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Abstract: Indomethacin (IM) is a small molecule active pharmaceutical ingredient (API) that exhibits
polymorphism with the γ-form being the most thermodynamically stable form of the drug. The
α-form is metastable, but it exhibits higher solubility, making it a more attractive form for drug
delivery. As with other metastable polymorphs, α-IM undergoes interconversion to the stable form
when subjected to certain stimuli, such as solvent, heat, pH, or exposure to seed crystals of the
stable form. In this study, IM was crystallized into cellulose nanocrystal aerogel scaffolds as a
mixture of the two polymorphic forms, α-IM and γ-IM. Differential scanning calorimetry (DSC)
and Raman spectroscopy were used to quantitatively determine the amount of each form. Our
investigation found that the metastable α-IM could be stabilized within the aerogel without phase
transformation, even in the presence of external stimuli, including heat and γ-IM seed crystals.
Because interconversion is often a concern during production of metastable forms of APIs, this
approach has important implications in being able to produce and stabilize metastable drug forms.
While IM was used as a model drug in this study, this approach could be expanded to additional
drugs and provide access to other metastable API forms.

Keywords: crystallization; indomethacin; cellulose nanocrystal; aerogel; polymorphism; Raman
spectroscopy; metastability; polymorph stabilization

1. Introduction

Active pharmaceutical ingredients (APIs) often exhibit polymorphism, the phenomenon
of packing into different crystal structures while having the same chemical composition.
Each polymorph has unique physical and chemical properties, including shape, purity, and
free energy [1–3], which can alter their behavior in terms of stability and solubility [4–6].
Indomethacin (IM) is a nonsteroidal anti-inflammatory drug that is often used as a model
compound for studies that are related to polymorphism [7–9]. IM is poorly water-soluble
and it exists in at least five polymorphic forms, with the γ form being the most thermody-
namically stable and the α form as the most commonly occurring metastable form [8,10].
Table 1 shows the crystal data and physical properties of the two key polymorphs (α-IM
and γ-IM) discussed in this paper. Previous studies have reported that α-IM has higher
solubility than the γ form, owing to its metastable nature as well as the conformation of
the carboxyl groups within the polymorph structure [11–13].

Unfortunately, accessing and stabilizing metastable polymorphs remains a major
challenge in the field of API production and formulation [6,17]. These polymorphs often
require very specific conditions to crystallize, including control over solvent, tempera-
ture, pH, and level of supersaturation [1,18]. Recently, a number of studies have reported
ways for obtaining metastable forms of certain APIs using surface templating [19–21],
solid dispersions [16,18], or confinement [22–24]. However, studies into stabilizing the
metastable forms are limited. Metastable polymorphs are unstable and interconvert into
the stable API when subjected to certain stimuli, such as moisture, solvent, heat, pH, or
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even time [25,26]. Research into polymorph interconversion and ways to stabilize poly-
morphs against interconversion remains an emerging field, with a few studies looking
at nanoconfinement [27] or additives [20,26,28,29] to stabilize the metastable forms. The
interconversion of metastable drugs often leads to limitations with analysis, resulting in in-
sufficient data for certain API forms [30,31]. Solvent mediated transformations prevent the
accurate measurements of solubility for certain API polymorphs [32]. For some drug forms,
including the metastable form III of acetaminophen, solid state transformation can also oc-
cur immediately after preparation or within hours without any external stimuli, preventing
thorough investigation of this form [31,33–35]. This limits the use of metastable forms of a
drug in commercial applications, even though they may exhibit higher therapeutic activity.

Table 1. Crystal data and physical properties of the α and γ polymorphs of indomethacin [8,9,12,14–16].

IM Polymorphic
Form

Melting
Temperature Space Group Unit Cell Dimensions Z, Z’ Solubility in

Water at 25 ◦C

α 152–154 ◦C P21

a = 5.4616 ± 0.0016 Å
b = 25.31 ± 0.009 Å
c = 18.152 ± 0.007 Å

α = 90◦

β = 94.38 ± 0.03◦

γ = 90◦

6, 3 0.8 ± 0.01 mg/mL

γ 160–161 ◦C P1

a = 0.295 ± 0.002 Å
b = 10.969 ± 0.001 Å
c = 9.742 ± 0.001 Å
α = 69.38 ± 0.01◦

β = 110.79 ± 0.01◦

γ = 92.78 ± 0.01◦

2, 1 0.4 mg/mL

The interconversion of α-IM to γ-IM, specifically, can occur due to heat, solvent,
mechanical action, such as milling, and exposure to the more stable γ form [12,36–38]. This
transformation has been reported in several previous studies and it follows Ostwald’s
rule of phases with the metastable α-form converting to the more stable γ-form [9,39].
α-IM has not previously been reported to convert to other polymorphic forms. The α to
γ transition has previously led to limitations in studying α-IM, especially while using
thermal analysis techniques [7]. Interconversion has also caused issues with using α-IM in
hot melt extrusion, an emerging technique for downstream API processing [37]. It has also
been suggested that the presence of small amounts of γ-IM can result in the transformation
of the α form [12], indicating that any impurities or γ seeds during production could lead
to interconversion and lower the solubility of the final drug products. Previously, this seed
effect has only been studied in the presence of a solvent and the need for studying this
interconversion in the solid state exists. Additionally, as far as we could find, no groups
have investigated the stabilization of the solid α-IM form in the presence of γ seed crystals.

Our approach to stabilizing metastable polymorphs uses cellulose, which is an abun-
dant biopolymer, as an excipient. Cellulose and its derivatives have been used in the
pharmaceutical industry for many decades, serving as excipients, fillers, matrices, and
drug delivery platforms for a variety of oral dosage forms [40–42]. More recently, the
nanoscale form, cellulose nanocrystals (CNCs), have been studied as systems for controlled
drug release and stabilizing particles [42–44]. Nanocellulose aerogels are an exciting new
field of light-weight materials that have high surface area and open porosity that can be
loaded with active ingredients [45,46]. These materials have been successful in the forma-
tion and stabilization of micro and nanoscale particles, including polymer particles [47],
silver nanoparticles [48], and APIs [49–52]. Nanocellulose aerogels are self-standing scaf-
folds that have a large number of functional groups that are capable of electrostatic and
hydrogen bonding interactions with the APIs and are composed of pores to provide a
confined environment [49,52]. Hydrogen bonding with nanocellulose has been used to
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direct the crystallization of specific polymorphs of APIs, including carbamazepine, ac-
etaminophen, and fenofibrate, showing promise as heterogeneous surfaces for controlling
crystallization [53]. However, using CNCs to stabilize metastable drug forms has not
previously been reported.

In this work, we use CNC aerogels as scaffolds to crystallize and stabilize the metastable
α-form of indomethacin. While α-IM is the more soluble form, it has the tendency to un-
dergo interconversion to the more stable γ-form, lowering the bioavailability of the drug
when administered to the body. By directly crystallizing within CNC aerogels, α-IM crys-
tals are obtained and stabilized within a scaffold and phase transformation is delayed.
Thorough Raman spectroscopy studies show that the metastable α-IM is stable in the
CNC aerogels against seeding effects from γ-IM crystals, which are otherwise sufficient in
inducing interconversion.

2. Materials and Methods

Indomethacin (γ-form) and acetone were purchased from Acros Organics (Fair Lawn,
NJ, USA). Ethanol was purchased from Decon Labs (King of Prussia, PA, USA). The as-
received API was confirmed to be γ-form using differential scanning calorimetry (DSC) and
Raman spectroscopy, as shown in the results section of this paper. Cellulose nanocrystals
were obtained from Celluforce as a spray dried powder (Lot # 2015-009). More information
on the physical properties of the CNCs can be found in our previous publication [54].

Indomethacin α-form was prepared, as described in previous studies [7,9], by first
dissolving γ-IM in ethanol, followed by adding deionized water to precipitate the α-IM
form. The obtained α-IM crystals were vacuum filtered out of the solution and then dried
under vacuum at room temperature and will be denoted α-IM in the paper.

CNCs were washed with acetone in order to purify and improve the reproducibility of
the materials, as described in our previous work [54]. Briefly, CNC powder was suspended
in acetone and stirred for 10 min. The dispersion was then centrifuged at 10,000 RPM for
10 min. using an Eppendorf centrifuge. The supernatant was removed, and the wash-
centrifuge cycle was repeated twice more. The purified CNCs were left to dry in air
overnight.

CNC aerogels were made by freeze drying 1% CNC suspensions. First, 1 wt% CNC
suspensions in water were probe sonicated to fully disperse the material. 5 mL samples of
the suspension were then placed into a silicone tray and the tray was put into a −80 ◦C
freezer overnight. The frozen material was then freeze dried using a FreeZone 2.5 L freeze
dryer. The aerogels were hexagonal prisms with an average density of 0.0124 mg/mm3

based on their size and mass. SI Figure S1 includes images of the aerogels.
Crystallization within CNC aerogels was performed by drop casting IM solutions into

CNC aerogels. First, a 30 mg/mL solution of γ-IM in ethanol was heated to 50 ◦C to fully
dissolve the material. 1 mL of this solution was cast into CNC aerogels that were held
within the silicone tray to prevent liquid from leaking out. The aerogels containing the IM
solution were then placed in a fridge at 10 ◦C to induce crystallization. Finally, the aerogels
were stored under vacuum overnight to remove any excess solvent. These samples are
called IM-aerogel in the paper.

α-IM samples were tested for stability in two ways. One was stability against inter-
conversion in the presence of γ-IM seeds and the second was a stability under heated
conditions. In order to test thermal stability, α-IM and IM-aerogel samples were both stored
at 125 ◦C for up to 96 h in an oven. These samples were then removed from the oven and
stored in a dessicator under vacuum before testing.

To test against seeding, we chose to introduce an amount of γ-IM crystals equal to the
total weight of indomethacin in the sample to which they were added. For example, we
mixed 30 mg α-IM powder with 30 mg of γ-IM under vacuum. Additionally, we mixed
IM-aerogel (containing 30 mg total IM content) with 30 mg γ-IM. For α-IM, the γ-IM seeds
were placed in the same container and came in contact with the α-IM. They were mixed
by gently moving the powder around in the container. For the aerogel, γ-IM seeds were
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added directly onto the IM-aerogel sample and the aerogel was broken up and then gently
mixed together with the γ-IM powder with a mortar & pestle.

DSC was performed using a Mettler Toledo DSC 3+ to determine thermal properties
of the different IM samples, including melting temperature and phase transformations.
The samples were heated at a rate of 3 ◦C/min. from 25–210 ◦C and as-received material
was also tested for reference.

Raman spectra were collected using a Renishaw Qontor Confocal Raman Spectrometer
(Wotton-under-Edge, UK) with a 785 nm laser and a grating of 1200 lines/mm. A 10 s
exposure time was used with the laser operating at 50% power. The spectra were collected
between 1600–1750 cm−1. Atef et al. have recently shown the usefulness of Raman
spectroscopy in distinguishing between the α and γ form of IM. By comparing the weight
% of α-IM in binary mixtures of α and γ IM to specific peak heights in a Raman spectrum,
they were able to determine the signature peaks for each form (1649 cm−1 for α-IM and
1699 cm−1 for γ-IM) [7]. This method was used to quantitatively determine percentage of
α-IM and γ-IM in our samples. A standard curve was first obtained by preparing binary
mixtures of IM-α and IM-γ in distinct ratios (5:95, 25:75, 50:50, 70:30, 90:10) and measuring
the ratio of the absolute intensity of the peaks attributed to each form immediately after
mixing (1649 cm−1 for IM-α and 1699 cm−1 for IM-γ). This curve was then used to quantify
the amount of each polymorphic form in our samples. Five measurements of samples
from the same batch were taken for each different mixture and drug, and the average and
standard deviation were reported.

Optical micrographs of the aerogels containing IM were taken using a LEICA DMi8
microscope in transmission mode (Wetzlar, Germany).

The SEM images were taken using a Zeiss Ultra60 field emission scanning electron
microscope (Jena, Germany) at an operating voltage of 3 kV. The samples were mounted
with carbon tape on aluminum stubs and sputter coated with a Hummer 6 gold/palladium
sputter coater prior to imaging.

Dissolution studies were performed following the USP paddle method for
indomethacin [12,15,55]. An Agilent 708-DS Dissolution Apparatus (Santa Clara, CA, USA)
was used with a paddle attachment rotating at 100 RPM. DI water with a pH of 6.5 at
37 ◦C was used as the dissolution medium to simulate intestinal fluid. The aliquots were
collected at various time intervals between 30 s and 2 h and an equal amount of DI water
was returned to the dissolution vessel. The aliquot samples were filtered using 0.22 µm
PVDF filters and measured using an Agilent Technologies Cary-60 UV-Vis spectrometer
(Santa Clara, CA, USA). The measurements were taken at 318 nm. Prior to measurements,
a standard curve was prepared to determine the concentration to absorbance ratio for
dissolved IM. First a stock solution was prepared by dissolving 30 mg in 900 mL of the
dissolution media (DI water pH 6.5 at 37 ◦C). Serial dilutions were made to obtain samples
that ranged in concentration from 0.065–33.3 µg/mL. The samples of γ-IM were mixed with
a CNC aerogel using a mortar and pestle in the same ratio of CNC to IM in the IM-aerogel
sample. The concentration of dissolved drug was normalized against the original amount
of drug in the sample to obtain a percentage dissolved, which has been plotted against time.

3. Results
3.1. Crystallization of α-IM within Cellulose Nanocrystal Aerogels

IM was directly drop-casted from a saturated ethanol solution into CNC aerogels,
held within the silicone mold (SI Figure S1), and the samples were cooled to induce
supersaturation. α-IM and γ-IM both crystallized into the aerogels and they can be seen in
Figure 1. The thin needles are α-IM, which is known to have a fiber-like morphology due
to very fast growth in one direction [38,56]. These are clearly visible in the SEM images
(Figure 1C,D) and appear as small fuzzy spikes in the optical micrographs (Figure 1A,B).
γ-IM crystals are more plate-like and easily distinguishable from the α-form, and they have
been circled in red in Figure 1 [56].
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Figure 1. Images of Indomethacin recrystallized within cellulose nanocrystals (CNC) aerogels from:
(A,B) optical microscopy; (C,D) SEM. α-Indomethacin (α-IM) crystals grow as the easily visible thin
needles and γ-IM crystals are more plate-like and have been circled in red.

Raman spectroscopy was used to confirm the presence of the polymorphic forms of IM
using the peak at 1649 cm−1 to indicate α-IM and the peak at 1699 cm−1 to indicate γ-IM [7].
Figure 2 depicts the Raman spectra for our samples. The as-received IM (pink) showed a
sharp peak at 1699 cm−1, which was attributed to the benzoyl C=O vibration, confirming it
was the γ-form. The α-IM recrystallized from water (blue) showed no peak at 1699 cm−1

but a sharp peak at 1649 cm−1, which is attributed to the hydrogen bonded acid C=O
stretch confirming this was the α-form. The IM recrystallized within the aerogel (brown)
contained peaks at both 1649 cm−1 and 1699 cm−1, indicating that both α and γ forms
were present within the aerogel. A Raman spectrum of the CNC aerogel is included in the
SI (SI-Figure S2) and it presented no overlaps with peaks in the 1600–1750 cm−1 region.
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Figure 2. Raman spectra of IM samples between 1500–1800 cm−1: pink–as received γ-IM crystals
(with distinct benzoyl C=O vibration peak at 1699 cm−1), blue–α-IM recrystallized from water (with
distinct hydrogen bonded acid C=O peak at 1649 cm−1), and brown-IM in aerogel showing both
α and γ crystal forms; inset image shows α-IM needles and γ-IM plate-crystals (red circles) within
CNC aerogel.
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Raman spectroscopy was also used to quantify the amount of each form within the
aerogel. A standard curve (the dashed line in Figure 3) was prepared using binary mixtures
of α and γ polymorphs and plotting the ratio of the peak intensities at 1649 cm−1 and
1699 cm−1 for each sample. Using this curve, the amount of γ-IM in the aerogel was
determined to be approximately 15 wt% ± 8 wt% (as indicated by the brown X in Figure 3),
which indicated that most of the IM in the aerogel recrystallized as the α-form.
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DSC scans further confirmed our findings that the as received material was γ-IM with
a melting temperature of 158 ◦C, which is the onset of the sharp endotherm in the pink
curve shown in Figure 4. α-IM was obtained by using anti-solvent crystallization with
H2O out of a saturated IM in ethanol solution. The DSC scan of this sample (Figure 4-blue)
showed a melting endotherm with an onset at 147 ◦C, which has been documented as the
α-IM melting temperature in literature [7,8,10]. A small peak with an onset temperature of
159 ◦C was also observed in this scan, indicating the presence of a small amount of γ-IM in
the sample. This is attributed to the interconversion of α-IM to the γ-form due to heating
and suggests thermal instability of the of the α-form, since the room temperature Raman
spectrum of this sample (Figure 2-blue) showed no presence of γ-IM. The aerogel again
contained evidence of both IM polymorphs, as seen from the two endotherms in the brown
curve above. The peak with onset at 149 ◦C is attributed to the α form and the peak with
onset at 158 ◦C is attributed to the γ form. A DSC thermogram of the CNC aerogel has
been included in the SI (SI-Figure S3) and it shows no peaks in the 100–200 ◦C region that
could be obscuring the data from IM.

Dissolution studies were performed to compare the dissolution behavior of IM in the
aerogel to the as-received material (Figure 5). The dissolution was run for 2 h and it showed
that the IM-aerogel samples have a faster dissolution rate, reaching 100% dissolution in 90
min. In comparison, the γ-IM samples were less than 90% dissolved at 90 min. and they
reached 98% dissolution at 120 min.
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3.2. α-IM Stabilized in CNC Aerogels at High Temperature Thermal Holds

α-IM undergoes interconversion at elevated temperatures and, so, we further studied
the effect of the CNC aerogel on this transformation using thermal holds, as seen in
Figure 4. Samples of α-IM powder and IM-aerogel were held at 125 ◦C for up to 96 h and
DSC scans were performed to study any thermal effects on the materials. Interconversion
was observed in all of the α-IM powder samples (Figure 6A), as evidenced by the exotherm
between 152–153 ◦C, indicated by the red circles. This exotherm is attributed to the
recrystallization of α-IM and it does not appear in the IM-aerogel samples (Figure 6B), even
after 96 h at 125 ◦C. This indicates that the α-IM crystals within the aerogel remain in the
α-form, potentially due to stabilization by the CNC aerogel.
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3.3. α-IM Stabilized in CNC Aerogels in the Presence of γ-IM Seed Crystals

As seen in the micrographs in Figure 1, α and γ forms of indomethacin both crystal-
lized within the aerogel; however, the stability of the metastable form needs to be further
understood. Impurity crystals have been shown to cause interconversion of metastable
drug forms, making them difficult to attain during production and less effective. The first
part of this study showed that both α and γ forms can coexist within the CNC aerogels
without interconversion, but the extent of this stability is unknown. γ-IM crystals can act
as impurities or triggers for interconversion and, thus, we investigate the stability of α-IM
within the CNC aerogel in the presence of γ-IM seed crystals.

Raman spectroscopy was used to measure the transformation of the α-IM with time.
When stored in the presence of γ-IM seed crystals, a bulk of the α-IM powder transitioned to
the γ form within one day. This is evident in the Raman spectra of the samples (Figure 7A).
Initially no γ-IM peak was observed in the α-IM sample, but, upon storage with γ-IM
seeds, a sharp peak appeared at 1699 cm−1. Using the standard curve, the amount of γ-IM
in the sample after one day was determined to be 75 wt% ± 11 wt% (Figure 7C–red X). A
maximum of 50% γ-IM can be attributed to the added γ-IM seeds, since they are in present
in the sample being tested; however, the excess 25 % is due to the phase transformation
occurring within the material.
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In contrast, when the IM-aerogel sample was stored with γ-IM seed crystals, little
change in the Raman peaks was observed (Figure 7B). Because individual crystals could be
monitored using the Raman microscope, this spectrum was obtained for α-IM crystals in
the sample. The α-IM signature peak at 1649 cm−1 remains stronger than the γ-IM peak at
1699 cm−1. An average of the whole mixed sample was used to determine the % of γ-IM
and it was found to be 51% ± 4%. This indicates that the added seed crystals are the only
γ-IM in the aerogel mixture (Figure 7C–green X), in contrast to the α-IM powder, where 50%
of the α-IM transformed to γ-IM during the same one day of storage with γ-IM crystals.

The effect of shorter time frames on α-IM transformation was also studied using
Raman spectroscopy. Raman spectra were taken at specific time intervals after adding the
γ-IM seeds to both the α-IM and the IM-aerogel samples and the percentages of γ-IM as a
function of time are shown in Figure 8. The α-IM almost immediately shows 60% γ-form in
the sample. As noted previously, 50% of this could be attributed to the added γ-IM seeds,
since we added an equal mass of the γ-form; however, the additional 10% was due to the
interconversion effects. Over the next three hours, additional interconversion takes place,
and the amount of γ-IM in the sample increases to 75% at 24 h. The IM-aerogel sample
shows an average of 50% γ-form for up to 24 h. even after seeding, indicating that only the
added γ-IM seed crystals are present, and no interconversion is taking place in this sample.
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These results show that the metastable α-IM powder is not stable in the presence
of γ-IM seeds and it undergoes interconversion to the more thermodynamically stable γ

polymorph. The α-IM in the CNC aerogels, on the other hand, does not show significant
transformation and it remains stabilized within the aerogel structure at room temperature,
even in the presence of γ-IM seed crystals.

4. Discussion

Based on the microscopy images, the crystallization of both α-IM and γ-IM was
confirmed within the CNC aerogels. Raman spectroscopy was used to further evaluate
these aerogel systems, and it was confirmed that the majority of the IM was α-form within
the aerogel with only 15% ± 8% being γ-form. The nucleation of the metastable α-form
could be promoted in part due to the inherent moisture content within CNCs. The moisture
in CNCs can force precipitation of the α-form within the aerogel, as water is an anti-solvent
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for α-IM [57]. This metastable polymorph formation could also be due to the formation of
hydrogen bonds of α-IM with the hydroxyl groups on the CNC surfaces (Figure 9). The
γ-form of IM contains a strongly bonded carboxylic acid dimer within the crystal lattice.
The α-form contains a hydrogen bonded trimer, where one of the carboxylic acid groups is
bonded to an adjacent amide carbonyl group. Several studies have looked at the molecular
conformations of these two polymorphs of indomethacin and concluded that α-IM is
more reactive. This is due to a combination of accessibility of carboxyl groups within the
lattice, bond lengths between the dimers and trimers, and the number of different possible
conformations of the two different forms [14,57–59]. The carboxyl group that hydrogen
bonds to the amide group in the trimer is more accessible for hydrogen bonding with the
hydroxyl group on the CNC surface than carboxyl groups participating in the hydrogen
bonded dimer. The crystallization of α-IM from cellulose nanofiber surfaces has been
previously reported by Gao et al. They also suggested that the hydrogen bonding between
the IM carboxyl group and the cellulose hydroxyl group was the primary driving force for
this interaction [60].
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While the hydrogen bonding between CNC and α-IM is crucial to the crystallization
of the metastable phase, the dissolution studies showed that IM-aerogel is able to achieve
faster dissolution than the γ-form. CNCs are dispersible in water and the CNC aerogel
networks can be easily disrupted by water. Therefore, the α-IM crystals from within
the aerogel can be accessed and dissolved once the CNC aerogel is broken down in the
simulated intestinal fluid. This network disruption also breaks the hydrogen bonding with
the α-IM, and it does not seem to affect the crystal’s ability to dissolve.

Our current investigation also showed the stability of α-IM within the aerogels in
contrast to α-IM powder that underwent interconversion to the γ-form when stored under
heat or in the presence of γ-IM seed crystals, which are common scenarios that arise during
the production and processing of indomethacin. The α-form of IM is more soluble, and
access to this form can provide a higher efficacy drug formulation, but the stability is an
issue during actual production. As a result, the practical application of α-IM is limited
since natural processing conditions could lead to a transformation of the metastable form.
While Ostwald’s rule and kinetics favors the nucleation of α-IM since it is the lower stability
form, when storing this material at elevated temperatures, thermodynamics dictates that
the most stable γ-form of IM would result [8,10,16]. This is observed in the DSC scans
presented in Figure 6, where thermal holds at 125 ◦C result in additional interconversion
of α-IM to γ-IM. Seeding also causes this interconversion, and timed studies showed that,
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in the presence of γ-IM seed crystals, some α-IM crystals transition to a different crystal
structure almost immediately and, after 24 h, 50% of the α-IM crystals have undergone
interconversion, resulting in a total of 75% γ-IM in the sample.

The formation of hydrogen bonds between CNCs and the carboxyl groups on α-IM
would also explain the stability against this transformation. Interconversion within the
aerogels would involve the disruption of these hydrogen bonds, requiring additional
energy. As such, even though γ-IM is the more thermodynamically stable form, the α-
IM does not undergo interconversion and remains bonded to the CNC surfaces on the
aerogel. This hydrogen bonding is also able to provide stability against the seed-induced
interconversion. α-IM and γ-IM are both present within the aerogel to begin with, which
indicates that these α-IM crystals are stable and do not change to the γ-form. Furthermore,
even when additional γ-IM seed crystals are added, the α-form remains stabilized within
the aerogel. Seeding typically provides a platform for growth and it can cause a shift in
the crystal structure; however, no such shift occurs since the α-IM crystals are already
physically bound to the CNCs.

Additionally, the porous structure of the aerogel can further assist in stabilizing
the indomethacin crystals. Because the α-IM crystals exist as long fiber-like needles, the
constraints of the pore walls within the CNC aerogel would limit the mobility of IM crystals
and, therefore, restrict interconversion to more the plate-like γ-IM crystals. This type of
stabilization within pores has previously been suggested by Nartowski et al. for IM form
V [27]. They posited that the spatial constraints inside controlled glass pores assisted with
crystallizing IM form V and prevented impurities from affecting the crystals. Because the
CNC aerogels can also provide spatial constrains to the α-IM needles, it is possible that
these crystals are further prevented from conversion.

5. Conclusions

These results show the effects of the CNC aerogels on stabilizing the metastable α-
form of the model drug indomethacin. IM was recrystallized into CNC aerogel scaffolds as
a mixture of the two polymorphic forms α-IM and γ-IM. It was shown that α-IM powder
has a tendency to interconvert to the more stable γ-form when stored with γ-IM seed
crystals. Through the use of quantitative Raman spectroscopy analysis, we showed that,
when the α-IM is crystallized in a CNC aerogel, no interconversion occurs in the presence
of γ-IM seeds. This study also investigated the effect of the CNC aerogel on stabilizing
α-IM during high temperature holds in order to further stress the material and determine
whether this stabilization effect was effective with under elevated temperature conditions.
While α-IM powder by itself showed high interconversion and recrystallization to the
γ-form, when held at 125 ◦C for up to 96 h, the α-form within CNC aerogels did not
show any such transformation. This has important implications not only in being able
to stabilize a metastable drug form, but also in increasing the efficacy of certain APIs, as
these metastable forms, typically with higher solubilities, could be administered to patients
without the concern of interconversion. The ability to use these CNC aerogels to protect
against interconversion due to the presence of seeds of a more stable API form is an added
benefit, especially during the production process.

Supplementary Materials: The following are available online at https://www.mdpi.com/1999-492
3/13/4/441/s1, Figure S1: Images of cellulose nanocrystal aerogels a. In silicone tray used for casting,
b. Side view, c. top down view, Figure S2: Raman spectra of cellulose nanocrystal aerogel showing
no peaks in the region of interest for indomethacin polymorphs (1600–1750 cm−1), Figure S3: DSC
thermogram of CNC aerogel showing no peaks in region of interest for indomethacin polymorphs
(140–162 ◦C).
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