and 210, and candidates for the rate
of the number of X used in RF are 10, 20, ..., and 90%.
For each x, DCV was performed for all the regression

analysis methods, and the coefficient of determination after
DCV (rDCV

2) was calculated. Then, the regression analysis
method with the largest rDCV

2 was selected for each x. Table 1
shows the prediction results of the regression methods selected
for each x, where MAEDCV indicates the mean absolute error
after DCV. In addition, plots of the measured and predicted
yields after DCV are shown for each x in Figure 3 for
compound 4 (BHCC) and in Figure 4 for compound 5
(SMCC). As observed in Table 1, method C had the highest
rDCV

2 and lowest MAEDCV for the yields of both compounds 4
and 5, which indicated that method C had the highest
prediction accuracy. As shown in Figures 3 and 4, there were
no outliers in the results of method C, and the yields were well
predicted from low to high values. This is because the
simplified substrate and catalyst information can properly
model the relationship between x and y, and the size of x is
reduced to prevent overfitting. On the other hand, method B
had the lowest rDCV

2 and highest MAEDCV for the yields of
both compounds 4 and 5, indicating that method B had the
lowest prediction accuracy. This illustrated that it would be
difficult to construct predictive models with descriptors for the
assumed reaction intermediates shown in Figure 2. We
confirmed that appropriate modeling methods can be
discussed while simultaneously considering substrate and
catalyst descriptors from synthetic experiments and regression
analysis methods.
To verify the effectiveness of the constructed yield

prediction models, the yields of compounds 4 and 5 were
predicted from 63 experimental conditions including new
combinations of substrates and catalysts that differed from the
combinations in our existing dataset. The model constructed
with method C and XGB was used to predict the yield of
compound 4, and the model constructed with method C and
the LASSO was used to predict the yield of compound 5. From
the prediction results, we performed synthesis experiments
using the experimental conditions with the highest predicted
yields of compounds 4 and 5, and the actual yields were tested
using the same solvent, base, reaction time, and reaction
temperature as those in our dataset. Table 2 shows the
predicted and measured yields of compounds 4 and 5. The

difference between the predicted and measured yields of
compounds 4 and 5 were low for both samples 1 and 2,
indicating that the yield prediction models had a high accuracy.
It was confirmed that the proposed method could construct
yield prediction models with a high predictive ability for a
system in which two reactions proceed simultaneously;
furthermore, the models can accurately predict yields for new
experimental combinations of substrates and catalysts with
high reproducibility.
Although yield prediction models for compounds 4 and 5

were developed using only our dataset, and new experimental
conditions were designed by changing the substrate and
catalyst, we could not meet the target yield values. To address
this, it was necessary to expand the ADs of the yield prediction
models and design new experimental conditions. Therefore,
after the two samples in Table 2 were added to the initial 73
samples, we collected experimental datasets described in
scientific papers on BHCC and SMCC reactions30−33 and
added them to our dataset to increase the scope of the catalyst
structures and experimental conditions. The added exper-
imental datasets included catalysts with transition metals such
as Ni, Pd, Cu, Fe, and so forth and ligands that are different
from our dataset. The collected datasets also included data for
ligands, which play an important role in stabilizing and
activating the central metal atom of the catalyst and fine-tuning
the reaction selectivity. While it is necessary to represent not
only the substrates and catalysts but also the ligands as x, it is
possible to design all three. For the BHCC reaction, 150
samples were added for a total of 225. For the SMCC reaction,
55 samples were added for a total of 130.
In this analysis, to explore a wide range of experimental

conditions, we used methods A and F, which enabled abstract
representations of x. For each method, the different regression
analysis methods (PLS, LASSO, RR, EN, SVR, GPR, RF,
GBDT, XGB, and LGB) were used to construct yield
prediction models, and the predictive ability of the models
was evaluated with DCV. The values of rDCV

2 and MAEDCV for
the models with the best DCV results for each yield and each
descriptor calculation method are shown in Table 3, and plots
of the measured and predicted yields are shown in Figure 5.
Although the models could predict the overall trends of the
yields for both BHCC and SMCC, there existed samples in
which the predicted values became constant in BHCC.
However, this phenomenon occurred mainly at low yields
and would not be a problem in models that predict high yields.
The prediction errors of method F were lower than those of
method A, especially at higher yields. This is a desirable result
when designing experimental conditions for higher yields.
Based on the prediction results, a combination of method F
and GP was used to predict the yield of compound 4 (BHCC),
and a combination of method F and LASSO was used to
predict the yield of compound 5 (SMCC).

Table 2. Predicted and Experimental Yields for New
Combinations of Substrates and Catalysts

sample 1a sample 2b

yield of 4 (BHCC) [%] prediction 70 0
experiment 71 0

yield of 5 (SMCC) [%] prediction 14 94
experiment 16 96

aR is OMe, X is Cl, and the catalyst is Ni(acac)2(tolNH2)2.
bR is Me,

X is I, and the catalyst is Pd(dppf)Cl2.
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The model with the best DCV results for each yield was
used to investigate new experimental conditions to achieve the
target yield. In this study, we designed experimental conditions
with higher predicted yields than existing combinations of
substrates and catalysts by adding ligands. When the functional
group X = Cl (aryl chloride) was used in substrate 1, the yield
of compound 4 did not exceed 10% in our dataset, and thus,
we aimed to find experimental conditions that would surpass
this. Since we focused on the combination of catalysts and

ligands, we used the same experimental conditions for the
solvent, base, reaction time, and reaction temperature as in our
dataset. For the experimental catalysts and ligands, 33 catalysts
from our dataset and 23 from collected papers30−33 were
employed, and 52,000 compounds from the Namiki Shoji
database34 were used as ligands.
A total of 1,716,759,000 new experimental conditions

combining catalysts and ligands were input into the yield
prediction models, and the experimental conditions with high

Table 3. Calculated rDCV
2 and MAEDCV of the Best Models for Each Yield Using Our Dataset and Datasets Collected from

Scientific Papers

4 (BHCC) 5 (SMCC)

regression method rDCV
2 MAEDCV regression method rDCV

2 MAEDCV

Method A XGB 0.449 11.0 XGB 0.508 15.5
Method F LASSO 0.530 11.6 EN 0.446 16.1

Figure 5. Actual vs predicted yields for each yield and the descriptor calculation method.
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Table 4. Estimated and Experimental Yields for Each Experimental Condition

yield of 4 (BHCC) [%] yield of 5 (SMCC) [%]

entry catalyst ligand prediction experiment prediction experiment

1 Ni(acac)2 L2 36 6.3 28 15
2 Ni(acac)2 L3 35 0 35 0
3 Ni(acac)2 dppf 34 9.3 38 14
4 Ni(acac)2 dppb 35 0 38 25
5 Ni(acac)2 Xphos 35 33 37 30
7 Ni(acac)2(tolNH2)2 Xphos 16 3.4 4.5 9.0
6 NiI2 Xphos 15 4.4 51 80
8 NiCl2 Xphos 15 7.8 35 37
9 NiCl2 L2 19 0 39 20
10 NiCl2 (6H2O) L2 19 0 44 42
11 NiCl2 (6H2O) L4 17 0 28 7.8
12 NiCl2 (6H2O) L1 17 0 44 28
13 Ni(acac)2 Ruphos 15 12 16 35
14 Ni(acac)2 Sphos 15 4.7 16 11
15 Ni(acac)2 L5 12 5.1 16 23
16 Ni(acac)2(tolNH2)2 L6 10 9.1 12 37
17 Ni(acac)2(tolNH2)2 L7 7.4 6.4 13 31
18 Ni(acac)2(tolNH2)2 L8 7.3 12 11 32
19 Ni(acac)2(tolNH2)2 L9 7.1 15 10 16
20 Ni(acac)2(tolNH2)2 L10 6.4 1.0 5.6 15

Figure 6. Ligand structures.
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predicted yields were selected. The predicted and actual yields
for the selected experimental conditions are shown in Table 4,
and the ligand structures are shown in Figure 6. The
MarvinView35 software package, developed by ChemAxon,
was used to visualize the chemical structures. Simplified
molecular input line entry system (SMILES) of the ligandes is
shown in Table S1 in Supporting Information. The prediction
errors in Table 4 come from the errors in the training data, as
shown in Figure 5. Furthermore, the reason why the prediction
errors in Table 4 were larger than those in Table 2 would be
that new catalysts were explored in Table 4, while the models
predicted yields of new combinations of existing substrates and
catalysts. For the aryl chloride substrate, when nickel(II)
bis(acetylacetonate) (Ni(acac)2) was used as the transition-
metal catalyst and 2-dicyclohexylphosphino-2′,4′,6′-triisoprop-
yl-1,1′-biphenyl (Xphos) was used as the ligand, the actual
yield of compound 4 (BHCC) was 33%. This greatly exceeds
the 10% yield of the BHCC reaction with Ni(acac)2 as the
catalyst without the use of a ligand. In addition, the yield of
compound 4 exceeded 10% using not only the existing ligands
but also compounds from the Namiki Shoji database that have
not been used as ligands. These results confirmed that the
proposed method can be used to find new experimental
conditions that will exceed the existing yields.

■ CONCLUSIONS

In this study, we targeted a reaction system where BHCC and
SMCC reactions proceed simultaneously and analyzed an
experimental dataset with machine learning. We proposed six
methods to represent the two reactions with the substrates and
catalysts as descriptors and constructed yield prediction
models using regression methods for each reaction. When
only our dataset was used, method C, in which the chemical
structures of the substrates and catalysts are simply represented
as substituents, had the highest prediction accuracy. After
predicting the yields for new combinations of substrates and
catalysts using the constructed models, the predictions were
confirmed to be in close agreement with the actual
experimental results by synthetic experiments.
Then, datasets collected from scientific papers were added to

our dataset, and potential combinations of catalysts and ligands
were searched to exceed the existing yields with an aryl
chloride substrate. Although there were no experimental data
with ligands in our dataset, it was possible to search for ligands
by adding collected datasets that included ligands as an
experimental condition. A total of 1,716,759,000 new
experimental conditions combining catalysts and ligands were
input into the yield prediction models, and the experimental
conditions with high predicted yields were selected. While the
maximum yield in the existing data of the BHCC reaction was
10% with the aryl chloride substrate, it was experimentally
confirmed that a yield of 33% could be achieved by adding the
ligand predicted with the developed model.
Although it is important to discuss the mechanism that

determines the selectivity of SMCC and BHCC based on the
constructed models, this is difficult at present and, thus, is a
future challenge. In summary, we have accurately predicted
yields from experimental conditions, proposed experimental
conditions exceeding the conventional yields, and experimen-
tally verified the proposed reaction conditions. We expect the
proposed method to accelerate catalyst development.
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