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Genomic imprinting is an epigenetic phenomenon that results in unequal expression of
homologous maternal and paternal alleles. This process is initiated in the germline, and
the parental epigenetic memories can be maintained following fertilization and induce
further allele-specific transcription and chromatin modifications of single or multiple
neighboring genes, known as imprinted genes. To date, more than 260 imprinted genes
have been identified in the mouse genome, most of which are controlled by imprinted
germline differentially methylated regions (gDMRs) that exhibit parent-of-origin specific
DNA methylation, which is considered primary imprint. Recent studies provide evidence
that a subset of gDMR-less, placenta-specific imprinted genes is controlled by maternal-
derived histone modifications. To further understand DNA methylation-dependent
(canonical) and -independent (non-canonical) imprints, this review summarizes the loci
under the control of each type of imprinting in the mouse and compares them with
the respective homologs in other rodents. Understanding epigenetic systems that differ
among loci or species may provide new models for exploring genetic regulation and
evolutionary divergence.

Keywords: genomic imprinting, DNA methylation, non-canonical imprinting, histone modification, rodent,
germline differentially methylated region, mouse genome, epigenetics

RODENTS: SYMBOLIC MODELS IN BIOMEDICAL AND
GENETIC RESEARCH

Rodents such as mice and rats are commonly used as representative laboratory animals. The
genomes of these organisms have been progressed along with the human genome project; thus,
the C57BL/6 mouse (Mus musculus) and Brown Norway rat (Rattus norvegicus) become the second
and third mammals to have their genomes sequenced in 2002 and 2004, respectively (Waterston
et al., 2002; Gibbs et al., 2004). Their genomes of approximately three billion base pairs each
contains roughly the same number of genes as the human genome. Furthermore, almost all human
genes associated with diseases have counterparts in the rodent genome, which appear highly
conserved throughout mammalian evolution. Thus, these experimental rodents generally deepen
our understanding of mammalian genetic and (epi-)genomic regulatory systems.

Mammals are diploid organisms arising from the fusion of two parental gametes, with each
donating one set of autosomal chromosomes (19 autosomes in mice, 20 in rats, and 22 in humans)
plus one set of sex chromosome (X or Y) to the offspring. According to Mendel’s law, diploid

Abbreviations: DNMT, DNA methyltransferase; gDMR, germline differentially methylated region; ICR, imprinting control
region; lncRNA, long non-coding RNA; LTR, long terminal repeat; piRNA, Piwi-interacting RNA; sDMR, secondary
differentially methylated region.
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cells contain parental copies of each autosomal gene, which
are predicted to show the same transcription state. However,
“genomic imprinting” is a form of non-Mendelian inheritance
that results in parent-of-origin allele-specific gene expression
of autosomal loci or of loci on the diploid X chromosome
(only in extra-embryonic tissues in females). Polymorphism
information between strains or individuals helps distinguish
between paternal and maternal alleles. It was only natural that
the phenomenon of genomic imprinting was discovered and
well-investigated in mice, where nuclear transfer and genetic
engineering technologies have always been developed and where
numerous strains (polymorphisms between strains can serve as
genetic markers of parent-of-origin in allele-specific analysis)
have been established and maintained.

DISCOVERY OF GENOMIC IMPRINTING
IN MAMMALS

In 1984, two laboratories published landmark papers that
reported a new phenomenon in mammalian genome biology
(Barton et al., 1984; McGrath and Solter, 1984). Both studies
independently performed pronuclear transfer experiments
from fertilized mouse eggs to produce androgenetic and
gynogenetic embryos containing only sperm-derived or
oocyte-derived chromosome sets. These “uniparental”
embryos could not survive to term but could develop to
some extent with sex-specific developmental abnormalities.
Androgenetic embryos preferentially develop extra-embryonic
and placental structures at the expense of embryo development.
Conversely, gynogenetic embryos (or parthenogenetic embryos
by artificial activation of oocytes) have poor growth of
placental lineages and developmental arrest, possibly due
to extra-embryonic defects. These opposite phenotypes
underlie the functional differences in developmental genes
in paternal and maternal genomes. The mice that were
bred to have uniparental disomies, in which either single or
partial chromosomes are inherited from only one parent,
for individual chromosomes also show aberrant phenotypes,
such as overgrowth, growth retardation, or abnormal behavior
(Cattanach, 1986).

Nevertheless, not all chromosomes produce abnormalities
when present as disomies, depending on which chromosome
or part is made uniparental; however, those commonly lead
to striking phenotypic differences. These investigations revealed
the requirement of both maternal and paternal genomes
for normal development, which was tied to an intriguing
biological phenomenon called genomic imprinting. Uniparental
inheritance of the genome or chromosome occurs spontaneously
in humans, resulting in early pregnancy losses, like androgenetic
and parthenogenetic conceptuses (hydatidiform moles and
benign ovarian teratomas), or moderate to severe developmental
disabilities, known as imprinting diseases (Linder et al., 1975;
Kajii and Ohama, 1977; Wake et al., 1978; Kalish et al., 2014).
Subsequent evolutionary and genetic studies of imprinted loci
have shown that this phenomenon is present only in placental
mammals among vertebrates.

The surprising finding of these studies was that mammalian
genes could function differentially depending on whether they
originated from the mother or father. Before the study of
uniparental disomies, a “maternal-effect” locus called Tme (T-
associated maternal effect) was identified on the proximal
mouse chromosome 17 overlapping deletions of maternal-effect
lethal mutants, like Thp or Tlub2 (Johnson, 1974; Winking and
Silver, 1984). The region was later revealed to be the locus of
Igf2r, expressed exclusively from the maternally inherited allele;
therefore, its expression is dependent on the “parent-of-origin.”
Simultaneously, the closely linked H19 and Igf2 genes, which are
reciprocally imprinted, were identified in mouse chromosome
7; H19 produces a long non-coding RNA (lncRNA) exclusively
expressed from the maternal allele, and Igf2 originates from
the opposite allele. Interestingly, the opposite imprinting of Igf2
and its scavenging receptor gene, Igf2r, demonstrates conflicting
parental effects of growth promotion and growth restriction,
which supports the classic “parent-offspring conflict theory” for
the evolution of genomic imprinting (Trivers, 1974; Moore and
Haig, 1991).

CANONICAL GENOMIC IMPRINTING IS
MEDIATED BY MATERNAL OR
PATERNAL DNA METHYLATION

The discovery of the first endogenous imprinted genes in
1991 (Barlow et al., 1991; Bartolomei et al., 1991; DeChiara
et al., 1991), which were differentially expressed from the
maternal and paternal alleles, sparked initial efforts to elucidate
the mechanisms of imprint establishment, maintenance, and
erasure that together control the timing and placement of
genomic imprinting. One prominent candidate of the non-
Mendelian system is epigenetic regulation, in which DNA
methylation (mainly occurs in CpG dinucleotides) is the most
studied mechanism and has been shown to play a key role in
mouse models of genomic imprinting and fetal reprogramming.
A strong link between DNA methylation and imprinting
regulation has been indicated by the cases of imprinted transgenic
mouse lines. In a few of these mice the foreign transgene becomes
methylated in a parent-specific manner in the gamete, inherited
with parent-of-origin specific methylation into the diploid cells
of embryo, and subsequently, the modification is erased and
reestablished upon passage through the germ line (Chaillet et al.,
1991).

Allele-specific DNA methylation of imprinted regions, also
known as imprinted germline differentially methylated regions
(gDMRs), has been studied as the best candidate for the molecular
mechanism of inheriting parental-specific imprints following
fertilization. Because parental imprints must be established
when the parental genomes can be distinguished, investigators
assayed methylation acquisition during gametogenesis, when
the maternal and paternal genomes are entirely separated
and can be independently epigenetically modified. Paternal-
specific methylation of the gDMRs at three imprinted loci
(H19 and subsequently discovered Dlk1-Meg3 and Rasgrf1) is
acquired prenatally in prospermatogonia before the onset of
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meiosis in the male germline (Davis et al., 2000; Kato et al.,
2007). In contrast, maternal-specific gDMR methylation occurs
postnatally in growing oocytes, with different gDMRs (at least
21 maternal gDMRs have been identified in mice) that are
methylated at a slightly different time during oocyte growth
(Lucifero et al., 2004; Hiura et al., 2006). In both germlines,
DNA methylation is established through the action of de novo
DNA methyltransferase (DNMT) 3a and the accessory protein
DNMT3L (Bourc’his et al., 2001; Hata et al., 2002; Kaneda
et al., 2004). Although it is unclear how specific sequences are
chosen for allele-specific DNA methylation in the germline,
recent studies have demonstrated that histone modification
across gDMR sequences provides an essential instructive step for
DNMT proteins (Figures 1A,B). In oogenesis, the transcription-
dependent histone marker H3K36me3 (trimethylation of histone
H3 at lysine 36) guides DNA methylation over active gene
bodies, leading to the establishment of all maternal methylation
imprints (Kobayashi et al., 2012a; Veselovska et al., 2015; Xu
et al., 2019). Transcription start sites in oocytes are often oocyte-
specific (carried in part by retroviral promoters) and upstream of
canonical promoters and imprinted DMRs, hence transcription-
coupled DNA methylation spans these domains in an oocyte-
specific manner (Chotalia et al., 2009; Brind’Amour et al., 2018).
In fetal spermatogenesis, H3K36me2 (dimethylation of H3K36)
shapes the gene body and intergenic DNA methylation and
guides paternal methylation at the gDMRs (Shirane et al., 2020).
Only in Rasgrf1 gDMR, the Piwi-interacting RNA (piRNA)
pathway and the rodent-specific DNMT3C are also responsible
for the establishment of paternal DNA methylation (Watanabe
et al., 2011; Barau et al., 2016). In addition to imprinted
gDMRs, there are more than a thousand promoters or CpG
islands on non-imprinted genes that are differentially methylated
between oocytes and sperm; however, the vast majority lose
their differential marks during epigenetic reprogramming events
during early embryogenesis (Smallwood et al., 2011; Kobayashi
et al., 2012a). After fertilization, the paternal genome is
actively demethylated before the first DNA replication, whereas
the maternal genome is passively demethylated throughout
several rounds of DNA replication until the blastocyst stage.
Imprinted gDMRs are protected from these erasure events by
recruiting maintenance DNMT1 and accessory UHRF1 through
the recognition of a methylated sequence motif by the zinc-
finger proteins, ZFP57 and ZNF445, along with the interaction
of TRIM28 with histone methyltransferases (Sharif et al., 2007;
Hirasawa et al., 2008; Quenneville et al., 2011; Messerschmidt
et al., 2012; Takahashi et al., 2019).

At the end of 2018, at least 260 coding and non-coding genes
were found to be imprinted, and 24 imprinted gDMRs were
identified in the mouse genome (Tucci et al., 2019). Many of
these gDMRs act as imprinting control regions (ICRs) regulating
the monoallelic expression of the neighboring solo imprinted
gene and clusters of imprinted genes. The majority of maternal
ICRs directly regulate a promoter for either a messenger RNA
or a lncRNA by silencing one allele by DNA methylation. In
contrast, paternal ICRs are not located at promoters but rather
map to intergenic regions. However, the imprinting of gene
clusters often involves locus-specific and complex molecular

mechanisms, such as transcriptional silencing by an antisense
transcript and allele-specific chromatin changes at target genes or
cis-regulatory elements by the ICRs (Hark et al., 2000; Terranova
et al., 2008; Latos et al., 2012). These imprinted genes under
the control of ICRs also act as barriers to prevent mammalian
embryos from parthenogenesis (Kono et al., 2004; Kawahara
et al., 2007; Li et al., 2018). Thus, parent-of-origin specific DNA
methylation, also called “canonical imprinting,” is considered a
primary imprint marker that directly or indirectly controls most
imprinted genes, which are responsible for the abnormalities of
uniparental disomies or embryos.

NON-CANONICAL IMPRINTING IS
MEDIATED BY MATERNAL HISTONE
MODIFICATION

Although DNA methylation has been known to specify
imprinting, the possibility that histone modifications in the
gametes could also determine imprinting has also been
demonstrated (Okae et al., 2014). A subset of imprinted genes
is specifically paternally expressed in the placenta but not
imprinted in the embryo, and the establishment of a part of
such imprinted genes is independent of oocyte-specific DNA
methylation, as DNMT-deficiency in growing oocytes did not
affect the imprinted paternal expression of these genes in the
extra-embryonic lineage (Chen et al., 2019; Hanna et al., 2019).
The key gametic imprinting mark of the “non-canonical” (DNA
methylation-independent) imprinting is the repressive histone
mark H3K27me3 (trimethylation of H3 at lysine 27) in the
oocyte, which was found to transiently imprint several loci
within pre-implantation (Inoue et al., 2017a). Furthermore,
H2AK119ub1 (mono-ubiquitinated histone H2A at lysine 119)
was highly colocalized with H3K27me3 in oocytes, which is
equalized mainly at the two-cell stage but guides maternal
H3K27me3 inheritance after fertilization (Chen et al., 2021;
Mei et al., 2021). Thus, H2AK119ub1 and H3K27me3, which
are catalyzed by the polycomb repressive complexes (PRC1
and PRC2), mediate maternal allele-specific silencing of at
least seven imprinted genes, namely Sfmbt2, Phf17, Gab1,
Sall1, Platr20 (5133400J02Rik), Smoc1, and Slc38a4, in mice
(Figure 1C), several of which have been previously shown to
play important roles in placental function and development
(Itoh et al., 2000; Miri et al., 2013; Matoba et al., 2019).
Maternal H3K27me3 and H2AK119ub1 are not maintained
beyond pre-implantation development (Hanna et al., 2019;
Chen et al., 2021; Mei et al., 2021), and transition to a more
permanent epigenetic state is required to preserve paternal
expression during post-implantation development (Inoue et al.,
2017a; Chen et al., 2019; Hanna et al., 2019). The long
terminal repeats (LTRs) of endogenous retroviral elements
can act as alternative promoters for non-canonical imprinted
genes and paternal allele-specific accumulation of the active
histone mark H3K4me3 (trimethylation of H3 at lysine
4) occurs at these LTR promoters (Hanna et al., 2019).
Finally, these LTRs are methylated on the maternal allele in
extra-embryonic tissues; thus, maternally inherited H3K27me3
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FIGURE 1 | Epigenetic mechanisms of canonical and non-canonical imprinted gene regulation. There are several examples of different epigenetic inheritance
patterns between paternal (P) and maternal (M) alleles, that control paternally expressed protein-coding genes. (A) Paternal and (B) maternal germline differentially
methylated region (gDMR)-mediated canonical imprinting. H3K36 methyltransferases NSD1 and SETD2 have been shown to establish H3K36me2 or H3K36me3 in
pro-spermatogonia or oocytes and to be required for de novo DNA methylation at paternal or maternal gDMRs, respectively. In general, canonical imprinting is stably
maintained throughout somatic life and mediates monoallelic silencing of imprinted genes or non-coding RNAs. (C) Non-canonical imprinting, such as Gab1 loci.
H2AK119ub1 guides maternal inheritance and zygotic deposition of H3K27me3, and thus, maternally inherited H3K27me3 is maintained until the blastocyst
(pre-implantation) stage. Then, maternal H3K27me3 silences the LTR retrotransposon-derived alternative promoter, which becomes actively transcribed on only the
paternal allele. Although maternal H3K27me3 is lost after implantation, maternal allele-specific DNA methylation is established as an imprinted sDMR in
extra-embryonic tissues, and thus, monoallelic paternal expression of non-canonically imprinted LTRs and nearby protein-coding genes can be maintained. In the
post-implantation epiblast, these ERVs are silenced by DNA methylation in both alleles, resulting in a loss-of-imprinting in somatic lineages (not shown in the figure).
(D) Zdbf2 locus is a unique example of secondary imprinting. Transient paternal allele-specific expression of a long isoform transcript of Zdbf2 (Liz, also called
Gpr1as) originated from the maternal gDMR, occurs in the pre-implantation embryo. Liz continues to be paternally expressed by the persistence of the maternal
gDMR in extra-embryonic tissues. In the embryonic tissues, maternal gDMR is biallelically methylated and loses its imprinted status and Liz transcription; However,
Zdbf2 retains imprinted expression because of acquired paternal DNA methylation at the sDMR and active H3K4me3 at the Zdbf2 promoter via traversing Liz
transcription during gastrulation.
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imprinting transitions to imprinted DNA methylation at the
secondary DMRs (sDMRs) and can act as a long-term imprinting
in placental linage.

Notably, oocyte-derived H3K27me3 also serves as a maternal
imprint for the lncRNA Xist, triggering paternal X chromosome
inactivation in mouse female pre-implantation embryos and
extra-embryonic tissues (Inoue et al., 2017b). Like non-
canonical imprinting at autosomal loci, X inactivation can
be clonally inherited and suppress the entire chromosome
through several epigenetic suppression pathways (Chen
and Zhang, 2020). In addition to H3K27me3 imprinting,
failure of X chromosome inactivation results in embryonic
lethality, emphasizing the developmental importance of these
interrelated processes. However, the functional and molecular
relationship between H3K27me3-mediated non-canonical
imprinting at autosomes and imprinted X chromosome
inactivation or what distinguishes these strategies for biological
diversity from DNA methylation-based canonical imprinting
remains unresolved.

SECONDARY DMRS: A LESSON FROM
ZDBF2 IMPRINTED GENE

Unlike gDMRs, imprinted sDMRs acquire allele-specific DNA
methylation during embryonic development, rather than
inheriting it from germ cells. Although secondary DMRs do
not function as primary imprinting markers, allele-specific
methylation of these regions frequently corresponds to
gene silencing in a tissue-specific manner, such as Cdkn1c
(Fan et al., 2005; Wood et al., 2010). Although sDMRs
may play a role in maintaining imprinted expression (John
and Lefebvre, 2011; Kobayashi et al., 2012b), they remain
untested in most regions. The majority of sDMRs at canonical
imprinted loci have been identified to be located within
the imprinted genes or clusters and acquire allele-specific
methylation by the hierarchical regulation of the gDMRs
(Stoger et al., 1993; Lopes et al., 2003; Yamasaki et al., 2005;
Williamson et al., 2011; Mohammad et al., 2012; Greenberg
et al., 2017; Saito et al., 2018). One mechanism across several
imprinted loci is the presence of a monoallelic transcript
from gDMR passing through regulatory elements such
as promoters and CpG islands (Ferguson-Smith, 2011).
Consequently, DNMT3B targets sites of transcriptional
elongation (Baubec et al., 2015), resulting in the acquisition
of DNA methylation along the transcribed allele. As not all
DMRs are located within transcribed regions, there must also
be alternative mechanisms to establish allelic methylation
at secondary loci.

Differences in the acquisition of sDMRs between embryonic
and extra-embryonic lineages have been observed across
several canonical imprinted domains (Lewis et al., 2004;
Sato et al., 2011; Duffie et al., 2014). In particular, the DMR
dynamics observed at Zdbf2 highlight epigenetic changes
in these developmental processes (Figure 1D). Zdbf2 is
a canonical, but unique, imprinted gene with paternal
expression and, paradoxically, a paternal DMR near its

promoter [the paradoxical finding of the paternal DMR
adjacent to a paternally expressed gene was later explained
through serial experiments systematically ablating epigenetic
modifiers (Greenberg et al., 2017)]. Early studies of Zdbf2
suggested that paternal DMR might be a gDMR because
the DMR is methylated in the sperm and not in oocytes
(Kobayashi et al., 2009). However, subsequent studies in
embryos showed that paternal DNA methylation was erased
in pre-implantation embryos and reset secondarily during
post-implantation development (Kobayashi et al., 2012b;
Duffie et al., 2014). This paternal sDMR was established by
the transient monoallelic expression of a long isoform of
Zbdf2 (Liz, also called GPR1AS in humans) originating from
an upstream transcription start site, which is regulated by a
maternal gDMR (Kobayashi et al., 2012b, 2013; Greenberg
et al., 2017). Thus, Liz-induced sDMR can be maintained in
embryonic lineage and lead to postnatal paternal expression of
Zdbf2. Meanwhile, Liz transcription is lost with the subsequent
monoallelic to biallelic DNA methylation switch of the upstream
maternal gDMR in embryonic tissues; conversely, the maternal
gDMR remains intact throughout the post-implantation
epigenetic programming in extra-embryonic tissues (Kobayashi
et al., 2013; Greenberg et al., 2017). Finally, the canonical
Zdbf2 promoter and exons remain silenced because of the
incomplete establishment of the paternal sDMR, and the
paternal expression of Liz continues throughout placental
development (Greenberg et al., 2017). Thus far, it remains
unclear why maternal gDMR persists in extra-embryonic tissues
but not in embryos.

Paternal DNA methylation at the Zdbf2 sDMR is
required to prevent the accumulation of H3K27me3,
thereby conferring an active chromatin state at the adjacent
Zdbf2 promoter (Greenberg et al., 2017). It is not clearly
understood what controls allele-specific DNA methylation
at the sDMRs of canonical and non-canonical imprinted
loci. However, further investigations into sDMRs at
both canonical and non-canonical imprinted loci will
provide valuable suggestions on how reprogramming or
preserving factors target imprinted epigenetic marks through
post-implantation development.

CANONICAL AND NON-CANONICAL
IMPRINTING IN THE OTHER RODENTS

Although mice are the primary research model used to study
genomic imprinting, imprinted regions have been described in
various mammals, including humans. Among the 24 gDMRs
in mice, two paternal (H19 and Dlk1-Meg3) and 16 maternal
(Gpr1as/Liz, Mcts2, Nnat, Nespas-Gnasxl, Gnas_exon1A, Peg10-
Sgce, Mest, Nap1l5, Peg3, Snrpn, Inpp5f_v2, Kcnq1ot1, Plagl1,
Grb10, Peg13, and Airn) gDMRs were conserved between
mice and humans (Table 1). Although some species-specific
maternal gDMRs drive oocyte transcription initiation in
lineage-specific LTR retrotransposons (Bogutz et al., 2019),
many canonical imprinted loci are well conserved among
species, and mice with deletions involving imprinted genes
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TABLE 1 | List of identified canonically and non-canonically imprinted regions.

Type of imprinting Mouse Rat*1 Hamster*1 Human

Paternal gDMRs (canonical imprinting) 3 loci (H19,
Dlk1-Meg3,
Rasgrf1)

3 loci (H19,
Dlk1-Meg3,
Rasgrf1)

2 loci*2 (H19,
Dlk1-Meg3)

2 loci (H19,
DLK1-MEG3)

Maternal gDMRs (canonical imprinting) 16 common
and 5 mouse
(rodent)-
specific loci
(Fkbp6, Cdh15,
Zrsr1, Slc38a4,
Impact)

Igf2r, Peg3
(common) and
Impact (rodent-
specific)

6 common loci
(Peg3, etc.) and
Impact (rodent-
specific)

16 common
and numerous
human-specific
loci

Non-canonical imprinting 7 loci (Sfmbt2,
Smoc1, Gab1,
etc.)

Sfmbt2 Smoc1 5 loci
(FAM101A,
etc.)

*1Basically, DNA methylation has not yet been well-analyzed in rats and hamsters. But imprinted regions that show imprinted expression of one or more homologous
genes at each differentially methylated region (DMR) locus are listed.
*2There is no direct evidence that Rasgrf1 is imprinted in the hamster. However, Dnmt3C, which mediates Rasgrf1 imprinting, is present in the hamster genome
(Barau et al., 2016).

or ICRs are used as models for human imprinting diseases
such as Prader–Willi, Angelman, Beckwith–Wiedemann, and
Silver–Russell syndromes (Chang and Bartolomei, 2020).
However, orthologs of non-canonical imprinted genes
are not likely to be imprinted in humans. Preliminary
studies in human embryos found five paternally expressed
genes that may be regulated by maternal H3K27me3,
but none of these have been reported to be imprinted in
mice (Zhang et al., 2019). Thus, current studies to date
do not provide any direct evidence for the existence of
non-canonical imprinting in mammals other than mice.
However, among these genes, Sfmbt2 and Smoc1 have
been reported to show an expression biased toward one
parental allele in rat and hamster placentas, respectively
(Wang et al., 2011; Brekke et al., 2016). This evidence
supports the hypothesis that non-canonical imprinting is
conserved in rodents.

Although rats and hamsters are widely used for physiological,
oncological, and other medical studies, mice have always
been used as embryological and genetic studies models. In
this situation, the number of imprinted genes identified
in these rodents is limited compared to mice. However,
because of the long history of laboratory animal research,
numerous mouse, rat, and hamster strains have been
established and maintained, and the genomes of some
have been sequenced. It is possible to identify imprinting
information from polymorphism information among strains
(Hermsen et al., 2015).

It has already been shown that single or multiple genes are
imprinted on the homologous regions of the three imprinted
clusters (H19, Dlk1-Meg3, and Rasgrf1) that undergo paternal
methylation imprinting in mice (Overall et al., 1997; Pearsall
et al., 1999; Dietz et al., 2012). In addition, Igf2r, Impact
[driven by a rodent-specific LTR (Bogutz et al., 2019)], and
Sfmbt2, which are controlled by maternal imprinting in mice,
are also expressed only from one parental allele in rats
(Mills et al., 1998; Okamura et al., 2005; Miri et al., 2013).

Sfmbt2 is almost exclusively expressed in extra-embryonic
tissues and is essential for the maintenance of trophoblast
progenitors. Intriguingly, Sfmbt2 contains a large cluster of
microRNA (miRNA) genes within intron 10, and these miRNAs
are also imprinted and essential for placental development
(Inoue et al., 2017c). Notably, Sfmbt2, known to undergo
non-canonical imprinting in mice, is also paternally expressed
in the rat placenta in the presence of a large cluster of
microRNAs (Wang et al., 2011). However, human, bovine,
and pig SFMBT2 are not imprinted and lack this block of
microRNAs. These observations strengthen the argument for
the recent evolution of Sfmbt2, in which the non-canonical
imprint (and the block of miRNAs) drives its placental
role in rodents.

In hamsters, reciprocal crosses between two dwarf hamsters
(Phodopus sungorus and Phodopus campbelli) result in strong
parent-of-origin effects on placental and embryonic growth
(Brekke and Good, 2014). The expression of imprinted genes
and related loss-of-imprinting has been evaluated to some
extent in dwarf hamster hybrids (Brekke et al., 2016). Single-
nucleotide variant-based allele-specific analysis of placental
expressed genes identified 88 imprinted candidate genes
in hamster autosomes. Among these, 18 genes overlapped
between hamster and mice, including Smoc1, a non-canonical
imprinted gene. Unexpectedly, Smoc1 shows the opposite
pattern of imprinting in hamster compared to mouse, with
the maternal allele being expressed. This is similar to a
report in human fibroblast cells, where SMOC1 showed
maternal-allele specific expression (Santoni et al., 2017). While
it is unclear whether this change is due to biological
differences or false bias of allele-specific analysis, well-known
examples of canonical paternally (Dlk1, Igf2, Impact, among
others) and maternally (such as H19) expressed genes were
also reidentified in hamster. Smoc1 encodes a multi-domain
secreted protein that may play a critical role in ocular and
limb development (Okada et al., 2011). However, Smoc1
is not likely associated with loss-of-imprinting in hybrid
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hamsters, and its functional role in placental development
remains unknown.

CONCLUSION

The discovery of a non-canonical imprinting mechanism
mediated by histone modifications is an important finding
that provides a new molecular mechanism for epigenetic
transgenerational inheritance. In contrast, the diversity of
canonical and non-canonical imprinting complicates our
understanding of the underlying mechanisms and a better
understanding of the differences among mammalian species
that bridge the gap between humans and mice. For instance,
the insertion of endogenous retroviral elements drives both
canonical and non-canonical imprinting (Bogutz et al., 2019;
Hanna et al., 2019). However, not all species-specific imprinted
regions can be explained by this mechanism. Revealing the whole
landscape of genomic imprinting in various rodents, such as rats
and hamsters, and non-human primates would be a significant

step forward in understanding the diversity of imprinting and
epigenetic regulation systems.
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