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A B S T R A C T

Horizontal gene transfer (HGT) is a natural process for an organism to transfer genetic material to another
organism that is a completely different species, for example, from a blue-green alga to a non-photosynthetic
bacterium. The phenomenon of HGT is not only of an interest to the science of molecular genetics and biology, but
also to the biosafety issue of genetic engineering. The novel protocol reported here for the first time teaches how
to measure HGT from a genetically engineered (GE) blue-green alga (gene donor) to wild-type E. coli (recipient).
This novel protocol can be used to measure HGT frequency for both plasmid transgenes and/or genomic
transgenes from a donor to recipient organism.

� According to this novel protocol, the HGT frequency may be calculated from the number of HGT recipient
colonies observed, the number of recipient cells plated, and the donor-recipient co-incubation time.

� This approach can also help test the possible HGT routes to assess whether a HGT is through a direct cell-to-cell
interaction or by an indirect cell-to-liquid environment-to-cell process.

� The protocol may be applied in full and/or in part with adjustments to measure HGT for a wide range of donor
and recipient organisms of interest.

Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/
licenses/by/4.0/).
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Specifications Table
Subject Area: � Agricultural and Biological Sciences

� Biochemistry, Genetics and Molecular Biology

More specific subject area: Horizontal gene transfer and biosafety risk assessment
Method name: Horizontal gene transfer measurement
Name and reference of
original method:

Experimental demonstration: T.H. Nguyen, C.L. Barnes, J.P. Agola, S. Sherazi, L.H. Greene, J.W.
Lee, Demonstration of horizontal gene transfer from genetically engineered
Thermosynechococcus elongatus BP1 to wild-type E. coli DH5α, Gene, 704 (2019) 49–58.

Resource availability: All resource information needed to reproduce this method is integrated in the paper (e.g.,
materials and reagent names, equipment, gene(s) donor and recipient organisms for horizontal
gene transfer (HGT) assay, and the protocol for measuring horizontal gene transfer with HGT
frequency equation).

Method details

Materials and equipment

� Genetically engineered (GE) Thermosynechococcus elongatus BP1 or other blue-green algae
(cyanobacteria) such as Synechocystis sp. strain PCC 6803 as a transgene(s) donor for horizontal
gene transfer (HGT) assay.

� Wild-type Escherichia coli strain such as E. coli DH5α or the other non-photosynthetic bacteria to
serve as a transgene(s) recipient for horizontal gene transfer (HGT) assay.

� BG-11 and BG-110SA cyanobacteria culture media.
� Antibiotics (ampicillin, kanamycin, etc.).
� High-grade sterile LB agar plates with antibiotic and without antibiotic (control).
� Photosynthetic actinic light sources such as daylight fluorescent lamps.
� LI-COR LI-250A light meter.
� Properly autoclaved culture plates/tubes/flasks for cell growth.
� Temperature-controlled shaking incubators (IKA KS 4000 i control) for culture growth.
� Innova 2300 platform shaker.
� Olympus DP672 Microscope.
� Benchtop centrifuge (Eppendorf Centrifuge - 5418 R) for DNA preparation.
� Beckman Coulter Avanti J-26 Xp cooling centrifuge for cell harvesting and DNA preparation.
� Spectrophotometer for monitoring cell growth.
� Erlenmeyer flask of different size depending on the culture volume.
� Plasmid vectors such as pUC57-based pKB plasmid containing designer DNA constructs (transgenes)
of interest including antibiotic selectable marker.

� BioRad C1000 thermal cycler for PCR.
� Thermoscientific nanodrop 2000 spectrophotometer for DNA quantification.
� UVP Benchtop UV transilluminator/PhotoDoc-it Imaging System.
� Gene pulser Xcell Electroporation BioRad (Total System).
� Thermoscientific Heratherm incubator IGS 100.
� Percival Environmental Control Growth Chamber/Incubator.
� Yamato Autoclave/ Sterilizer SM510.
� Class II biosafety cabinet (ESCO, Sentinel-Gold, Microprocessor Control System).
� Note: This list does not include any small generic laboratory equipment that are assumed to be
available. Chemicals and other components can be used from any reliable company.

� Choice of appropriate antibiotics depends on the vector construct, bacteria such as E. coli and blue-
green algae such as Thermosynechococcus elongatus BP1 hosts.

� Note: Several other vectors, E. coli and Thermosynechococcus elongatus BP1 strains are commercially
available in the market; they can also be used for molecular cloning and horizontal gene transfer
(HGT) assay as per the recommended protocol with appropriate selective antibiotics.
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Procedure

Protocol for measuring horizontal gene transfer

1 Prepare special plasmid containing designer transgene(s) of interest including an antibiotic
selectable marker to create genetically engineered (GE) cyanobacteria to use as a transgene(s)
donor for the horizontal gene transfer assay [1].

2 Create special plasmid-based and/or genomic-based GE cyanobacteria (such as T. elongatus BP1)
through genetic transformation using electroporation followed by transformant colony selection
and verification with PCR.

3 Photoautotrophically grow GE T. elongatus BP1 in BG-11 liquid culture medium.
4 Grow wild-type E. coli cells in liquid LB medium.
5 Harvest photoautotrophicallygrown GE T. elongatus BP1 cells from activelygrowing liquid culture (at
mid logarithm-growth phase) by centrifugation using Beckman Coulter Avanti J-26 Xp centrifuge.

6 Harvest wild-type E. coli cells from actively growing liquid culture (at mid logarithm-growth
phase) by centrifugation using Beckman Coulter Avanti J-26 Xp centrifuge.

7 Make cell suspension of GE T. elongatus BP1 in BG-110SA liquid medium at the cell population
density of about 107 cells/mL.

8 Make cell resuspension of wild-type E. coli DH5α in LB liquid medium at the cell population density
of about 107 cells/mL.

9 Mix 15 mL of GE T. elongatus BP1 (donor) cells resuspension (in BG-110SA) with 15 mL of wild-type
E. coli DH5α (recipient) cells resuspension (in LB).

10 Incubate the two (donor and recipient) organisms at 1:1 population ratio (the “15 mL + 15 mL”
mixture) on a shaker at 37 �C under continuous photosynthetic light intensity provided by daylight
fluorescent lamps for a designated period of time (tIncubation).

11 Takesamplesfromliquidincubationco-cultureandplatetheliquidco-culturesamplesonLBagarmedium
in the presence and absence (control) of antibiotic; and spread (plate) a designated volume (VIncubation),
typically 100 ml, of the liquid co-culture (the donor-recipient co-incubation cell suspension liquid)
onto the surface of a 45 mL antibiotic-containing LB agar medium per petri dish plate.

12 Incubate the LB plates at 37 �C for E. coli colony development and observation to count for HGT
events for a period of 1, 2, 4, 7 and up to 14 days in combination with control experiments.

13 Count the HGT events by counting the number of E. coli DH5α (recipient) colonies (Ncolony) on the
antibiotic LB agar plates.

14 Verify the HGT E. coli colonies (cells) by observation using Olympus DP672 Microscope in
combination with control experiments.

15 Verify the HGT E. coli colonies by colony PCR in combination with control experiments.
16 Calculate the horizontal gene transfer (HGT) frequency from the number (Ncolony) of HGT recipient

(E. coli) colonies observed per antibiotic LB agar selective plate, the volume (VIncubation) of the donor-
recipient co-incubation cell suspension liquid that was used in spreading onto the surface of an
antibiotic-containing LB agar medium plate, the concentration (CRecipient) of the recipient (E. coli)
cells in the co-incubation liquid, and the donor-recipient co-incubation time (tIncubation) according
to the following HGT Frequency equation:

HGT Frequency ¼  
Ncolony

VIncubation � CRecipient � tIncubation
ð1Þ

Method validation

Materials and strains preparation

To measure HGT in accordance of this protocol, it is a preferred practice to use genetically
engineered cyanobacteria (blue-green algae) with a selectable marker such as an antibiotic-resistant
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transgene as a transgene donor. Currently, genetically engineered (GE) cyanobacteria can be created
through twotypes ofgenetic transformation: 1) plasmid-based genetic transformationand 2) integrative
genetic transformation through homologous recombination into the host genomic DNA. In a plasmid
transformant, the transgenessuchasanantibiotic-resistanttransgene are inaself-replicableplasmidlike
pUC57 that can somehow replicate also in certain host cyanobacterial cell. The copy number of
the plasmid per cell may vary depending on how well the plasmid could replicate in the cyanobacterial
cell. During cyanobacterial cell division, the distribution of plasmid to the daughter cells may be random
in nature. Consequently, plasmid transformants tend to be less stable than the genomic transformants
whose transgenes are integrated into their genomic DNA. It is likely that the transgenes carried by a
plasmid may be more mobile for HTG than those integrated into the cyanobacterial genomic DNA. The
protocol may be used to test this feature by measuring HGT frequency for both the plasmid transgenes
and/or genomic transgenes from GE cyanobacteria to E. coli. Examples of materials and strains
preparation including plasmid preparation and genetic transformation of cyanobacteria such as
Thermosynechococcus elongatus BP1 (BA000039.2) for creation of GE cyanobacteria including GE T.
elongatus BP1 (pKB plasmid transformant) has been experimentally demonstrated in the Lee Laboratory
at Old Dominion University and recently reported in Ref. [1].

Methods for measuring horizontal gene transfer

Horizontal gene transfer assay
GE T. elongatus BP1 (pKB plasmid transformant) cells were photoautotrophically grown at 45 �C in a

Percival growth chamber in BG-110SA medium containing kanamycin (40 mg/ml), and wild-type E. coli
DH5α cells were grown in LB broth at 37 �C in a shaking incubator. The photoautotrophically grown
cells of GE T. elongatus BP1 were collected by centrifugation. The supernatant was discarded and the
cells were resuspended in fresh BG-110SA medium without antibiotic. Both GE T. elongatus BP1 cells
and wild-type E. coli cells were resuspended to population density of about 107 cells/mL (Fig. 1).

Using the cells resuspension at a concentration of 107 cells/mL, 15 mL cells resuspension of GE T.
elongatus BP1 in BG-110SA were mixed with 15 mL cells resuspension of wild-type E. coli DH5α in LB as
shown in Fig. 2. The “15 mL + 15 mL” GE T. elongatus and wild-type E. coli liquid co-culture was
incubated in a shaker at 37 �C under continuous photosynthetic light intensity of about 8 mE m–2 s–1

provided by daylight fluorescent lamps. In addition to the liquid incubation co-cultures, two controls
were also set up using the T. elongatus BP1 transformant and wild-type E. coli DH5α. Control 1
consisted of 15 mL of T. elongatus BP1 transformant (107 cells/mL) and 15 mL of LB broth without wild-
type E. coli DH5α cells. Control 2 consisted of 15 mL of wild-type E. coli DH5α (107 cells/mL) and 15 mL
of BG-110SA medium without T. elongatus BP1 transformant. These controls were also incubated in a
shaking incubator at 37 �C under the same lighting conditions. Samples from each liquid co-culture
and control were collected after 1, 2, and 3 days and were then sampled and spread on control LB agar
plates and selection LB plates containing kanamycin. Typically, about 100 ml of liquid incubation co-
culture sample was used to spread onto the surface of a 45 mL antibiotic-containing LB agar medium
per petri dish (100 mm diameter, 15 mm deep) plate (Fig. 3). The LB plates were incubated at 37 �C
under the same continuous photosynthetic lighting condition of 8 mE m–2 s–1. PCR was used to verify
the presence of the transgene cassette DNA within these colonies [1].

As an example, to study whether GE T. elongatus BP1 (pKB plasmid transformant) has ability to
transfer its pKB plasmid into wild-type E. coli DH5α, the two (donor and recipient) organisms were co-
incubated at 1:1 population ratio for a designated period of time [1]. Then, the co-incubated liquid cell
culture was sampled and plated on LB agar medium. The results for the control 1 (Fig. 3A), which only
contained T. elongatus BP1 transformant, showed no colony growth on LB plates with and without
kanamycin after 48 h of plate incubation at 37 �C under lighting. This indicated that T. elongatus BP1
could not grow on LB plates. Therefore, any colony formed on LB agar plates from this experiment
would be E. coli. Bacterial growth was seen on LB plates without antibiotic for control 2 which
contained wild-type E. coli only. However, control 2 did not have any colony growth on LB plates with
kanamycin (Fig. 3B). The only colony growth observed on LB agar plates containing kanamycin was
from co-cultured samples (the “15 mL + 15 mL” GE T. elongatus and wild-type E. coli liquid incubation
co-cultures). Typically, the observed number of HGT E. coli colonies ranged from 20 to 75 per plate [1].
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Because control 1 (Fig. 3A) eliminated the possibility of T. elongatus BP1 growing on LB agar plates, the
colonies on LB plates with kanamycin were indeed E. coli (Fig. 3C). It is worth noting that these HGT E.
coli colonies grew much slower on LB agar plates containing kanamycin compared to the control wild-
type E. coli on plates without antibiotic which only took 24 h to form observable colonies instead of

Fig. 1. GE T. elongatus BP1 liquid culture cells suspension (Top) and wild-type E. coli cells suspension (bottom), both at a
population density of about 107 cells/mL and ready for use to co-incubate for the HGT assay [1].

Fig. 2. An example of the “15 mL + 15 mL” GE T. elongatus and wild-type E. coli cells liquid suspension co-incubation in a culture
flask photographed at day 0 (left) and day 1 (right) for the HGT assay [1].
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48 h. Randomly selected HGT E. coli colonies on kanamycin plates were further analyzed by PCR to
confirm the presence of the target plasmid within the HGT E. coli cells [1].

The techniques of microscopic imaging can certainly be employed to visualize the donor (T.
elongatus BP1 transformants) and recipient (E. coli) cells in the co-incubation liquid and to see the cells
from selected HGT E. coli colonies. Fig. 4 presents a microscopic image of donor (T. elongatus BP1
transformants) and recipient (E. coli DH5α) cells in the co-incubation liquid that was examined under a
light microscope (Olympus DP672 Microscope) after 2 days of co-incubation. Fig. 5 presents a
microscopic image of the HGT E. coli DH5α cells from a colony obtained from LB kanamycin plate of co-
culture sample containing T. elongatus BP1 transformants and E. coli DH5α. These microscopic
examination results indicate that the protocol is working since the cells from the selected HGT
recipient colonies were indeed the HGT E. coli DH5α cells as expected [1].

Calculating the horizontal gene transfer frequency from experimental data
Based on the protocol, the HGT frequency may be calculated from the number (Ncolony) of HGT

recipient (E. coli) colonies observed per antibiotic LB agar selective plate, the volume (VIncubation) of the
donor-recipient co-incubation cell suspension liquid that was used in spreading onto the surface of an

Fig. 3. Examples of measuring HGT events by detection of E. coli growth and colony formation on LB agar plates. (A) No E. coli
colonies were observed on a LB agar plate containing kanamycin 40 mg/mL from control 1. (B) No E. coli colonies were observed
on a LB agar plate containing kanamycin 40 mg/mL from control 2. (C) E. coli colonies observed on a LB agar plate containing
kanamycin 40 mg/mL after co-culturing with T. elongatus BP1 transformants carrying pKB plasmids. Co-cultures were grown for
2 days and additional 48 h of incubation on the plates.
Adapted from Nguyen et al. 2019 Gene, 704:49–58 [1].

Fig. 4. Example of visualizing the donor (T. elongatus BP1 transformants) and recipient (E. coli) cells in co-incubation liquid:
microscopic image of liquid co-cultures containing T. elongatus BP1 transformants and E. coli DH5α after 2 days of co-incubation.
Red arrows indicated T. elongatus BP1 transformants. Yellow arrows indicate E. coli DH5α.
Adapted from the Supplementary information of Nguyen et al. 2019 Gene, 704:49–58 [1].
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antibiotic-containing LB agar medium plate, the concentration (CRecipient) of the recipient (E. coli) cells
in the co-incubation liquid, and the donor-recipient co-incubation time (tIncubation) according to the
HGT Frequency Eq. (1) described in the procedure above.

The HGT frequency expressed by this equation may be considered also as the probability for an HGT
event to occur per recipient cell in a period of time under a given experimental condition.

Table 1 presents an example of using the Eq. (1) to calculate HGT frequency from the
experimentally observed numbers of HGT recipient (E. coli) colonies per antibiotic LB agar plate under
the given experimental conditions including the plated co-incubation liquid cell suspension volume of
100 ml, recipient cell concentration of 1/2 � 107 E. coli cells /1000 ml in the co-incubation liquid, and
the donor-recipient co-incubation time of 2 days. The HGT frequency (probability) from the plasmid
transformants of cyanobacterium Thermosynechococcus elongatus BP1 (donor) to wild-type E. coli
(recipient) was calculated to be in a range from 2.0 � 10�5 to 7.5 10�5 per cell day. That is, there could
be about 20 to 75 HGT events per million recipient (E. coli) cells daily from the plasmid-based GE blue-
green alga Thermosynechococcus under the given experimental conditions.

As a conclusion, the HGT frequency can be calculated from the number of HGT recipient colonies
observed, the number of recipient cells plated, and the donor-recipient co-incubation time. This
approach can also help test for the possible HGT routes to assess whether a HGT is through a direct
cell-to-cell interaction or by an indirect cell-to-liquid environment-to-cell process. The protocol may
be applied in full and/or in part with adjustments to measure HGT for a wide range of donor and
recipient organisms of interest, for example, from algae to non-photosynthetic organisms.

“Tricks” and notes

1 The inability for certain cyanobacteria such as Thermosynechococcus elongatus BP1 to grow on LB agar
plate makes the counting of HGT E coli colonies quite convenient. However, the protocol may be used

Fig. 5. Example of examining the cells from selected HGT E. coli colonies: microscopic image of colony obtained from LB
kanamycin plate of co-culture sample containing T. elongatus BP1 transformants and E. coli DH5α. Yellow arrows indicates E. coli
DH5α cells.
Adapted from the Supplementary information of Nguyen et al. 2019 Gene, 704:49–58 [1].

Table 1
Example of HGT frequency calculation with Eq. (1) using the HGT experimental data from the plasmid-based GE
Thermosynechococcus (donor) to wild-type E. coli (recipient).

Ncolony 20–75 HGT colonies per antibiotic LB plate

VIncubation 100 ml per antibiotic LB plate
CRecipent 1/2 � 107 E. coli cells/1000 ml
tIncubation 2 days
HGT Frequncy 2.0 � 10�5–7.5 10�5 per cell day
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for all cyanobacteria including those that can grow on LB agar plate as well, since cyanobacterial
colonies typically have a blue-green color readily distinguishable from E coli colonies.

2 It is important to properly select the HGT co-incubation liquid medium, which should be able to
accommodate both the donor (cyanobacteria) and recipient (E. coli) cells. Sometimes, it may be
challenging to find a liquid culture medium that could accommodate both the donor
(cyanobacteria) and recipient (E. coli) cells. A logical solution may be a 50–50 mixture of the
donor liquid culture medium (such as BG-110SA) and the recipient liquid culture medium (such as
LB) as used in the present experiment.

3 The liquid co-incubation of the donor (cyanobacteria) and recipient (E. coli) cells should be
performed under proper experimental conditions including not only the temperature but also the
lighting conditions to accommodate both the donor and recipient cells in consideration of a natural
environment such as in case of GE cyanobacteria accidently released into a natural pond
environment, where they may meet with other bacteria like E. coli. The light intensity typically
needs to be at least about 5 mE m–2 s–1 to ensure the blue-green algae being able to function
properly with photosynthetic energy support.

4 After plating of HGT co-incubation liquid sample onto the surface of antibiotic LB agar selective
medium, it is a preferred practice to incubate the antibiotic LB selective plates not only at a proper
temperature (such as 37 �C) for HGT E. coli cells to grow, but also under a light intensity of at least
about 5 mE m–2 s–1 to ensure the chlorophyll synthesis pathway in GE cyanobacteria is activated so
that any potential cyanobacterial colony must have its green color that can be easily distinguished
from an E. coli colony.

5 Note, the CRecipient used in the HGT frequency Eq. (1) described above is the cell population density
(concentration) of the recipient (E. coli) in the co-incubation liquid, but not that of the donor (GE
cyanobacteria). Therefore, in a “15 mL + 15 mL” GE T. elongatus and wild-type E. coli co-incubation
liquid, the value for CRecipient was a half of the E. coli cell stock concentration (107 E. coli cells/1000 ml)
used in making the 50-50 co-culture of GE T. elongatus and wild-type E. coli.

6 Based on the protocol, the donor of genetic material for HGT assays does not have to be GE
cyanobacteria. It can be a plasmid material such as the pKB plasmid tested in the experiment [1]. It
can also be other sources of genetic materials such as DNA materials from certain dead organisms of
interest. Therefore, it is practically appropriate to express the HGT frequency (probability) on the
recipient basis as shown in Eq. (1) using Ncolony over CRecipient, VIncubation and tIncubation.

7 The protocol may be used to also test for certain possible routes of HGT such as to answer the
questions of: 1) Does a HGT require a direct cell-to-cell interaction? or 2) Could a recipient cell pick
up a piece of DNA in a liquid environment such as a plasmid that may be released from a donor cell
(an indirect cell-to-liquid environment-to-cell process for HGT)? This type of questions can be
answered by comparative HGT assays in presence and absence of GE cells and/or free plasmid DNA
in incubation liquid as demonstrated in the experiments of Fig. 3 using the protocol.

8 Based on the present experimental result [1], the HGT frequency (probability) from the plasmid
transformants of cyanobacterium T. elongatus BP1 to wild-type E. coli was estimated here to be in a
range from 2.0 � 10�5 to 7.5 10�5 per cell day. The HGT probability from the genomic transformants
of cyanobacteria to wild-type E. coli is likely to be rather low, which is yet to be measured. Special
efforts such as increasing the incubation time and the donor and recipient cell population density
for HGT liquid co-incubation with multiple replications may be needed to measure for such a
potentially low probability genomic HGT event. This type of potentially challenging experiments
with multiple replications may take months and even years of efforts to accomplish. It is a preferred
practice to run a positive control experiment measuring HGT from a well-characterized plasmid
transformant such as the pKB plasmid T. elongatus BP1 transformant to E. coli as a control in parallel
with the long-duration main assay experiments to measure the genomic HGT event. This may help
to ensure the long-duration experimental setups and conditions are all properly working so that the
ultimate assay result whether positive or negative will represent the true outcome from the
genomic HGT process of interest.

9 This protocol may be adjusted and applied in full and/or in part in combination with adjustments to
measure HGT for a wide range of donor and recipient organisms from algae to non-photosynthetic
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organisms. For example, the recipient cell does not necessarily have to be E. coli. Other recipient
organisms of interest such as yeast and human health-related bacteria including (but not limited to)
Shigella, Campylobacter, and Salmonella may also be used for HGT assays in accordance of the
protocol. Therefore, both the co-incubation liquid media and selective agar media plates may
be adjusted in accordance of the protocol for the HGT assays based on the specific donor and
recipient organisms of interest.

Additional information

In contrast to the "vertical" transmission of DNA from the parent to its offspring of the same
species, horizontal gene transfer (HGT) is a natural process for an organism to transfer genetic material
to another organism that is not of the same species, for example, from a blue-green alga to a totally
distinct non-photosynthetic bacterium. It is generally believed that HGT is used as a means of
evolution [2]. The phenomenon of HGT sometimes is noticeable in certain genomic analysis. For
example, there may be a piece of very different genomic DNA such as a distinct GC-rich DNA “island”
comprising certain genes in otherwise a largely AT-rich genome of an organism. This type of distinct
genetic material likely came from a very different (organism) species through a HGT event in the
natural evolutionary process. Does such a HGT event occur at a time scale of million years, hundreds of
years, or a few days? Currently, it is not entirely clear how often such a HGT event could happen
between two different species. This paper outline a protocol to measure HGT from genetically
engineered (GE) cyanobacteria which are also known as blue-green algae to non-photosynthetic
organisms such as wild-type E. coli.

The phenomenon of HGT is not only of an interest to the modern science of molecular genetics and
biology, but also to the biosafety issue of genetic engineering in relation to biofuel energy and
environmental sustainability as well as public health and wellbeing. Synthetic biology using
genetically engineered (GE) cyanobacteria has the potential to produce valuable products such as
biofuels. In recent years, GE cyanobacteria have become a promising new agriculture avenue for
photosynthetic renewable energy. This approach addresses concerns of fossil fuels including their
contribution to the increase in greenhouse gases (such as CO2) in the Earth’s atmosphere and
their inevitable depletion as the world’s major fuel source [3–11]. Photosynthetic production of
various biofuels in GE cyanobacteria is accomplished by inserting a series of transgenes that will
enable the direct conversion of photosynthetic metabolic intermediates to products such as ethanol
and butanol [12–14]. Cyanobacteria are considered to be advantageous for several reasons which
include the use of abundant raw materials (e.g. sunlight, water and CO2), decrease in competition for
land and crops, and potential in alleviating the increase of CO2 in the atmosphere by being net carbon
neutral [15–18].

While the synthetic biology approach to photosynthetic biofuel production is promising, there are
several key unresolved bio-safety questions that should be addressed before such methods
are considered for wide commercial use. One of the main concerns is the ability of GE cyanobacteria to
transfer their modified genes to other bacteria through HGT if they were to escape containment
[19,20]. Through this process, it is possible that wild-type bacteria will be able to acquire designer
transgenes such as those intended for biofuel production and/or antibiotic resistance. Because
antibiotic resistance genes are widely used as a selective method for the genetic transformation of
photosynthetic organisms and bacteria, HGT could increase the risk of proliferation which can have
potential ramifications to human and animal health among other areas [21].

Better understanding the phenomenon of HGT between engineered and wild-type organisms
(whether from the environment or common lab strains) will advance basic science knowledge in
synthetic biology with microorganisms and could assist government agencies in the development of
important policies and regulations for genetic engineering and use of GE cyanobacteria for biofuel
production as well as other areas.

Therefore, this protocol is developed to determine whether a blue-green alga such as GE
Thermosynechococcus elongatus BP1 has the potential to transfer its transgenes to wild-type E. coli and
assess their possible HGT frequency. Earlier studies of HGT showed that E. coli can transfer genes to
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cyanobacteria [22–27]. In the present work, the protocol of measuring horizontal gene transfer from
GE blue-green algae to wild-type E. coli was experimentally demonstrated through the use of GE T.
elongatus BP1 carrying a designer DNA construct with a plasmid to produce alcohol that was co-
incubated with wild-type E. coli DH5α in a 1:1 ratio. HGT was then monitored on solid Luria Broth (LB)
media with selective antibiotic for E. coli growth. The experimental results indicate that plasmids can
be transferred from GE T. elongatus BP1 (transgene donor) to wild-type E.coli (recipient) after two days
of liquid co-incubation [1]. The frequency (probability) of HGT for a plasmid transgene from the donor
to the recipient organism was calculated, for the first time, from the experimental data based on the
protocol.

In summary, this protocol could be extremely useful for testing of HGT between diverse
microorganisms employing recombinant transgene DNA constructs. It utilizes the intrinsic differences
in appearance and metabolism, with selectable antibiotic markers, to specifically screen for the
transfer of gene(s) between transgenic blue-green algae and non-photosynthetic bacteria. Presence of
the transgene(s) in the putative HGT recipients is then confirmed by PCR in combination of colony
formation and re-streaking on culture plates with antibiotics. This type of assay may provide
quantifiable information on possible unintentional genetic transfer from recombinant microalgae
developed for commercial production to other microorganisms present in the environment. This
approach could also be used to estimate horizontal gene transfer between Escherichia coli or other
bacteria containing recombinant DNA transgenes and cyanobacteria (HGT in the opposite direction).
Another possibility is to use an E. coli strain carrying a plasmid with a selectable marker different from
that present in the cyanobacterial donor in this experimental scheme, then to subsequently screen for
both selectable markers following the co-incubation step. Therefore, this novel protocol may
be adjusted and applied in full and/or in part in combination with adjustments to measure HGT for a
wide range of donor and recipient organisms from algae to non-photosynthetic organisms, which
could be highly useful for a number of applications in various fields from the science of molecular
genetics and biology to the biosafety of genetic engineering.
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