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ABSTRACT We announce the draft genome sequences of six strains of Lactococcus
lactis (EKM101L, EKM102L, EKM201L, EKM203L, EKM501L, and EKM502L). These can-
didate plant probiotics were isolated from surface-sterilized seeds of Cucumis sativus
L. (cucumber), Cucumis melo L. (cantaloupe), and Cucurbita pepo var. turbinate (acorn
squash). They display beneficial activities, including biocontrol.

Lactic acid bacteria produce diverse antimicrobial peptides, leading to their
extensive use in the food industry, in crop production, and as human probiotics

(1, 2). Lactococcus is a prevalent genus of the cucurbit seed microbiome (3).
Lactococcus comprises 11 species, including Lactococcus lactis, a safe and important
industrial bacterial species (4). Seeds of Cucumis sativus L. (cucumber), Cucumis melo
L. (cantaloupe), and Cucurbita pepo var. turbinate (acorn squash) were surface
sterilized and then gently ground in 50 mM Na2HPO4 buffer using autoclaved
mortars. To isolate seed-associated endophytes, the ground seed suspensions were
cultured by streaking onto peptone-dextrose agar (PDA), Reasoner’s 2A (R2A) agar,
and LGI agar (5) plates and then incubated for up to 7 days at 28°C (6). Six strains
of L. lactis (EKM101L, EKM102L, EKM201L, EKM203L, EKM501L, and EKM502L) were
isolated and identified using the 16S rRNA universal primer pair 799F/1492R, and
the gene sequences were deposited in GenBank (accession numbers KT281324,
KT281446, KT281325, KT281327, KT281328, and KT281329, respectively) (6). In vitro
characterization revealed the ability of all these strains to solubilize mineral phosphate
and to suppress oomycetes (Phytophthora capsici and Pythium aphanidermatum) (6, 7).
Concerning additional tested traits, only EKM102L and EKM501L produced auxin and
RNase, while EKM101L produced siderophores, acetoin, and RNase (6, 7). Furthermore,
only EKM203L, EKM501L, and EKM502L reduced the disease index of the foliar fungal
pathogen Podosphaera fuliginea (cucumber powdery mildew) in planta (7).

From �80°C original glycerol stocks, strains were cultured on LB agar, and single
colonies were incubated overnight in LB broth at 37°C at 250 rpm. Genomic DNA was
extracted from pellets using the DNeasy UltraClean microbial kit (product number 12224-
50; Qiagen) and then adjusted to 50 ng/�l. Libraries were prepared using the TruSeq DNA
Nano library preparation kit (KAPA HyperPrep kit, product number KK8504) and sequenced
using an Illumina NovaSeq 6000 system, generating 1,726,647 (EKM101L), 1,697,818
(EKM102L), 1,710,169 (EKM201L), 1,689,628 (EKM203L), 1,808,657 (EKM5101L), and
1,715,177 (EKM502L) raw reads in the 150-bp paired-end format. Using the EvoCAT (Evo-
gene Clustering and Assembly Toolbox) pipeline, raw reads were filtered (Phred quality
score of 30), de novo assembled, and then taxonomically identified using KmerFinder v3.1
(8), which resulted in 180-fold (EKM101L), 181-fold (EKM102L), 175-fold (EKM201L), 179-fold
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(EKM203L), 191-fold (EKM5101L), and 181-fold (EKM502L) sequence coverage, compared to
L. lactis subsp. lactis strain S0 (GenBank accession number CP010050.1), with query
coverage of 72.83% to 73.17%. The genome annotation was performed using the NCBI
Prokaryotic Genome Annotation Pipeline (PGAP) v4.12 (9). Default parameters were
used for all software unless otherwise specified. Assembly metrics and annotated
features are shown in Table 1.

From the annotated genomes, we detected coding regions predicted to underlie
the previously identified beneficial traits, namely, phosphatase PAP2 family protein
(phosphate solubilization) (10), bacteriocins (11), flavin reductase family protein
(H2O2 production) (12), phosphoketolase family protein (lactic acid production) (13,
14), gallidermin/nisin family lantibiotic (11), serine protease (15, 16), and chitinases
(17, 18). Additional genes were detected in all strains despite the corresponding
activities not being consistently expressed (6, 7), including those encoding 2,3-
butanediol dehydrogenase (acetoin production) (19) and indole-3-glycerol phos-
phate synthase TrpC (auxin/indole-3-acetic acid production) (20, 21). Interestingly,
ferrous iron (Fe2�) transport proteins A and/or B were identified; these are major
components of the Feo system for the acquisition of Fe2�, which is the abundant
form of iron under anaerobic conditions or low pH (22). These findings reveal the
genetic reservoir of L. lactis, consistent with its diverse use in the food industry and
as plant and human probiotics.

Data availability. This whole-genome shotgun project has been deposited in DDBJ/
EMBL/GenBank, along with raw Illumina reads in the SRA, at the accession numbers noted
in Table 1.
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