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Introduction

Entering our fifth decade, it is estimated that 
approximately 1-2% of muscle mass and strength decline 
annually, which are exacerbated during older age1,2. Age-
induced skeletal muscle dysregulation characterized as 
sarcopenia is defined by progressive loss of grip strength, 
gait speed, balance, and muscle mass, leading to higher risk 
of falls, fractures, moving difficulties, institutionalization, 
and lower lifestyle quality3-5. Considering that population 
increase over the age of 60 is expected to globally reach 
2.1 billion by 2050, shaping the fastest growing age 
group6, metabolic disturbances during ageing may vary 
among different ethnicities7 and their elevated frequency 
may impose great economic and public health burden8. 
Metabolic syndrome is accompanied by abdominal 
obesity and skeletal muscle insulin resistance, which 
may predispose increased adiposity and dysregulated 
skeletal muscle function9,10. Incidence of sarcopenia may 
concomitantly occur in obese patients, leading to additional 
poor health outcomes and the novel state of sarcopenic 
obesity. However, clear consensus is presently lacking due 
to uncertain ranges of fat-free fat index (fat-free mass/ 
height2) between obese and lean groups11.

Risk of sarcopenia and obesity are driven by multiple 
parameters, including chronic pro-inflammatory cytokine 
secretion, increased oxidative stress, physical inactivity, 
malnutrition12, and sleep disorders13. Modern societies have 
established an association between metabolic disorders and 
chronic sleep deprivation14 through excessive blue-light 
exposure from social media and computer screening, late 
social activities, and shift work15-17. Considering that older 
individuals are at great risk of obstructive sleep apnea, 
restless legs syndrome, anxiety disorders, dementia, and 
psychostimulants, which may trigger insomnia and further 
disturb sleeping patterns18,19, sleep disorders may be 
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accumulated in the future and perpetuate metabolic health 
problems20. Shortened and fragmented sleep may affect 
food cravings21 and appetite regulation through gut-brain 
axis disruption, which may alter energy balance22 and lead 

to weight gain23. Additionally, sleep restriction may interfere 
with steroid hormone production24,25, increasing muscle 
mass and strength declines26-28 and enhance sarcopenia 
risk29. The aim of this narrative review is to highlight the 

Study Design/Subjects Intervention Outcomes Study

RCT n=36; age 45±6 y  
BMI 25-40 kg/m2

CR (n=15) (29-43% of RMR) vs. C+SR 
(n=21) (169±75 min/wk) for 8 weeks

Fat mass lost ↑ in CR vs. C+SR Leptin ↓ in C+SR vs. CR 32

Randomized Crossover Trial  
n=30; age 36.7±10.8 y BMI 20.4-
40.7 kg/m2

4-days of 6 hr sleep ↓ 1-week washout 
↓ 4-days of 9 hr sleep

↑ food cue response in right inferior frontal gyrus & 
ventral medial prefrontal cortex in short vs. normal sleep

43

Randomized Crossover Trial  
n=9; age 23±2 y BMI 22.2±3.0 kg/m2

3-days of 3.5 hr vs. 7 hr sleep followed 
by a 7 hr recovery sleep night

PYY & Fullness ↓ Hunger ↑After 3.5-hr sleep vs. 7-hr 
sleep

44

Randomized Crossover Trial  
n=19; aged 23.5±0.7 y BMI 23.1±0.4 
kg/m2

4-days of 8.5 hr sleep ↓ 4-week 
washout ↓ 4-days of 4.5 hr sleep

Snacks and Sweets (total kcal) ↑ Ghrelin ↑ in short vs. 
normal sleep 

36

Randomized Crossover Trial  
n=31; aged 14-17 y BMI <30 kg/m2

5-days of 6.5 hr sleep ↓ 2-day washout 
↓ 5-days of 10 hr sleep

Kcal (11%) & Sweets (52%) ↑ in short vs. normal sleep 47

RCT n=25; aged 34.7±4.7 y  
BMI 23.6±1.3 kg/m2

5-days of 4 hr sleep vs. 5-days of 9 hr 
sleep

Superior & middle temporal & frontal gyri ↑ Left inferior 
parietal lobule ↑ Orbitofrontal Cortex ↑ Right Insula ↑ 
after viewing unhealthy foods in short vs. normal sleep

42

Randomized Crossover Trial  
n=41; aged 14-16 y BMI <30 kg/m2

5-days of 6.5 hr sleep ↓ 2-day washout 
↓ 5-days of 10 hr sleep

Desserts & sweets ↑ in short vs. normal sleep 33

Randomized Controlled Trial Sleep-
deprived (n=8; age 24.1±4.5 y) vs.  
Control (n=9; aged 25.4±4.7 y)  
BMI 18.5-24.9 kg/m2

8-days of 5.2 hr sleep vs. 8-days of 7 
hr sleep 

EI ↑ in short sleep (559 kcal/d) EI ↓ in normal sleep 
(118 kcal/d) Leptin ↔ Ghrelin ↔ between groups

35

Randomized Crossover Trial  
n=15; aged 22.4±4.8 y BMI 22.9 ±2.4 
kg/m2

3-days of 9 hr sleep ↓ 5-days of 5 hr 
sleep ↓ 3-days of 9 hr sleep

EE ↑ (~5%) EI ↑ Weight Gain ↑ (0.82±0.47 kg) in short 
vs. normal sleep

51

Randomized Crossover Trial  
n=7; aged 23.7±3.8 y BMI 22.8±1.6 
kg/m2

4-days of 4.5 hr sleep or 4-days of 8.5 
hr sleep

Body-weight ↔ pAkt 30% ↓ in short vs. normal sleep 49

Randomized Crossover Trial  
n=11; aged 23±2 y BMI (24.2±2.6 kg/
m2) and n=10; aged 60±5 y  
BMI (23.±1.9 kg/m2)

3-wk of 10 hr sleep ↓ 3-wk of 5.6 hr 
sleep & circadian disruption ↓ 9-days of 

recovery sleep

RMR ↓ (8%) Postprandial Glucose ↑ Insulin ↓ in short 
vs. normal sleep

50

Randomized Crossover Trial  
n=27; aged 35.3±5.2 y BMI 23.5±1.1 
kg/m2

5-days of 4 hr sleep ↓ 3-week washout 
↓ 5-days of 9 hr sleep

RMR ↓ Hunger ↑ Appetite for Sweet ↑ in short vs. 
normal sleep

45

Randomized Crossover Trial  
n=26; aged 35.1±5.1 y BMI 23.6±1.3 
kg/m2

5-days of 4 hr sleep ↓ 3-week washout 
↓ 5-days of 9 hr sleep

Food stimuli response in Putamen ↑ Nucleus 
Accumbens ↑ Thalamus ↑ Insula ↑ Prefrontal Cortex ↑ 

in short vs. normal sleep

41

Randomized Crossover Trial  
n=27; aged 30-45 y BMI 22-26 kg/m2

5-days of 4 hr sleep ↓ 3-week washout 
↓ 5-days of 9 hr sleep

Ghrelin ↑ in men during short vs. normal sleep Insulin ↓ 
in women during short vs. normal sleep

37

Randomized Crossover Trial  
n=30; aged 30-49 y BMI 22-26 kg/m2

5-days of 4 hr sleep and 5-days of 9 
hr sleep

RMR ↔ EE ↔ EI ↑ in short vs. normal sleep 46

Randomized Crossover Trial  
n=11; aged 39±5 y BMI 26.5±1.5 
kg/m2

14-days of 5.5 hr sleep ↓ 3-month 
washout ↓ 14-days of 8.5 hr sleep

Leptin ↔ Ghrelin ↔ Snacks ↑ (1087±541 vs. 
866±365 kcal/d) in short vs. normal sleep 

34

↑, increased between groups; ↓, decreased between groups; ↔, no changes between groups; BMI, body mass index; C+SR, caloric and sleep restriction 
group; CR, caloric restriction group; EE, energy expenditure; EI, energy intake; pAkt, phosphorylated Akt; PYY, Peptide YY; RCT, randomized controlled trial; 
RMR, resting metabolic rate.

Table 1. Randomized controlled and crossover trials investigating the changes in body composition, appetite hormones, and energy intake, 
following sleep restriction.
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physiological impact of sleep restriction through randomized 
controlled and crossover studies, focusing on how 
hypothalamic and steroid hormone dysfunction may impair 
adipose tissue and skeletal muscle, and increase the risk of 
obesity and sarcopenia.

The impact of sleep restriction on energy 
balance and food intake:  
Findings from experimental trials

Sleep duration is a major contributor to hormone 
signaling in the stomach (ghrelin) and adipose tissue 
(leptin), affecting food choice and energy balance30,31. A 
recent experimental study demonstrated decreased leptin 
concentrations following sustained sleep restriction32, 
however mean sleep loss was ~3 hr/wk, which may be 
deemed insignificant throughout 7-day periods. Multiple 
randomized crossover trials have failed to detect statistically 
significant changes of leptin during short-term sleep 
deprivation against habitual sleep duration33-35. Likewise, 
experimental research around ghrelin levels is equivocal. 
Studies measuring ghrelin concentrations have not 
displayed differences between shortened sleep and normal 
sleep groups34,35, although other short-term crossover 
studies have shown increased ghrelin levels during 436 and 
5 days37 of 4.5 hr/d sleep compared to 8.5-9 hr of daily 
bed rest, respectively. In addition, decreased PYY levels 
and perception of fullness have been demonstrated after 3 
days of reduced sleep (3.5 hr/d) compared to 7 hr of sleep/
night. However, experimental studies in older individuals 
are lacking and longer-term experimental trials, measuring 
appetite hormones and controlling for energy intake may 
be required.

Moreover, it is suggested that the  nucleus accumbens is 
a precursor of increased food intake driven by motivational 
stimuli, which activates dopamine receptor subtypes 
through orexin neurons38. Therefore, increased appetite may 

be stimulated by hyperpalatable food viewing, hence, obese 
populations may be predisposed to food overconsumption 
due to higher motivation to eat39,40. Interestingly, research 
has advocated for increased energy intake via sweets and 
snacks through several brain regions being involved in food 
response stimulation following periods of sleep deprivation. 
A 5-day sleep restriction (4 hr/d) protocol may trigger 
dopamine receptors in hypothalamic regions to a greater 
extent vs. habitual sleep (9 hr/d)41,42, and these effects 
may be sustained following longer sleep durations, although 
suboptimal (6 hr/d)43. These results are compatible with 
experimental trials demonstrating increased hunger44, sweet 
cravings45 and energy intake35,46 via snack consumption34 in 
the form of sweets and desserts33,36,47, highlighting a positive 
relationship between sleep loss and higher food intake. This 
may lead to gradual weight gain and further disrupt insulin 
and glucose signaling48-53, alleviating the effectiveness of 
weight loss strategies through lesser body fat mass loss32. 
Finally, brain responses related to food stimuli in lean vs. 
obese subjects may differ and should be taken into account 
when relevant clinical trials are conducted54. Experimental 
studies exploring how energy balance is affected by reduced 
sleep duration are shown in Table 1.

Effects of sleep deprivation on testosterone 
and cortisol release:  
An increased risk of skeletal muscle degradation

Sleep deprivation is associated with decreased 
testosterone and increased cortisol levels56,57. Testosterone 
triggers the protein kinase B (Akt)/mammalian target of 
rapamycin (mTOR) pathway and its downstream targets, 
S6 kinase 1 (S6K1) and eukaryotic translation initiation 
factor 4-E binding protein 1 (4EBP1) via activation of 
insulin growth-factor-1 (IGF-1)58,59, which are precursors 
of muscle protein synthesis (MPS). Recently, Saner et al 
(2020) investigated the effects of short-term (5 days) 

Study Design/Subjects Intervention Outcomes Study

RCT n=14; aged 36.6±5.6 y  
BMI 24.1±1.1 kg/m2 5-days of 4 hr sleep vs. 5-days of 9 hr sleep Testosterone ↑ in normal vs. short sleep group 60

Randomized Crossover Trial  
n=15; aged 27.1±1.3 y  
BMI 22.9±0.3 kg/m2

2-days of 4hr sleep ↓ 6-week washout ↓ 2-days 
of 8 hr sleep

Morning Testosterone & Prolactin ↓ in short vs. 
normal sleep

61

n=10; aged 24.3±4.3 y  
BMI 23.5±2.4 kg/m2

7-days of 8 hr sleep ↓ 3-days of 10 hr sleep ↓ 
8-days of 5 hr sleep

Testosterone (10-15%) ↓ in short vs. normal sleep 
durations Cortisol ↔

62

n=16; aged 21-26 
(n=10) went on a 1-day 24 hr sleep fragmentation 

(7 min asleep, 13 min awake for 72 times) vs. 
(n=6) 1-day of 9 hr sleep

Nocturnal Testosterone ↑ in those with REM 
episodes vs. fragmented sleep group

63

↑, increased between groups; ↓, decreased between groups; ↔, no changes between groups; BMI, body mass index; RCT, randomized controlled trial; 
REM, rapid eye movement.

Table 2. Randomized controlled and crossover trials exploring the changes in testosterone levels following sleep restriction.
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sleep deprivation (4 hr/d) on MPS and muscle protein 
breakdown (MPB) markers, and the influence of high-
intensity exercise following sleep restriction. Participants 
displayed no differences in FOXO 1/3, mTOR, Akt, and 
4EBP1 pathways between short and habitual sleep groups, 
however, subjects undergoing solely sleep deprivation 
demonstrated low myofibrillar protein synthesis, which was 
normalized following exercise. This should be taken into 
account, considering that older and frail individuals may 
be unable to perform high-intensity exercise and offset 
short sleep-induced physiological consequences given 
their limited physical abilities. Furthermore, randomized 
controlled and crossover studies (Table 2) have reported 
lower testosterone levels during short periods (2-8 days) 
of sleep restriction (4-5 hr/d) compared to habitual sleep 
duration (8-10 hr/d)61-63. Interestingly, sleep quality 
is another critical component of sleeping patterns. A 
fragmented sleep schedule consisted of 7 min sleep/13 
min awake cycles, 72 times within 24 hours, showed 
reduced nocturnal testosterone due to dysregulated REM 
states vs. participants following habitual night sleep64. More 
experimental trials with greater power may be necessary 
to establish further conclusions and provide information 
regarding the physiological impact of disruptive sleep 
length and stages on testosterone and MPS. 

Disruptive sleep phases leading to shorter REM sleep 
may elucidate complications in the hypothalamic-pituitary-
adrenal (HPA) axis, which is linked to higher cortisol 
levels65. Prolonged cortisol release inhibits IGF-1/Akt/
PI3K pathways and represses mTOR activation through 
upregulation of ubiquitin-proteasome system66, regulated in 

development and DNA damage responses 1 (REDD1), FOXO 
1/3 transcription factors, and Muscle RING-finger protein-1 
(MuRF-1) expression, potentiating anabolic resistance58. 

Furthermore, highly activated HPA axis leading 
to sustained abnormal cortisol secretion may induce 
glucocorticoid receptor resistance in immune cells, 
which may lead to systemic inflammation through pro-
inflammatory cytokine secretion (i.e. TNF-α, IL-1, IL-
6)67. Experimental studies have demonstrated that 
acute and partial sleep deprivation may induce greater 
proinflammatory cytokine expression68 compared to 
uninterrupted sleep69-71. Multiple crossover trials have 
explored the relationship between sleep deprivation and 
cortisol levels (Table 3). Acute72,73 and partial (4 hr/
night) sleep deprivation in the short-term (2-5 days) 
may increase adrenocorticotropic hormone and cortisol 
secretion compared to habitual sleep74,75, however, a 
recent RCT indicated no differences in cortisol levels 
between groups undergoing 5 days of 4 hr vs. 8 hr 
sleep duration76. According to the aforementioned, the 
interrelationship between testosterone and cortisol 
levels following insufficient sleep may promote glucose 
intolerance, insulin resistance and decreased MPS/MPB 
levels, aggravating the risk of sarcopenia and increased 
adiposity. More experimental trials investigating the 
impact of longer fragmented sleep periods on cortisol 
release and its potential implications on MPS are required 
to elicit more conclusive data.

The overall impact of restricted sleep is highlighted in 
Figure 1.

Study Design/Subjects Intervention Outcomes Study

Randomized Crossover Trial n=10; 
aged 24.5±2.9 y BMI 22.7±2.3 kg/m2

ET & 48 hr total sleep deprivation, then 12 hr 
normal sleep ↓ 4-week washout ↓ ET & 3 days 

of regular sleep

IL-6 ↑ Cortisol: Testosterone ↑ in short vs. 
normal sleep 

71

RCT n=23; aged 23.1±2.5 y 5-days of 4 hr sleep vs. 5-days of 8 hr sleep Cortisol ↔ NPY ↔ 75

Randomized Crossover Trial n=14; 
aged 27±5 y BMI 24.1±4.1 kg/m2 

5-days of 4 hr sleep ↓ 4-10 week washout ↓ 
5-days of 8 hr sleep

Whole-body insulin sensitivity (25%) ↓ Cortisol 
↑ in sleep restriction vs. normal sleep

73

RCT n=26; aged 22-49 y 1-day of 0 hr sleep vs. 1-day of 9 hr sleep
Cortisol ↑ in acute sleep deprivation vs. normal 

sleep group
72

Randomized Crossover Trial n=13; 
aged 20-23 y BMI 24.6 kg/m2 

2-days of 4 hr sleep ↓ 6-week washout ↓ 
2-days of 10 hr sleep

ACTH & Cortisol ↑ in short vs. normal sleep 74

Randomized Crossover Trial n=13; 
aged 24.3±2.5 y BMI: 23.6±1.7 kg/
m2

3 light-entrained circadian cycles  
(21h; 7 hr slept-14 hr awake) ↓ 4-week 

washout ↓ 3 light-entrained circadian cycles 
(27h; 9 hr slept-18 hr awake)

Cortisol ↑ in participants with increased 
advanced phase and shortened REM sleep

64

n=14; aged 27.4±3.8 y BMI 23.5±2.9 
kg/m2 

5-days of 4 hr sleep &  
1-day 10 hr sleep recovery

Cortisol ↑ following sleep restriction 76

↑, increased between groups; ↓, decreased between groups; ↔, no changes between groups; ACTH, adrenocorticotropic hormone; BMI, body mass index; 
ET, eccentric training; IL-6, interleukin-6; NPY, neuropeptide Y; RCT, randomized controlled trial; REM, rapid eye movement.

Table 3. Randomized controlled and crossover trials exploring the changes in cortisol levels following sleep restriction.
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Conclusions

The interference of modern lifestyle with sleeping patterns 
has proposed several metabolic health ramifications, 
including greater risk of weight gain and muscle loss. 
Numerous randomized controlled and crossover studies have 
identified increased cortisol/testosterone levels and pro-
inflammatory cytokine activation, reduced insulin sensitivity, 
and enhanced activity of dopamine receptors linked to 
hyperpalatable food consumption, which may increase the 
risk of sarcopenia and obesity. 

At present, the majority of experimental trials have 
been performed on young and healthy individuals through 

short-term sleep protocols, suggesting that chronic sleep 
restriction in older age may be physiologically more 
detrimental. More clinical trials controlling for energy intake 
and investigating the impact of sleep deprivation on muscle 
protein synthesis and gut hormones would provide greater 
insight regarding the direct effects of prolonged sleep loss on 
muscle mass and appetite regulation. 

Disclaimer

Dr Yannis Dionyssiotis serves as Co-Editor in Chief in the 
JFSF. The manuscript underwent a peer review process by 
independent experts.

Figure 1. The impact of sleep restriction on energy intake and steroid hormones, and their impact on obesity and sarcopenia.
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