

# GOPEN ACCESS

**Citation:** Chowdhury MZI, Naeem I, Quan H, Leung AA, Sikdar KC, O'Beirne M, et al. (2022) Prediction of hypertension using traditional regression and machine learning models: A systematic review and meta-analysis. PLoS ONE 17(4): e0266334. https://doi.org/10.1371/journal.pone.0266334

**Editor:** Antonio Palazón-Bru, Universidad Miguel Hernandez de Elche, SPAIN

Received: October 4, 2021

Accepted: March 19, 2022

Published: April 7, 2022

**Peer Review History:** PLOS recognizes the benefits of transparency in the peer review process; therefore, we enable the publication of all of the content of peer review and author responses alongside final, published articles. The editorial history of this article is available here: https://doi.org/10.1371/journal.pone.0266334

**Copyright:** © 2022 Chowdhury et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

**Data Availability Statement:** All relevant data are within the paper and its <u>Supporting Information</u> files.

RESEARCH ARTICLE

# Prediction of hypertension using traditional regression and machine learning models: A systematic review and meta-analysis

Mohammad Ziaul Islam Chowdhury<sup>1,2,3</sup>, Iffat Naeem<sup>1</sup>, Hude Quan<sup>1</sup>, Alexander A. Leung<sup>1,4</sup>, Khokan C. Sikdar<sup>5</sup>, Maeve O'Beirne<sup>2</sup>, Tanvir C. Turin<sup>1,2\*</sup>

1 Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada, 2 Department of Family Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada, 3 Department of Psychiatry, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada, 4 Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada, 4 Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada, 5 Health Status Assessment, Surveillance, and Reporting, Public Health Surveillance and Infrastructure, Population, Public and Indigenous Health, Alberta Health Services, Calgary, Alberta, Canada

\* chowdhut@ucalgary.ca

# Abstract

# Objective

We aimed to identify existing hypertension risk prediction models developed using traditional regression-based or machine learning approaches and compare their predictive performance.

# Methods

We systematically searched MEDLINE, EMBASE, Web of Science, Scopus, and the grey literature for studies predicting the risk of hypertension among the general adult population. Summary statistics from the individual studies were the C-statistic, and a random-effects meta-analysis was used to obtain pooled estimates. The predictive performance of pooled estimates was compared between traditional regression-based models and machine learn-ing-based models. The potential sources of heterogeneity were assessed using meta-regression, and study quality was assessed using the PROBAST (Prediction model Risk Of Bias ASsessment Tool) checklist.

# Results

Of 14,778 articles, 52 articles were selected for systematic review and 32 for meta-analysis. The overall pooled C-statistics was 0.75 [0.73-0.77] for the traditional regression-based models and 0.76 [0.72-0.79] for the machine learning-based models. High heterogeneity in C-statistic was observed. The age (p = 0.011), and sex (p = 0.044) of the participants and the number of risk factors considered in the model (p = 0.001) were identified as a source of heterogeneity in traditional regression-based models.

**Funding:** The authors received no specific funding for this work.

**Competing interests:** The authors have declared that no competing interests exist.

Abbreviations: PROBAST, Prediction model Risk Of Bias ASsessment Tool; MeSH, Medical Subject Headings; HKSJ, Hartung-Knapp-Sidik-Jonkman; CI, Confidence interval; SE, Standard error; AUC, Area under the receiver operating characteristic curve; BMI, Body mass index; DBP, Diastolic blood pressure; SBP, Systolic blood pressure; ROB, Risk of bias; ANN, Artificial neural network; FHRS, Framingham hypertension risk model; O/E ratio, Observed/Expected ratio; RCT, Randomized controlled trial.

#### Conclusion

We attempted to provide a comprehensive evaluation of hypertension risk prediction models. Many models with acceptable-to-good predictive performance were identified. Only a few models were externally validated, and the risk of bias and applicability was a concern in many studies. Overall discrimination was similar between models derived from traditional regression analysis and machine learning methods. More external validation and impact studies to implement the hypertension risk prediction model in clinical practice are required.

# Introduction

Hypertension is a common medical condition affecting about 1 in 4 people [1] and is a significant risk factor for heart attack, stroke, kidney disease, and mortality [2]. Hypertension has been linked to 13% of deaths globally [3] and is a significant health burden that affects all population segments. Considering the high prevalence and global burden, hypertension prevention, and control strategies need to be a top priority. Hypertension can be prevented by applying strategies that target the general population or individuals and groups at higher risk for hypertension [4]. The need for early identification of at-risk individuals who could benefit from preventive interventions has led to a growing interest in hypertension risk prediction.

Predicting the risk of developing hypertension through modeling can help identify important risk factors contributing to hypertension, provide reasonable estimates about future hypertension risk [5], and help identify high-risk individuals targeted for healthy behavioral changes and medical treatment to prevent hypertension [6-8]. Many prediction models have been developed to predict the risk of hypertension in the general population over the years. Models were developed using either a traditional regression-based approach or a modern machine learning approach. Although machine learning approaches are known to produce better predictive performance, their performance often varies, and it is not clear if they perform better than the traditional regression-based models in predicting hypertension. Through a systematic review and subsequent meta-analysis, a pooled synthesis of performance measures of different models produced in multiple studies can be compared and measured [9]. This methodology provides an overview of these models' predictive ability and allows the models' performance measures based on the reported data to be explored quantitatively [9]. Two prior studies systematically analyzed hypertension risk prediction models in adults [10, 11]. Both studies performed a narrative synthesis of the evidence to summarize hypertension prediction models' existing knowledge, and one study also performed a meta-analysis without assessing heterogeneity. None of the prior studies stratified models according to how they were developed. This stratification is important because there are inherent differences in these two types of models' developmental methods in computation, complexity, interpretability, and accuracy. A formal assessment of study quality was also absent in prior studies. In addition to these two prior reviews, a systematic review was also carried out on prediction models to classify children at an elevated risk of developing hypertension [12].

With this in mind, we aimed to 1) systematically review the literature to identify hypertension risk prediction models that have been applied to the general adult population and the risk factors that were considered in those models; 2) characterize the study populations in which these models were derived and validated, 3) compare the predictive performance of traditionally developed regression-based models and machine learning models, and 4) assess the quality of these prediction models to better inform the selection of models for clinical implementation.

# Materials and methods

#### Data sources and searches

We conducted a systematic review and meta-analysis to identify existing hypertension risk prediction models and associated risk factors and evaluated the models' predictive performance. We searched MEDLINE, EMBASE, Web of Science, and Scopus (each from inception to December 2020) to identify studies predicting the risk of incident hypertension in the general adult population. Google Scholar and ProQuest (theses and dissertations) were searched for grey literature. Additionally, we explored the reference lists of all relevant articles. The search strategy focused on two key concepts: hypertension and risk prediction. We used proper free-text words and Medical Subject Headings (MeSH) terms to identify relevant studies for each key concept. Certain text words were truncated, or wildcards were used when required. The Boolean operators "AND", "OR", and "NOT" were used to combine the words and MeSH terms. A detailed search strategy for MEDLINE is provided in <u>S1 Table</u>.

# **Eligibility criteria**

Although risk prediction models are generally developed using a cohort-based study design with follow-up information, we considered all types of study designs, anticipating that machine learning-based models may use other types of study design. Only original studies were included in this review: this excluded reviews, editorials, commentaries, and letters to the editor. Studies written in languages other than English and French were also excluded. The Population, Prognostic Factors (or models of interest), and Outcome [13] framework was used to outline eligibility criteria.

**Population.** The study population consisted of people free of hypertension at baseline and those around which hypertension risk prediction models were developed. No restrictions were imposed on the geographic region, time, or gender of the study participants. Nevertheless, only models developed on the adult population were considered, as outcome essential hypertension is expected in adults.

**Prognostic factors (or models of interest).** We considered studies where risk prediction models for hypertension in the general adult population were developed. Studies that focused solely on the added predictive value of new risk factors to an existing prediction model, studies presenting a prediction model developed in patients with previous hypertension, or studies that derived risk prediction tools other than score-type tools (e.g., risk charts) were not considered. Further, we did not consider studies that only assessed bivariate association between predictors and hypertension. Instead, we focused on those studies where risk prediction models for hypertension were built incorporating risk factors that demonstrated significant prognostic contribution in predicting incident hypertension. When a model was assessed on more than one external population, information from all reported models was considered. However, when the model was presented both in a derivation and validation cohort, only data from the validation cohort were considered for meta-analysis.

**Outcome.** Our outcome of interest was hypertension, and we considered all definitions of hypertension to capture the maximum number of studies.

# Study selection

Two reviewers (MC and IN) independently identified eligible articles using a two-step process. First, the title and abstracts of non-duplicated records were screened by two reviewers. Studies retained (based on eligibility criteria) during this stage of screening went to a full-text screening. Full-text articles were further screened for eligibility by the same two reviewers independently. Lastly, articles containing extractable data on hypertension prediction models and hypertension risk factors were selected for data extraction. Inter-rater reliability (Kappa coefficient) was estimated to measure agreement between the independent reviewers. Any disagreement between reviewers was resolved through consensus.

#### Data extraction

Two reviewers (MC and IN) independently extracted data from each study using standardized forms. We classified the identified models into two categories: models developed using a traditional regression-based approach and models developed using machine learning algorithms. Separate data extraction sheets were used for each model type and included study name, the location where the model was developed/location of data used for the model developed and participants' ethnicity, study design used, sample size, age, and gender of the study participants, risk factors included in the model, number of events and total participants, an outcome considered, the definition used for hypertension, duration of follow-up, modeling method used, measures of discrimination and calibration of the prediction model, and the validation of the prediction model. In a separate form, information about the externally validated hypertension risk prediction models was extracted, including study name/model validated, the total number of validation studies, location of the validation study, follow-up period, number of events, and total participants, the definition of outcome and discrimination and calibration of the model. We also extracted information about risk factors, particularly how many times a specific risk factor was considered in the models. Each reviewer assessed study quality according to the Prediction model Risk Of Bias ASsessment Tool (PROBAST) checklist [14, 15]. The PROBAST is designed to evaluate the risk of bias and concerns regarding diagnostic and prognostic prediction model studies' applicability. The PROBAST contains 20 questions under four domains: participants, predictors, outcome, and analysis, facilitating judgment of risk of bias and applicability. The overall risk of bias of the prediction models was judged as "low", "high", or "unclear," and overall applicability of the prediction models was considered as "low concern", "high concern", and "unclear" according to the PROBAST checklist [14, 15].

#### Data analysis

We summarized the number of studies identified and those included and excluded (with the reason for exclusion) from the systematic review and subsequent meta-analysis using the PRISMA flow diagram [16]. In data synthesis, we performed a meta-analysis on the performance measure of the traditional regression type's prediction modeling (e.g., logistic regression model and Cox proportional hazard regression model) and a more complicated modeling strategy (e.g., machine learning tools). Discrimination and calibration are the two most common statistical measures of predictive performance. Discrimination is commonly quantified by the concordance (C) statistic. In this review, we performed a meta-analysis on the C-statistic or AUC (area under the receiver operating characteristic curve) to evaluate the models' predictive performance and provided a comprehensive summary of the models' predictive ability. We did not undertake a meta-analysis of the calibration due to the unavailability of relevant data.

We logit transformed the C-statistics before pooling as per recommendation [17, 18] and then back-transformed the results to the original scale for interpretation. We used a randomeffects meta-analysis with REML estimation and Hartung-Knapp-Sidik-Jonkman (HKSJ) confidence interval (CI) to obtain the pooled weighted average of the logit C-statistic [19]. Forest plots were generated to show the pooled C-statistic together with the 95% CI, 95% approximate prediction interval (indicates an expected performance range of the considered models in a new population) for the summary C-statistic, the author's name, publication year, and study weights. In studies that only provided a C-statistic but no measure of its variance or confidence intervals, the standard error (SE) and 95% CI of the logit C-statistic (or area under the receiver operating characteristic curve (AUC)) was calculated using the appropriate formula [19]. However, when the C-statistics' confidence intervals (CIs) were available, standard errors (SE's) of the logit C-statistics were derived from the CIs [19]. The presence of heterogeneity (primarily due to differences in the study setting, participants, and methodology) was assessed using Cochran's Q statistic and quantified with the I<sup>2</sup> statistic. A p-value of less than 0.05 was considered statistically significant heterogeneity and was categorized as low, moderate, and high when the I<sup>2</sup> values were below 25%, between 25% and 75%, and above 75%, respectively [20]. Sources of heterogeneity were further explored using meta-regression and stratified analyses according to modeling type and study characteristics (sex of the participants, age of the participants, number of risk factors considered in the model, sample size considered in the model, and ethnicity of the study participants). We calculated 95% prediction intervals to provide a likely range of performance of a prediction model in a new population and setting. We did not assess publication bias by any statistical tests or funnel plot asymmetry. We used Stata version 16.1 (StataCorp LP, College Station, TX, USA) to perform statistical analysis using the following commands: meta, metan and metareg.

# Results

# Study identification and selection

We identified 14,730 articles through our electronic database search and an additional 48 articles through our grey literature search. After removing duplicates, titles, and abstracts screening and full-text screening 52 articles were finally selected for the systematic review. Within the chosen final studies, 32 studies provided sufficient information for synthesis through a meta-analysis. The detailed study selection process is summarized in Fig 1. Agreement between reviewers on the initial screening and final articles eligible for inclusion in the systematic review was good ( $\kappa = 0.81$ , and  $\kappa = 0.89$ , respectively). A total of 117 models were identified from the finally selected articles predicting the risk of hypertension in the general adult population, of which 75 were developed using traditional regression-based modeling and 42 using machine learning tools.

### Study characteristics of traditional regression-based models

Study characteristics of traditional regression-based models are presented in Tables 1 and 2. A total of 573,268 participants were used to develop 75 traditional models in 34 studies. Models mainly were developed either in white Caucasian or Asian populations. There was no model derived from African populations and only one [21] from Latin American populations. Two studies considered only male participants, one study considered only female participants, and the remaining studies considered both to develop the models. The number of risk factors considered to create the models ranged from 1 to 19, with a median of 7 risk factors per model. Age was the most common risk factor considered in 61 models, followed by body mass index (BMI) (32 models), diastolic blood pressure (DBP) (28 models), systolic blood pressure (SBP) (27 models), and sex (21 models). The distribution of the conventional risk factors considered in the different models is presented in Fig 2A. Duration of follow-up time (mean/median/ total) considered to develop the models varied between 1.6 years to 30 years. The age of the study participants ranged from 15 to 90 years. SBP  $\geq$  140 mm Hg, DBP  $\geq$  90 mm Hg, or use of antihypertensive medication was the standard definition used to define hypertension in almost all the studies, except one study where SBP  $\geq$  130 mm Hg, DBP  $\geq$  80 mm Hg, or use of



Fig 1. PRISMA diagram for systematic review of studies presenting hypertension prediction models developed in the general population.

https://doi.org/10.1371/journal.pone.0266334.g001

any antihypertensive drug was used. Logistic regression was the most used methodology to develop the model (15 studies), followed by Cox proportional-hazards regression (11 studies) and Weibull regression (6 studies). Calibration of the prediction model was not reported by most of the studies (19 studies). Studies those reported calibration measures (15 studies) were mainly using the Hosmer-Lemeshow test. Discrimination was assessed using the C-statistic (or AUC) and reported by almost all studies with values ranging from 0.57 to 0.97. Only one model was externally validated by the same study when they developed the model. Only eight models [22–29] were converted into a risk score after model development.

#### Meta-analysis of traditional regression-based models

The overall pooled C-statistics of the traditional regression-based models was 0.75 [0.73–0.77] with high heterogeneity in the discriminative performance of these models ( $I^2 = 99.3$ , Cochran Q-statistic p < 0.001) (Fig 3). Stratified pooled results by modeling type showed pooled C-

| Study                                   | Location Model<br>Developed/<br>Ethnicity | Study Design          | Age             | Gender         | Events (n)/Total<br>Participants (N)                                                 | Definition of Outcome Predicted/<br>Hypertension                                                                                                                    | Duration of<br>Follow-up                                |
|-----------------------------------------|-------------------------------------------|-----------------------|-----------------|----------------|--------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|
| Pearson et al.<br>[41] 1990             | USA/Mixed,<br>mainly Whites               | Prospective<br>cohort | $\leq$ 25 years | Male<br>only   | 114/1130                                                                             | Self-reported use of blood<br>pressure-lowering medications                                                                                                         | 30 years                                                |
| Parikh et al. [22]<br>2008              | USA/Mainly<br>Whites                      | Prospective<br>cohort | 20–69 years     | Both           | 796/1717                                                                             | $\begin{array}{l} \text{SBP} \geq 140 \text{ mmHg or DBP} \geq 90 \\ \text{mmHg or use of BP-lowering} \\ \text{medications} \end{array}$                           | Median 3.8<br>years                                     |
| Paynter et al.<br>[42] 2009             | USA/ Whites and<br>Blacks                 | Prospective<br>cohort | 45–64 years     | Female<br>only | Derivation cohort:<br>1935/9427 Validation<br>cohort: 1068/5395                      | Self-report or SBP $\geq$ 140 mmHg or DBP $\geq$ 90 mmHg                                                                                                            | 8 years                                                 |
| Kivimäki et al.<br>[ <u>43</u> ] 2009   | England/Mainly<br>Whites                  | Prospective<br>cohort | 35–68 years     | Both           | 1258/8207                                                                            | $SBP \ge 140 \text{ mmHg or } DBP \ge 90 \text{ mmHg or use of } BP$ -lowering medications                                                                          | Median 5.6<br>years                                     |
| Kivimäki et al.<br>[ <u>44</u> ] 2010   | England/Mainly<br>Whites                  | Prospective<br>cohort | 36–68 years     | Both           | Derivation cohort:<br>614/4135 Validation<br>cohort: 438/2785                        | $SBP \ge 140 \text{ mmHg or } DBP \ge 90 \text{ mmHg or use of antihypertensive medications}$                                                                       | Median 5.8<br>years                                     |
| Kshirsagar et al.<br>[ <u>45</u> ] 2010 | USA/Mixed but<br>mainly Whites            | Prospective<br>cohort | 45–64 years     | Both           | 3795/11,407 (7610 for<br>derivation sample and<br>3692 for the<br>validation sample) | $\label{eq:sbp} \begin{array}{l} SBP \geq 140 \mbox{ mmHg or } DBP \geq 90 \\ mmHg \mbox{ or reported use of } BP \\ lowering \mbox{ medications} \end{array}$      | Up to 9 years                                           |
| Bozorgmanesh et al., [25] 2011          | Iran/Asians                               | Prospective<br>cohort | $\geq$ 20 years | Both           | 805/4656                                                                             | $SBP \ge 140 \text{ mmHg or } DBP \ge 90 \text{ mmHg or reported use of } BP-lowering medications}$                                                                 | 6 years                                                 |
| Chien et al. [ <u>24</u> ]<br>2011      | Taiwan/Chinese                            | Prospective<br>cohort | $\geq$ 35 years | Both           | 1029/2506                                                                            | $SBP \ge 140 \text{ mmHg or } DBP \ge 90 \text{ mmHg or reported use of } BP-lowering medications}$                                                                 | Median 6.15<br>years                                    |
| Fava et al. [ <u>46</u> ]<br>2013       | Sweden/Whites                             | Prospective<br>cohort | Middle-aged     | Both           | NR/10,781                                                                            | $SBP \ge 140 \text{ mmHg or } DBP \ge 90 \text{ mmHg or reported use of } BP-lowering medications}$                                                                 | Over average<br>23-years                                |
| Lim et al. [ <u>30</u> ]<br>2013        | Korea/Asians                              | Prospective<br>cohort | 40–69 years     | Both           | 819/4747. Derivation<br>cohort: 483/2840<br>Validation cohort:<br>336/1907           | $\label{eq:sbp} \begin{array}{l} SBP \geq 140 \mbox{ mmHg or } DBP \geq 90 \\ mmHg \mbox{ or reported use of } BP \\ lowering \mbox{ medications} \end{array}$      | 4 years                                                 |
| Choi et al. [47]<br>2014                | USA/Mexicans                              | Prospective<br>cohort | NR              | Both           | NR/443                                                                               | SBP >140 mm Hg, DBP >90 mm<br>Hg, or use of antihypertensive<br>medication                                                                                          | NR                                                      |
| Lim et al. [ <u>48</u> ]<br>2015        | Korean/Asians                             | Prospective<br>cohort | 40–69 years     | Both           | NR/5632                                                                              | SBP ≥140 mm Hg or DBP ≥90<br>mm Hg or use of antihypertensive<br>medication                                                                                         | 4-year                                                  |
| Otsuka et al. [23]<br>2015              | Japan/Asians                              | Prospective<br>cohort | 19-63 years     | Male<br>only   | 1633/15,025                                                                          | SBP ≥140 mm Hg or DBP ≥90<br>mm Hg or use of antihypertensive<br>medication                                                                                         | Median 4 years                                          |
| Asgari et al. [ <u>49</u> ]<br>2015     | Iran/Asians                               | Prospective<br>cohort | $\geq$ 20 years | Both           | ISH: 235/4574 IDH:<br>470/4809                                                       | $\begin{array}{l} \text{ISH: SBP} \geq 140 \text{ mmHg and} \\ \text{DBP} < 90 \text{ mmHg IDH: SBP} < 140 \\ \text{mmHg and DBP} \geq 90 \text{ mmHg} \end{array}$ | ISH: Median<br>9.57 years,<br>IDH: Median<br>9.62 years |
| Sathish et al. [29]<br>2016             | India/Asians                              | Prospective<br>cohort | 15–64 years     | Both           | 70/297                                                                               | SBP ≥140 mm Hg or DBP ≥90<br>mm Hg or use of antihypertensive<br>medication                                                                                         | Mean 7.1 years                                          |
| Lee et al. [50]<br>2015                 | Korea/Asians                              | Prospective<br>cohort | 40–69 years     | Both           | Men: 384/2128<br>Women: 374/2326                                                     | SBP ≥140 mm Hg or DBP ≥90<br>mm Hg or use of antihypertensive<br>medication                                                                                         | 4 years                                                 |
| Lee et al. [51]<br>2014                 | Korea/Asians                              | Cross-sectional       | 21–85 years     | Both           | NR/12,789                                                                            | $\begin{array}{l} \text{SBP} \geq 140 \text{ mmHg and/or} \\ \text{DBP} \geq 90 \text{ mmHg or physician-} \\ \text{diagnosed hypertension} \end{array}$            | NR                                                      |

#### Table 1. Characteristics of included studies that describe traditional regression-based hypertension prediction models.

| Study                              | Location Model<br>Developed/<br>Ethnicity                              | Study Design                         | Age                                                                         | Gender | Events (n)/Total<br>Participants (N)                        | Definition of Outcome Predicted/<br>Hypertension                                                                                                                                                                   | Duration of<br>Follow-up                            |
|------------------------------------|------------------------------------------------------------------------|--------------------------------------|-----------------------------------------------------------------------------|--------|-------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|
| Kanegae et al.<br>[32] 2018        | Japan/Asians                                                           | Prospective<br>cohort                | 18-83 years                                                                 | Both   | 7402/63,495                                                 | $SBP/DBP \ge 140/90 \text{ mm Hg and/or}$<br>the initiation of antihypertensive<br>medications with self-reported<br>hypertension                                                                                  | Mean 3.4 years                                      |
| Chen et al. [52]<br>2016           | China/Asians                                                           | Prospective<br>cohort                | Average age 41.73<br>years (men), 39.49<br>years (women)                    | Both   | 2021 (men), 764<br>(women) 7537 (men),<br>4960 (women)      | First occurrence at any follow-up<br>medical check-up of SBP > 140<br>mm Hg or DBP > 90 mm Hg or of<br>the person taking antihypertensive<br>medication                                                            | Median 4.0<br>years                                 |
| Díaz-Gutiérrez<br>et al. [28] 2019 | Spain/Spanish                                                          | Prospective<br>cohort                | Age presented<br>according to the<br>number of healthy<br>lifestyle factors | Both   | 1406/14057                                                  | $\begin{array}{l} \text{SBP} \geq 130 \text{ mmHg, DBP} \geq 80 \\ \text{mmHg, or use of any} \\ \text{antihypertensive drug} \end{array}$                                                                         | Median 10.2<br>years                                |
| Wang et al. [ <u>53</u> ]<br>2018  | China/Asians                                                           | Longitudinal                         | 18–90 years                                                                 | Both   | 882/5265 (derivation)<br>NR/1597 (validation)               | Taking antihypertensive drugs or<br>SBP at least 140 mmHg or DBP at<br>least 90 mmHg                                                                                                                               | Average<br>follow-up of<br>$8.05 \pm 5.27$<br>years |
| Niiranen et al.<br>[54] 2016       | Finland/Whites                                                         | Prospective cohort                   | $\geq$ 30 years                                                             | Both   | NR/2045                                                     | $BP \ge 140/90 \text{ mm Hg and/or}$<br>antihypertensive medication                                                                                                                                                | 11 years                                            |
| Yeh et al. [55]<br>2001            | Taiwan/Chinese                                                         | Prospective cohort                   | $\geq$ 20 years                                                             | Both   | 88/2374                                                     | SBP ≥140 mm Hg or DBP ≥90<br>mm Hg                                                                                                                                                                                 | Average 3.23<br>years                               |
| Syllos et al. [21]<br>2020         | Brazil/South<br>Americans                                              | Prospective<br>cohort                | 35–74 years                                                                 | Both   | 1088/8027;<br>Derivation: 4825<br>Validation: 3202          | $SBP \ge 140 \text{ mm Hg}, DBP \ge 90 \text{ mm}$<br>Hg or the use of blood pressure-<br>lowering medications                                                                                                     | 4 years                                             |
| Wang et al. [27]<br>2020           | China/Asians                                                           | Prospective<br>cohort                | $\geq$ 18 years                                                             | Both   | 1658/9034                                                   | $SBP \ge 140 \text{ mm Hg}, DBP \ge 90 \text{ mm}$<br>Hg or the use of blood pressure-<br>lowering medications                                                                                                     | Median 6 years                                      |
| Xu et al. [56]<br>2019             | China/Asians                                                           | Prospective<br>cohort                | 35–74 years                                                                 | Both   | 1036/4796 (Training)                                        | $SBP \ge 140 \text{ mm Hg and/or}$<br>$DBP \ge 90 \text{ mm Hg, and/or a}$<br>diagnosis of hypertension by a<br>physician and currently receiving<br>anti-hypertension treatment                                   | 6 years                                             |
| Kadomatsu et al.<br>[26] 2019      | Japan/Asians                                                           | Prospective<br>cohort                | Mean age 51.3 years                                                         | Both   | 324/3936                                                    | $SBP \ge 140 \text{ mm Hg}, DBP \ge 90 \text{ mm}$<br>Hg, or use of antihypertensive<br>medication                                                                                                                 | Median 5 years                                      |
| Wang et al. [ <u>57</u> ]<br>2015  | USA/Multi-<br>ethnic                                                   | Telephone-<br>based health<br>survey | $\geq$ 18 years                                                             | Both   | NR/308,711                                                  | NR                                                                                                                                                                                                                 | NR                                                  |
| Muntner et al.<br>[58] 2010        | USA/ Multi-<br>ethnic (Whites,<br>Blacks,<br>Hispanics, and<br>Asians) | NR                                   | 45-84 years                                                                 | Both   | 849/3013                                                    | The first study visit, subsequent to baseline, at which SBP $\geq$ 140 mm Hg and/or DBP $\geq$ 90 mm Hg and/ or the initiation of antihypertensive medication                                                      | Median of 1.6<br>years and 4.8<br>years             |
| Ture et al. [59]<br>2005           | Turkey/<br>Europeans                                                   | Retrospective                        | Average 48.2 years<br>(hypertension) 46.5<br>(control)                      | Both   | 694 (452 patients with<br>hypertension and 242<br>controls) | Average of 3 or more DBP<br>measurements on at least 3<br>subsequent visits is $\geq$ 90 mmHg or<br>when the average of multiple SBP<br>readings on 3 or more subsequent<br>visits is consistently $\geq$ 140 mmHg | NR                                                  |
| Yamakado et al.<br>[60] 2015       | Japan/Asians                                                           | Prospective<br>cohort                | $\geq$ 20 years                                                             | Both   | 424/2637                                                    | $SBP \ge 140 \text{ mm Hg or } DBP \ge 90 \text{ mm Hg or use of antihypertensive medication}$                                                                                                                     | 4 years                                             |
| Qi et al. [ <u>61</u> ]<br>2014    | China/Asians                                                           | Case-control                         | Case: $64.48 \pm 8.53$<br>years; Control:<br>$64.23 \pm 10.13$ years        | Both   | Patients: NR/1009<br>Controls = NR/756                      | $SBP \ge 140 \text{ mm Hg or } DBP \ge 90 \text{ mm Hg or use of antihypertensive medication}$                                                                                                                     | NR                                                  |

| Study                             | Location Model<br>Developed/<br>Ethnicity | Study Design          | Age         | Gender | Events (n)/Total<br>Participants (N) | Definition of Outcome Predicted/<br>Hypertension                                                                                    | Duration of<br>Follow-up |
|-----------------------------------|-------------------------------------------|-----------------------|-------------|--------|--------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|--------------------------|
| Lu et al. [ <u>62</u> ]<br>2015   | China/Asians                              | Prospective<br>cohort | 35-74 years | Both   | 2559/7724                            | $SBP \ge 140 \text{ mm Hg or } DBP \ge 90 \text{ mm Hg or use of antihypertensive medication}$                                      | Mean 7.9 years           |
| Zhang et al. [ <u>63]</u><br>2015 | China/Asians                              | Prospective<br>cohort | 18–88 years | Both   | 3793/17,471                          | $\begin{array}{l} SBP \geq 140 \text{ mm Hg or } DBP \geq 90 \\ mm \text{ Hg or use of antihypertensive} \\ medication \end{array}$ | 5 years                  |

NR, not reported; SBP, systolic blood pressure; DBP, diastolic blood pressure; BP, blood pressure; ISH, isolated systolic hypertension; IDH, isolated diastolic hypertension

#### https://doi.org/10.1371/journal.pone.0266334.t001

statistics were 0.73 [0.69–0.77], 0.77 [0.74–0.81], 0.73 [0.69–0.78], and 0.77 [0.75–0.79] for Cox, logistic, repeated Poisson, and Weibull respectively (Fig 3). The heterogeneity was still observed to be high within the different types of models (Fig 3). The 95% approximate prediction interval for the overall C-statistics was from 0.63 to 0.84.

To explore possible sources of heterogeneity in the overall pooled C-statistics, we performed a meta-regression. We initially considered the following potential sources of heterogeneity: the definition of hypertension used (the cut-off level used to define hypertension), sex of the participants in included studies (categorized as female-only, male-only, and both male and female), age of the participants (study participants below average age versus above average age), number of risk factors considered in the model (below median versus above median), sample size considered in the model (below median versus above median), and ethnicity of the study participants (Whites versus Asians). However, we excluded the definition of hypertension as a heterogeneity source, as all studies except one used the same definition for hypertension. Meta-regression identified the participants' sex, that is, being male compared to female (p = 0.044), participants' age (p = 0.011), and the number of risk factors considered in the model (p = 0.001) as potential sources of high heterogeneity in the C-statistic. Sex of the participants' when both male and female compared to female-only (p = 0.351), sample size considered in the model (p = 0.395), and ethnicity of the study participants (p = 0.899) were not identified as a statistically significant source of observed heterogeneity in the C-statistic of these models.

#### Critical appraisal of traditional regression-based models

We assessed study quality using the PROBAST checklist. A detailed assessment of the risk of bias (ROB) and applicability is presented in <u>S2 Table</u> and <u>Fig 4</u>. Overall, ROB was "low" in 19 studies, "high" in 5 studies, and "unclear" in 10 studies. Overall applicability was "low concern" in 12 studies, "high concern" in 21 studies, and "unclear concern" in 1 study. Within the ROB domains, the "low" risk of bias was observed in most of the domains except the "analysis" domain, where a large portion of studies (more than 30%) was "unclear" (Fig 4). Similarly, within the applicability domains, the "participants" domain seems to be a concern, as a large portion of studies (more than 30%) were at "high concern" or "unclear concern" (Fig 4). We also presented the different PROBAST signaling questions' distribution of responses by the various studies in <u>S1</u> and <u>S2</u> Figs.

#### Study characteristics of machine learning-based models

Study characteristics of machine learning-based models are presented in <u>Table 3</u>. A total of 1,211,093 participants were used to develop 42 machine learning-based models in 20 studies.

| Study                                                                                                                                                                                                                                                                                                                                            | Risk Factors Included                                                                                                                                                                                                                                                            | tisk Factors Included Modeling Method Discrimination |                                                                                                                                                                                                                        | Calibration                                                                                                                                                                                                                                    | Model<br>Validation:<br>Internal or<br>External |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|
| Pearson et al.<br>[ <u>41]</u> 1990                                                                                                                                                                                                                                                                                                              | Age, SBP at baseline, paternal history of hypertension, and BMI                                                                                                                                                                                                                  | Cox regression                                       | NR                                                                                                                                                                                                                     | NR                                                                                                                                                                                                                                             | NR                                              |
| Parikh et al. [22]<br>2008                                                                                                                                                                                                                                                                                                                       | Age, sex, SBP, DBP, BMI, parental<br>hypertension, and cigarette<br>smoking                                                                                                                                                                                                      | Weibull regression                                   | C-statistic = 0.788 [0.733–0.803]                                                                                                                                                                                      | HL Chi-square = 4.35<br>(p = 0.88)                                                                                                                                                                                                             | Internal, apparent                              |
| Paynter et al. Inclusive Model: Age, ethnicity,   [42] 2009 BMI, total grain intake, SBP, DBP,   apolipoprotein B, lipoprotein (a), and C-reactive protein. Simplified   Model with Lipids: Age, BMI, SBP, DBP, ethnicity, and total to   HDL- cholesterol ratio Simplified Model: Age, BMI, ethnicity, SBP,   and DBP Age, BMI, ethnicity, SBP, |                                                                                                                                                                                                                                                                                  | Logistic regression                                  | Inclusive Model: C-<br>statistic = 0.705; Simplified<br>Model with Lipids: C-<br>statistic = 0.705; Simplified<br>Model: C-statistic = 0.703                                                                           | Inclusive Model: HL Chi-<br>square = 24.6 (p = $0.002$ ),<br>Simplified Model with Lipids:<br>HL Chi-square = $20.7$<br>(p = $0.008$ ), Simplified<br>Model: HL Chi-square = $12.3$<br>(p = $0.140$ )                                          | Internal, split-<br>sample 2:1                  |
| Kivimäki et al.<br>[ <u>43]</u> 2009                                                                                                                                                                                                                                                                                                             | Age, sex, SBP, DBP, BMI, parental<br>hypertension, and cigarette<br>smoking                                                                                                                                                                                                      | Weibull regression                                   | C-statistic = 0.804                                                                                                                                                                                                    | HL Chi-square = 14.3<br>(p = 0.88)                                                                                                                                                                                                             | Internal, split-<br>sample 6:4                  |
| Kivimäki et al.<br>[44] 2010                                                                                                                                                                                                                                                                                                                     | Repeat Measure BP Model: Age,<br>sex, BMI, parental hypertension,<br>repeat measures of BP, and<br>cigarette smoking Average BP<br>Model: Age, sex, BMI, parental<br>hypertension, average BP, and<br>cigarette smoking                                                          | Weibull regression                                   | Repeat Measure BP Model: C-<br>statistic = 0.799; Average BP<br>Model: C-statistic = 0.794                                                                                                                             | Repeat Measure BP Model:<br>HL Chi-square = 6.5; Average<br>BP Model: NR                                                                                                                                                                       | Internal, split-<br>sample 6:4                  |
| Kshirsagar et al.<br>[45] 2010                                                                                                                                                                                                                                                                                                                   | Age, level of SBP or DBP,<br>smoking, family history of<br>hypertension, diabetes mellitus,<br>BMI, female sex, and lack of<br>exercise                                                                                                                                          | Logistic regression                                  | AUC = 0.742 (3years), 0.750 (6<br>years), 0.791 (9 years), and 0.775<br>(ever)                                                                                                                                         | NR                                                                                                                                                                                                                                             | Internal, split-<br>sample 2:1                  |
| Bozorgmanesh<br>et al., [25] 2011                                                                                                                                                                                                                                                                                                                | For Women: age, waist<br>circumference, DBP, SBP, and<br>family history of premature CVD<br>For Men: age, DBP, SBP, and<br>smoking                                                                                                                                               | Weibull regression                                   | C-statistic = 0.731 [0.706–0.755]<br>for women, C-statistic = 0.741<br>[0.719–0.763] for men                                                                                                                           | HL Chi-square = 7.8<br>(p = 0.554) for women; HL<br>Chi-square = 8.8 (p = 0.452)<br>for men                                                                                                                                                    | NR                                              |
| Chien et al. [24]<br>2011                                                                                                                                                                                                                                                                                                                        | Clinical Model: Age, gender, BMI,<br>SBP, and DBP<br>Biochemical Model: Age, gender,<br>BMI, SBP, DBP, white blood<br>count, fasting glucose, uric acid                                                                                                                          | Weibull regression                                   | Clinical Model: AUC = $0.732$<br>[ $0.712-0.752$ ] (point based),<br>AUC = $0.737$ (coefficient<br>based); Biochemical Model:<br>AUC = $0.735$ [ $0.715-0.755$ ]<br>(point based), AUC = $0.74$<br>(coefficient based) | Clinical Model: HL Chi-<br>square = $8.3$ , p = $0.40$ (point<br>based), $10.9$ , p = $0.21$<br>(coefficient based);<br>Biochemical Model: HL Chi-<br>square = $13.2$ , p = $0.11$ (point<br>based), $6.4$ , p = $0.60$<br>(coefficient based) | Internal, fivefold<br>cross- validation         |
| Fava et al. [ <u>46]</u><br>2013                                                                                                                                                                                                                                                                                                                 | Age, sex, sex times age, heart rate,<br>obesity, diabetes,<br>hypertriglyceridemia,<br>prehypertension, family history of<br>hypertension, sedentary in spare<br>time, problematic alcohol<br>behavior, married or living as a<br>couple, high-level non-manual<br>work, smoking | Logistic regression                                  | AUC = 0.662 [0.651-0.672]                                                                                                                                                                                              | NR                                                                                                                                                                                                                                             | NR                                              |
| Lim et al. [ <u>30]</u><br>2013                                                                                                                                                                                                                                                                                                                  | Age, sex, smoking, SBP, DBP, parental hypertension, BMI                                                                                                                                                                                                                          | Weibull regression                                   | AROC = 0.791 [0.766–0.817]                                                                                                                                                                                             | HL Chi-square = 4.17<br>(p = 0.8415)                                                                                                                                                                                                           | Internal, split-<br>sample 6:4                  |

| Table 2.  | The features of hypertension | prediction models developed | l using a traditional  | regression-based | modeling approach |
|-----------|------------------------------|-----------------------------|------------------------|------------------|-------------------|
| 1 4010 2. | The features of hypertension | prediction models developed | a doning a cradicional | regression bused | modeling approach |

| Study                       | Risk Factors Included                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Modeling Method                                                                                                                                                                                                                              | Discrimination                                                                                                                                                                | Calibration                                                                                                        | Model<br>Validation:<br>Internal or<br>External          |
|-----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|
| Choi et al. [47]<br>2014    | Age, gender, smoke, age x gender,<br>Rs10510257 (AA), Rs10510257<br>(AG), Rs1047115 (GT)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | GEE for marginal model<br>and logistic random<br>effect model for<br>conditional model                                                                                                                                                       | Marginal model: AUC = 0.839<br>(with SNPs), 0.826 (without<br>SNPs) Conditional model:<br>AUC = 0.973 (with SNPs), 0.973<br>(without SNPs)                                    | NR                                                                                                                 | NR                                                       |
| Lim et al. [48]<br>2015     | Traditional variables: age, gender,<br>SBP, current smoking status,<br>family history of hypertension,<br>BMI, and one genetic variable<br>(cGRS or wGRS derived from the<br>4 SNPs): rs995322, rs17249754,<br>rs1378942, rs12945290                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | r, Logistic regression<br>Perivation cohort: C-<br>statistic = 0.810 [0.796-0.824] (m<br>(model without wGRS, C-<br>statistic = 0.811 [0.797-0.825] wi<br>(model with wGRS); Validation<br>cohort: Mean C-statistic = 0.811<br>[0.809-0.816] |                                                                                                                                                                               | HL Chi-square = 6.916<br>(model without wGRS), HL<br>Chi-square = 5.711 (model<br>with wGRS)                       | Internal<br>validation,<br>fivefold cross-<br>validation |
| Otsuka et al.<br>[23] 2015  | Age, BMI, SBP and DBP, current<br>smoking status, excessive alcohol<br>intake, parental history of<br>hypertension                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Cox regression                                                                                                                                                                                                                               | Validation cohort: C-<br>statistic = 0.861 [0.844–0.877]<br>(model), C-statistic = 0.858<br>[0.840–0.876] (score)                                                             | Validation cohort: HL Chi-<br>square = 15.2 (p = 0.085)<br>(model), HL Chi-<br>square = 9.30 (p = 0.41)<br>(score) | Internal<br>validation, split<br>sample 4:1              |
| Asgari et al. [49]<br>2016  | ISH: Age, SBP, BMI, 2 hours post-<br>challenge plasma glucose IDH:<br>Age, DBP, waist circumference,<br>marital status, gender, HDL-C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Cox regression                                                                                                                                                                                                                               | ISH: C-statistic = 0.91, IDH: C-<br>statistic = 0.76                                                                                                                          | NR                                                                                                                 | NR                                                       |
| Sathish et al.<br>[29] 2016 | Age, sex, years of schooling, daily<br>intake of fruits or vegetables,<br>current smoking, alcohol use, BP,<br>prehypertension, central obesity,<br>history of high blood glucose                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Logistic regression                                                                                                                                                                                                                          | AUC = 0.802 [0.748-0.856]                                                                                                                                                     | Hosmer-Lemeshow p = 0.940                                                                                          | NR                                                       |
| Lee et al. [50]<br>2015     | BMI, waist circumference, waist-<br>to-hip ratio, waist-to-height ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Cox regression                                                                                                                                                                                                                               | Men: AROC = 0.58 [0.56-0.60]<br>(BMI), 0.62 [0.60-0.64] (WC,<br>WHR, WHtR) Women:<br>AROC = 0.57 [0.55-0.59]<br>(BMI), 0.66 [0.64-0.68] (WC),<br>0.68 [0.66-0.70] (WHR, WHtR) | NR                                                                                                                 | NR                                                       |
| Lee et al. [51]<br>2014     | Women: Height, age, neckC,<br>axillaryC, ribC, waistC, pelvicC,<br>rib_hip, waist_hip, pelvic_hip,<br>rib_pelvic, axillary_rib, chest_rib,<br>axillary_chest, forehead_neck<br>(CFS), height, weight, BMI, age,<br>chestC, forehead_hip, waist_hip,<br>chest_pelvic, waist_pelvic,<br>axillary_waist, forehead_rib,<br>neck_axillary (LR-wrapper)<br>Men: Age, foreheadC, neckC,<br>axillaryC, chestC, ribC, waistC,<br>pelvicC, hipC, rib_hip, waist_hip,<br>rib_pelvic, waist_pelvic,<br>chest_waist, forehead_rib,<br>chest_rib, axillary_chest,<br>forehead_neck (CFS), height,<br>forehead_neck (CFS), height,<br>forehead_meck, axillaryC, ribC,<br>pelvicC, forehead_hip, chest_hip,<br>rib_hip, pelvic_hip,<br>forehead_waist, axillary_waist,<br>rib_waist, neck_rib, axillary_rib,<br>chest_rib, forehead_axillary,<br>forehead_neck, WHtR (LR-<br>wrapper) | Logistic regression                                                                                                                                                                                                                          | Women: AUC = 0.713<br>(LR-CFS), 0.721 (LR-wrapper)<br>Men: AUC = 0.637 (LR-CFS),<br>0.652 (LR-wrapper)                                                                        | NR                                                                                                                 | Internal, 10-fold<br>cross- validation                   |

| Study Risk Factors Included                 |                                                                                                                                                                                                                                                                                                                                                    | Modeling Method                                                                                                          | Discrimination                                                                                                                                                   | Calibration                                                                                                                                                                                                                  | Model<br>Validation:<br>Internal or<br>External                                                  |
|---------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
| Kanegae et al.<br>[32] 2018                 | Age, sex, BMI, SBP, DBP, low-<br>density lipoprotein cholesterol,<br>uric acid, proteinuria, current<br>smoking, alcohol intake, eating<br>rate, DBP by age, and BMI by age                                                                                                                                                                        | BMI, SBP, DBP, low-<br>poprotein cholesterol,<br>proteinuria, current<br>alcohol intake, eating<br>by age and BMI by age |                                                                                                                                                                  | Greenwood-Nam-<br>D'Agostino χ2<br>statistic = 13.6)                                                                                                                                                                         | External<br>validation                                                                           |
| Chen et al. [ <u>52]</u><br>2016            | Nate, DD Of age, and DMPO ageDerivation: AUC = 0.7Men: Age, BMI, SBP, DBP,<br>gamma-glutamyl transferase,<br>fasting blood glucose, drinking,<br>age x BMI, age x DBPCox regressionDerivation: AUC = 0.7Women: Age, BMI, SBP, DBP,<br>fasting blood glucose, total<br>cholesterol, neutrophil[0.737-0.761] (women)[0.737-0.761] (women)            |                                                                                                                          | Derivation: AUC = 0.761<br>[0.752-0.771] (men), 0.753<br>[0.741-0.765] (women)<br>Validation: AUC = 0.760<br>[0.751-0.770] (men), 0.749<br>[0.737-0.761] (women) | NR                                                                                                                                                                                                                           | Internal, 10-fold<br>cross-validation                                                            |
| Díaz-Gutiérrez<br>et al. [ <u>28</u> ] 2019 | No smoking, moderate-to-high<br>physical activity, Mediterranean<br>diet adherence, healthy BMI,<br>moderate alcohol intake, and no<br>binge drinking                                                                                                                                                                                              | Cox regression                                                                                                           | NR                                                                                                                                                               | NR                                                                                                                                                                                                                           | NR                                                                                               |
| Wang et al. [ <u>53]</u><br>2018            | Age, sex, education, marriage,<br>smoking, drinking, BMI, energy,<br>carbo, fat, protein                                                                                                                                                                                                                                                           | Multistate Markov<br>model                                                                                               | NR                                                                                                                                                               | NR                                                                                                                                                                                                                           | Temporal validation                                                                              |
| Niiranen et al.<br>[54] 2016                | Model 1: GRS Model 2: Model 1<br>+ age + sex Model 3: Model 2<br>+ smoking, diabetes, education,<br>hyper-cholesterolemia, leisure-<br>time exercise, and BMI                                                                                                                                                                                      | Multiple linear and logistic regression                                                                                  | C-index = 0.731 (Model 1)<br>C-index = 0.733 (Model 3)                                                                                                           | NR                                                                                                                                                                                                                           | NR                                                                                               |
| Yeh et al. [55]<br>2001                     | Age, DM, and fibrinogen<br>concentration (Men)<br>Age and APTT (activated partial<br>thromboplastin time) (Women)                                                                                                                                                                                                                                  | Cox regression                                                                                                           | NR                                                                                                                                                               | NR                                                                                                                                                                                                                           | NR                                                                                               |
| Syllos et al. [ <u>21</u> ]<br>2020         | Age, sex, educational level,<br>parental history of hypertension,<br>leisure-time physical activity,<br>BMI, neck circumference,<br>smoking, SBP, DBP                                                                                                                                                                                              | Logistic regression                                                                                                      | AUC = 0.830 [0.810-0.849]                                                                                                                                        | H-L Chi-square = 8.22,<br>p = 0.41                                                                                                                                                                                           | Internal, split<br>sample 6:4 ratio                                                              |
| Wang et al. [27]<br>2020                    | Age, parental hypertension, SBP,<br>DBP, BMI, and age by BMI                                                                                                                                                                                                                                                                                       | Logistic regression                                                                                                      | C-index = 0.795 [0.7733-0.810]<br>(Training set), C-index = 0.7914<br>[0.773-0.809] (Testing set)                                                                | H-L Chi-square = 7.747,<br>P = 0.459 (Training set)<br>H-L Chi-square = 14.366,<br>P = 0.073 (Testing set)                                                                                                                   | Internal,<br>Bootstrap<br>validation                                                             |
| Xu et al. [56]<br>2019                      | M1 Model: Age, SBP, DBP,<br>hypertension parental history,<br>WC, interaction item of age with<br>WC, and interaction item of age<br>with DBP W1 Model: Age, SBP,<br>DBP, WC, fruit and vegetable<br>intake, hypertension parental<br>history, interaction item of age<br>with WC, and interaction of age<br>with DBP were included in W1<br>model | Cox regression                                                                                                           | Testing Set Men: AUC = 0.771<br>[0.750-0.791] (M1)<br>Testing Set Women:<br>AUC = 0.765 [0.746-0.783]<br>(W1), 0.764 [0.746-0.783] (W2)                          | Testing Set Men: Modified<br>Nam-D'Agostino test Chi-<br>square = $6.305$ , p = $0.708$<br>(M1) Testing Set women:<br>Modified Nam-D'Agostino<br>test Chi-square = $6.783$ ,<br>p = $0.147$ (W1); 7.404,<br>p = $0.115$ (W2) | Internal, 10-fold<br>cross-validation<br>in training data<br>and external in<br>the testing data |
| Kadomatsu et al.<br>[26] 2019               | Age, sex, BMI, current smoking<br>habit, ethanol consumption,<br>presence of DM, parental<br>hypertension history, SBP, DBP                                                                                                                                                                                                                        | Logistic regression                                                                                                      | AUC = 0.826 [0.804–0.848]<br>(Entire cohort validation)<br>Median AUC = 0.83 [0.828–<br>0.832] (Cross-validation)                                                | H–L Chi-square = 7.06,<br>p = 0.53, (Entire cohort<br>validation); H–L Chi-<br>square = 12.2 (Cross-<br>validation)                                                                                                          | Internal, split-<br>sample cross-<br>validation 6:4<br>ratio                                     |

| Study Risk Factors Included  |                                                                                                                                                                                                                                                               | Modeling Method                                                                                                                                                                    | Discrimination                                                                                                                                                                                                                                                                                    | Calibration | Model<br>Validation:<br>Internal or<br>External          |  |
|------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|----------------------------------------------------------|--|
| Wang et al. [57]<br>2015     | et al. [57] Exercise, diabetes, hyperlipemia,<br>age, marriage, education, income,<br>weight, height, sex, smoke, drink Logistic regression and AUC. AUC = 0.74±0.00<br>(logistic), Accuracy = 71.969<br>(logistic)                                           |                                                                                                                                                                                    | Accuracy, sensitivity, specificity,<br>and AUC. AUC = 0.74±0.001<br>(logistic), Accuracy = 71.96%<br>(logistic)                                                                                                                                                                                   | NR          | Internal, split<br>sample 7:3 ratio                      |  |
| Muntner et al.<br>[58] 2010  | antner et al.<br>B] 2010<br>SBP-alone model (7 SBP<br>categories)<br>Age-specific categories of DBP<br>model (20 categories)<br>Rep<br>Poi<br>model (20 categories)                                                                                           |                                                                                                                                                                                    | SBP model: C-statistic = 0.768<br>[0.751-0.785] (1.6 years follow-<br>up), 0.773 [0.775-0.791] (4.8<br>years follow-up); Age-specific<br>DBP Model: C-statistic = 0.699<br>[0.681-0.717] (1.6 years follow-<br>up), 0.691 [0.671-0.711] (4.8<br>years follow-up)                                  | NR          | NR                                                       |  |
| Ture et al. [59]<br>2005     | Age, sex, family history of<br>hypertension, smoking habits,<br>lipoprotein (a), triglyceride, uric<br>acid, total cholesterol, and BMI                                                                                                                       | Logistic regression,<br>Flexible discriminant<br>analysis, multivariate<br>additive regression<br>splines (degree 1),<br>multivariate additive<br>regression splines<br>(degree 2) | Sensitivity, specificity, and predictive rate (PR)                                                                                                                                                                                                                                                | NR          | Internal, split<br>sample 3:1 ratio                      |  |
| Yamakado et al.<br>[60] 2015 | PFAA Index 1: Leucine, alanine,<br>tyrosine, asparagine, tryptophan,<br>and glycine; PFAA Index 2:<br>Isoleucine, alanine, tyrosine,<br>phenylalanine, methionine, and<br>histidine                                                                           | Logistic regression                                                                                                                                                                | NR                                                                                                                                                                                                                                                                                                | NR          | Internal, LOOCV<br>and validation in<br>a cohort dataset |  |
| Qi et al. [61]<br>2014       | rs17030613, rs16849225,<br>rs1173766, rs11066280, rs35444,<br>rs880315, rs16998073, rs11191548,<br>rs17249754                                                                                                                                                 | Logistic regression                                                                                                                                                                | NR                                                                                                                                                                                                                                                                                                | NR          | NR                                                       |  |
| Lu et al. [62]<br>2015       | Model1: GRS+ (age, sex, and<br>BMI); Model2: GRS +Model1<br>+ smoking, drinking, pulse rate,<br>and education; Model3: GRS<br>+ Model2 + SBP and DBP                                                                                                          | Logistic regression and<br>Cox regression                                                                                                                                          | Model1: C-statistic = 0.650<br>[0.637-0.663] (without GRS),<br>0.655 [0.642-0.668] (with GRS)<br>Model 2: C-statistic = 0.683<br>[0.670-0.695] (without GRS),<br>0.687 [0.675-0.700] (with GRS)<br>Model 3: C-statistic = 0.774<br>[0.763-0.785] (without GRS),<br>0.777 [0.766-0.787] (with GRS) | NR          | NR                                                       |  |
| Zhang et al. [63]<br>2015    | Five latent factors extracted from<br>11 biomarkers (BMI, SBP, DBP,<br>FBG, TG, HDL-C, Hb, HCT,<br>WBC, LC, NGC): inflammatory<br>factor, blood viscidity factor,<br>insulin resistance factor, blood<br>pressure factor, lipid resistance<br>factor, and age | Cox regression                                                                                                                                                                     | Derivation cohort: AUC = 0.755<br>[0.746-0.763] (men),<br>AUC = 0.801 [0.792-0.810]<br>(women) Validation cohort:<br>AUC = 0.755 [0.746-0.763]<br>(men), AUC = 0.800 [0.791-<br>0.810] (women)                                                                                                    | NR          | Internal, 10-fold<br>cross- validation                   |  |

NR, not reported; SBP, systolic blood pressure; DBP, diastolic blood pressure; BP, blood pressure; BMI, body mass index; CVD, cardiovascular disease; HDL, highdensity lipoprotein; WC, waist circumference; DM, diabetes mellitus; WHR, waist to hip ratio; WHtR, waist to height ratio; ISH, isolated systolic hypertension; IDH, isolated diastolic hypertension; AUC, area under the curve; AROC, area under the receiver operating characteristic curve; LR, logistic regression; GEE, Generalized estimating equations; LOOCV, leave-one-out cross-validation: HL, Hosmer Lemeshow; GRS, genetic risk score; SNP, single-nucleotide polymorphism; CFS, correlation-based feature subset selection; FBG, fasting blood glucose; TG, triglycerides; HDL-C, high-density lipoprotein cholesterol; Hb, hemoglobin; HCT, hematocrit; WBC, white blood cell count; LC, lymphocyte count; NGC, neutrophil granulocyte count

https://doi.org/10.1371/journal.pone.0266334.t002

A.



B.





https://doi.org/10.1371/journal.pone.0266334.g002

Models were primarily developed either in white Caucasian or Asian populations. The number of risk factors/features considered to create the model ranged from 2 to 169, with a median of 7 risk factors per model. Age was the most common risk factor considered in 25 models, followed by sex/gender (8 models), BMI (7 models), DBP (6 models), smoking (6 models), and parental history of hypertension (6 models). The distribution of the conventional risk factors

| Study                                                                         |           | C-statistic<br>with 95% Cl | (%)  |
|-------------------------------------------------------------------------------|-----------|----------------------------|------|
| Cox                                                                           |           |                            | (,   |
| Otavka at al. 2015                                                            | -         |                            | 1.05 |
| Assess et al. 2015 (ISH)                                                      |           | 0.00[0.04, 0.00]           | 1.74 |
| Asgari et al., 2015 (IDH)                                                     |           | 0.81[0.88, 0.83]           | 1.04 |
| Les et al. 2015 (Men-DMI)                                                     |           | 0.50[0.58, 0.80]           | 1.04 |
| Lee et al., 2015 (Men WC)                                                     |           | 0.00[0.00, 0.00]           | 1.00 |
| Lee et al. 2015 (Men-WG)                                                      |           | 0.02[0.00, 0.04]           | 1.00 |
| Lee et al. 2015 (Men-WHR)                                                     | -         | 0.02 [0.00, 0.04]          | 1.08 |
| Lee et al. 2015 (Memor PMI)                                                   | -         | 0.52 [0.55, 0.54]          | 1.00 |
| Lee et al., 2015 (Momen MC)                                                   | -         | 0.88 [0.84, 0.89]          | 1.09 |
| Lee et al. 2015 (Women-WC)                                                    |           | 0.88 [0.88 0.70]           | 1.90 |
| Les et al. 2015 (Momen WHR)                                                   |           | 0.00 [0.00, 0.70]          | 1.00 |
| Kapagaa etal. 2017                                                            |           | 0.08 [0.00, 0.70]          | 1.00 |
| Chen et al. 2018 (Men)                                                        |           | 0.78 [ 0.75 0.77]          | 2.00 |
| Chen et al. 2018 (Momen)                                                      |           | 0.75[0.74_0.76]            | 1 00 |
| Yu et al. 2019 (Men office-based model)                                       |           | 0.77 [0.75 0.79]           | 1.00 |
| Xu et al., 2019 (Memon office-based model)                                    |           | 0.76 [0.75, 0.78]          | 1.07 |
| Xu et al. 2019 (Nomen Jahoraton-based model)                                  |           | 0.76 [0.75, 0.78]          | 1.07 |
| Huang et al. 2010                                                             | -         | 0.73 [0.69 0.79]           | 1.02 |
| Lust al. 2015 (Model 1. Without GRS)                                          |           | 0.65[0.64_0.66]            | 2.00 |
| Lustal 2015 (Model 1_With GRS))                                               |           | 0.65[0.64, 0.67]           | 2.00 |
| Lust al. 2015 (Model 2. Without GRS)                                          |           | 0.68[0.67, 0.70]           | 2.00 |
| Lust al. 2015 (Model 2_With GRS)                                              |           | 0.69[0.67, 0.70]           | 2.00 |
| Luet al. 2015 (Model 3. Without GRS))                                         |           | 0 77 [0 76 0 78]           | 1.99 |
| Luet al., 2015 (Model 3 With GRS)                                             |           | 0.78 [ 0.77. 0.79]         | 1.99 |
| Zhang et al., 2015 (Men)                                                      |           | 0.75 [ 0.75, 0.76]         | 2.00 |
| Zhang et al., 2015 (Women)                                                    |           | 0.80 [0.79, 0.81]          | 2.00 |
| Heterogeneity: $\vec{\tau} = 0.24$ , $\vec{l} = 99.37\%$ , $\vec{H} = 159.13$ | I ▲       | 0.73 [0.69. 0.77]          |      |
| Test of 8 = 8; Q(25) = 2125.73, p = 0.00                                      | •         |                            |      |
|                                                                               |           |                            |      |
| Logistic                                                                      |           |                            |      |
| Paynter et al., 2009 (Inclusive Model)                                        | +         | 0.70 [0.69, 0.72]          | 1.98 |
| Paynter et al., 2009 (Simplified Model with Lipids)                           | +         | 0.70 [0.69, 0.72]          | 1.98 |
| Paynter et al., 2009 (Simplified Model)                                       | +         | 0.70 [0.68, 0.72]          | 1.98 |
| Kshirsagar et al., 2010                                                       |           | 0.77 [0.77, 0.78]          | 2.00 |
| Fava et al., 2013                                                             |           | 0.66 [0.65, 0.67]          | 2.00 |
| Lim et al., 2015 (with wGRS)                                                  |           | 0.81 [0.81, 0.81]          | 2.01 |
| Sathish et al., 2016                                                          |           | 0.80 [0.74, 0.85]          | 1.69 |
| Sylloset al., 2020                                                            | +         | 0.83 [0.81, 0.85]          | 1.95 |
| Wang et al., 2020                                                             | •         | 0.79 [0.77, 0.81]          | 1.97 |
| Kadomatsu et al., 2019 (Entire Cohort)                                        | +         | 0.83 [0.80, 0.85]          | 1.93 |
| Kadomatsu et al., 2019 (Cross Validation)                                     | -         | 0.83 [0.83, 0.83]          | 2.01 |
| Lim et al., 2015 (without wGRS)                                               | A.        | 0.81 [0.80, 0.82]          | 1.98 |
| Heterogeneity: r = 0.11, l = 99.46%, H = 186.69                               | ↓ ▼       | 0.77 [0.74, 0.81]          |      |
| Test of 8 = 8; Q(11) = 1954.44, p = 0.00                                      |           |                            |      |
| Papasted Poisson                                                              |           |                            |      |
| Number of a 2010 (CDD Madel 1.6 up an fallowing)                              |           | 0 77 ( 0 75 0 70)          | 1.00 |
| Mustavet al., 2010 (SEP Model-1.0 yearstollow-up)                             |           | 0.77[0.78]                 | 1.98 |
| Muntheret al., 2010 (SEP Model-4.8 yearstollow-up)                            |           | 0.77 [0.76, 0.78]          | 2.00 |
| Muntheretal, 2010 (Age-specific DBP Model-1.0 years follow-up)                |           | 0.60[0.67_0.71]            | 1.08 |
| Heterogeneity: $r^2 = 0.05$ $l^2 = 98.98\%$ $H^2 = 33.13$                     |           | 0.73[0.69_0.78]            | 1.00 |
| Test of $\theta = \theta_1; Q(3) = 105.93, p = 0.00$                          | <b>•</b>  | 0.10[0.00, 0.10]           |      |
|                                                                               |           |                            |      |
| Weibull                                                                       |           |                            |      |
| Parikh et al., 2008                                                           |           | 0.79 [0.75, 0.82]          | 1.87 |
| Kivimäki et al., 2009                                                         |           | 0.80 [0.79, 0.82]          | 1.98 |
| Kivimäki et al., 2010 (Repeat Measure BP Model)                               | -         | 0.80 [0.77, 0.82]          | 1.93 |
| Kivimäki et al., 2010 (Average BP Model)                                      | +         | 0.79 [0.77, 0.82]          | 1.93 |
| Bozorgmanesh et al., 2011 (Women)                                             | -         | 0.73 [0.71, 0.75]          | 1.96 |
| Bozorgmanesh et al., 2011 (Men)                                               |           | 0.74 [0.72, 0.76]          | 1.96 |
| Chien et al., 2011 (Clinical Model)                                           | •         | 0.73 [0.71. 0.75]          | 1.97 |
| Chien et al., 2011 (Biochemical Model)                                        |           | 0.74 [0.71, 0.75]          | 1.97 |
| Lim et al., 2013                                                              | 7         | 0.79 [0.76, 0.82]          | 1.93 |
| Heterogeneity: $\vec{r} = 0.03$ , $\vec{l} = 87.66\%$ , $\vec{H} = 8.11$      | 🔶         | 0.77 [0.75, 0.79]          |      |
| Test of $\theta = \theta_i$ : Q(8) = 71.23, p = 0.00                          |           |                            |      |
|                                                                               |           |                            |      |
| Overall                                                                       |           | 0.75[0.73, 0.77]           |      |
| Prediction interval                                                           |           | 0.75 [0.63, 0.84]          |      |
| Test of group differences: Q(3) = 5.16, p = 0.16                              | -         |                            |      |
| 0.40                                                                          | 0.60 0.80 | _                          |      |
| Deadland (Cath DEM) and all                                                   |           |                            |      |

#### Meta-analysis of C-statistic

Fig 3. Forest plot of traditional regression-based models with 95% prediction interval.

https://doi.org/10.1371/journal.pone.0266334.g003



Fig 4. Graphical summary presenting the percentage of hypertension risk prediction studies rated by level of concern, risk of bias (ROB), and applicability for each domain.

https://doi.org/10.1371/journal.pone.0266334.g004

considered in machine learning models is presented in Fig 2B. Hypertension was predominantly defined using SBP  $\geq$  140 mm Hg, DBP  $\geq$  90 mm Hg, or antihypertensive medication. Artificial neural network (ANN) was the most common method used to develop the models. Different studies reported different performance measures, and accuracy and AUC/C-statistic were the two most commonly reported measures. Most of the studies did not report calibration measures. In studies that reported discrimination, the AUC (or C-statistic) values range from 0.64 to 0.93.

#### Meta-analysis of machine learning-based models

The overall pooled C-statistics of the machine learning-based models was 0.76 [0.72–0.79] with high heterogeneity in the discriminative performance of these models ( $I^2 = 99.9$ , Cochran

| Study                                | Data<br>Location | Sample Size                                                    | <b>Risk Factors Included</b>                                                                                                                                                                                                                              | Outcome<br>Considered                                               | Definition of<br>Outcome Predicted                                                                   | Modeling Method<br>Used                                                                                                                                                          | Performance Measure                                                                                                                                                                      |
|--------------------------------------|------------------|----------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Falk CT [64]<br>2003                 | USA              | 300 records<br>each for training<br>and validating             | Seven input values: sex; age;<br>total cholesterol; fasting<br>glucose; fasting HDL;<br>fasting triglycerides; body<br>mass index (BMI)                                                                                                                   | High blood<br>pressure                                              | SBP > 140 mm Hg or<br>DBP > 90 mm Hg                                                                 | Two neural network<br>programs: NNdriver<br>and SNNS                                                                                                                             | Classification success<br>rate. Training: 91%-<br>98%, (Strategy 1), 70%-<br>87% (Strategy 2);<br>Validation: 59%<br>(Strategy 1), 63%<br>(Strategy 2)                                   |
| Farran et al.<br>[65] 2013           | Kuwait           | 10,632 (6759<br>hypertensive<br>and 3873 non-<br>hypertensive) | BMI, age, ethnicity, and<br>diagnosis for diabetes                                                                                                                                                                                                        | Incident<br>hypertension,<br>type 2 diabetes,<br>and<br>comorbidity | NR                                                                                                   | Logistic regression<br>(LR), k-nearest<br>neighbors, support<br>vector machines, and<br>multifactor<br>dimensionality<br>reduction (MDR)                                         | Classification accuracy:<br>90% (hypertension)                                                                                                                                           |
| Huang et al.<br>[35] 2010            | China            | Training: 2438,<br>Validation: 616                             | High educational level,<br>predominantly sedentary<br>work, positive family<br>history of HTN,<br>overweight, dysarteriotony,<br>alcohol intake, salty diet,<br>more vegetable and fruit<br>intake, meat consumption,<br>and regular physical<br>exercise | Hypertension                                                        | Average SBP or<br>DBP > 139 mmHg<br>or > 89 mmHg,<br>respectively                                    | Logistic regression<br>model (LRM) and<br>artificial neural<br>network (ANN)<br>model (back-<br>propagated delta rule<br>networks)                                               | AUC: 0.900 ± 0.014<br>(ANN model)<br>AUC: 0.732 ± 0.026<br>(LRM)                                                                                                                         |
| Kwong et al.<br>[66] 2018            | NR               | 498                                                            | Age, BMI, exercise level,<br>alcohol consumption level,<br>smoking status, stress level,<br>and salt intake level                                                                                                                                         | Systolic blood<br>pressure (SBP)                                    | BP readings > 140<br>mmHg                                                                            | Two artificial neural<br>networks (ANN):<br>Back-propagation<br>(BP) neural network<br>and radial basis<br>function (RBF)<br>neural network<br>validate the<br>prediction system | Average Accuracy, BP<br>ANN: 94.28% (male),<br>93.74% (female)<br>RBF ANN: 91.06%<br>(male), 90.44% (female)                                                                             |
| Polak et al.<br>[67] 2008            | USA              | 159,989 records                                                | High blood cholesterol,<br>number of cigarettes<br>smoked now, age, weight,<br>height, sex                                                                                                                                                                | Hypertension                                                        | NR                                                                                                   | Artificial neural<br>network (ANN):<br>Around 250<br>architectures of<br>backpropagation<br>(BP) and fuzzy<br>networks                                                           | Classification rate and<br>AUROC, different<br>values for different Nets<br>architecture                                                                                                 |
| Priyadarshini<br>et al. [68]<br>2018 | USA              | NR                                                             | SBP, DBP, total cholesterol<br>(TC), high-density<br>lipoprotein (HDL), low-<br>density lipoprotein (LDL),<br>plasma glucose<br>concentration (PGC), and<br>heart rate (HR)                                                                               | Hypertension<br>attack                                              | DBP or SBP > 90 mm<br>Hg or > 120 mm Hg,<br>respectively, for at least<br>two measuring<br>instances | Deep neural network<br>model                                                                                                                                                     | Confusion/performance<br>matrix formed out of<br>four evaluating<br>parameters: accuracy<br>88%, precision 92%,<br>recall 82%, and F1 score<br>76% (average value over<br>20 iterations) |

| Table 3. Information about existing hypertension prediction models of | developed using machine learning algorithms from selected studies. |
|-----------------------------------------------------------------------|--------------------------------------------------------------------|
|-----------------------------------------------------------------------|--------------------------------------------------------------------|

| Study                           | Data<br>Location | Sample Size                                                                                                              | <b>Risk Factors Included</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Outcome<br>Considered                 | Definition of<br>Outcome Predicted                                                                | Modeling Method<br>Used                                                                                                                                                                                                                                 | Performance Measure                                                                                                                                                                                                                                                                                                                   |
|---------------------------------|------------------|--------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|---------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sakr et al. [36]<br>2018        | USA              | 23,095                                                                                                                   | Age, METS, resting systolic<br>blood pressure, peak<br>diastolic blood pressure,<br>resting diastolic blood<br>pressure, HX coronary<br>artery disease, the reason<br>for the test, history of<br>diabetes, percentage HR<br>achieved, race, history of<br>hyperlipidemia, Aspirin<br>use, hypertension response                                                                                                                                                                         | Hypertension                          | NR                                                                                                | Six machine learning<br>techniques:<br>LogitBoost (LB),<br>Bayesian network<br>classifier (BN),<br>locally weighted<br>naïve Bayes (LWB),<br>artificial neural<br>network (ANN),<br>support vector<br>machine (SVM), and<br>random tree forest<br>(RTF) | AUC, F-Score,<br>Sensitivity, Specificity,<br>Precision, and RMSE.<br>AUC (0.93), F-Score<br>(86.70%), Sensitivity<br>(69,96%) and Specificity<br>(91.71%) for RTF model<br>in 10-fold cross-<br>validation AUC (0.88),<br>Sensitivity (74.30%),<br>Precision (73.50%), and<br>F-Score (73.90%) for<br>RTF model in holdout<br>method |
| Tayefi et al.<br>[69] 2017      | Iran             | 9078                                                                                                                     | Age, gender, BMI, marital<br>status, level of education,<br>occupation status,<br>depression and anxiety<br>status, physical activity<br>level, smoking status, LDL,<br>triglyceride, total<br>cholesterol, fasting blood<br>glucose, uric acid, and hs-<br>CRP in Model 1<br>Age, gender, white blood<br>cell, red blood cell,<br>hemoglobin, hematocrit,<br>mean corpuscular<br>hemoglobin, platelets, red<br>cell distribution width and<br>platelet distribution width<br>in Model 2 | Hypertension                          | SBP of 140 mm Hg,<br>DBP of 90 mm Hg,<br>and/or current use of<br>antihypertensive drugs          | Decision tree                                                                                                                                                                                                                                           | Accuracy, sensitivity,<br>specificity, and area<br>under the ROC curve<br>(AUC): For Model 1,<br>the values are 73%, 63%,<br>77% and 0.72,<br>respectively, and for<br>Model 2 were 70%, 61%,<br>74% and 0.68,<br>respectively                                                                                                        |
| Wu et al. [70]<br>2015          | USA              | 75 females and<br>165 males                                                                                              | Age, gender, serum<br>cholesterol, fasting blood<br>sugar and<br>electrocardiographic signal,<br>heart rate                                                                                                                                                                                                                                                                                                                                                                              | Systolic blood<br>pressure            | SBP and DBP > 140<br>mm Hg and 90 mm<br>Hg, respectively                                          | Two neural network<br>algorithms: back-<br>propagation neural<br>network and radial<br>basis function<br>network                                                                                                                                        | The absolute difference<br>(error) between the real<br>value and predicted<br>values                                                                                                                                                                                                                                                  |
| Wu et al. [71]<br>2016          | NR               | 498                                                                                                                      | Age, BMI, gender, exercise<br>level, alcohol consumption,<br>stress level, salt intake level,<br>smoke status, cholesterol,<br>and blood glucose                                                                                                                                                                                                                                                                                                                                         | Systolic blood<br>pressure            | SBP > 140 mm Hg                                                                                   | Two artificial neural<br>networks: back-<br>propagation neural<br>network and radial<br>basis function neural<br>network                                                                                                                                | The average prediction<br>errors (absolute<br>difference between the<br>predicted value and<br>measured value): 51.9%<br>for men and 52.5% for<br>women<br>(backpropagation<br>neural network)<br>51.8% for men and<br>49.9% for women<br>(radial basis function<br>network)                                                          |
| Ye et al. [ <u>37</u> ]<br>2018 | USA              | 823,627<br>(training<br>cohort/<br>retrospective<br>cohort), 680,810<br>(validation<br>cohort/<br>prospective<br>cohort) | Total 169 features: 2<br>demographic features, 14<br>socioeconomic<br>characteristics, 30<br>diagnostic diseases, 6<br>laboratory tests, 98<br>medication prescriptions,<br>and 19 clinical utilization                                                                                                                                                                                                                                                                                  | Incident<br>essential<br>hypertension | ICD, 9th Revision,<br>Clinical Modification<br>(ICD-9-CM) diagnosis<br>codes from category<br>401 | A supervised<br>machine learning<br>and data mining<br>tool, XGBoost                                                                                                                                                                                    | AUC = 0.917<br>(retrospective cohort),<br>AUC = 0.870<br>(prospective cohort)                                                                                                                                                                                                                                                         |

| Study                      | Data<br>Location | Sample Size                                                                           | Risk Factors Included                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Outcome<br>Considered              | Definition of<br>Outcome Predicted                                                   | Modeling Method<br>Used                               | Performance Measure                                                                                                                                                                                                                                                                                                                     |
|----------------------------|------------------|---------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|--------------------------------------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Zhang et al.<br>[72] 2018  | NR               | A total of<br>15,628,501 sets<br>of valid<br>characteristic<br>attributes data        | Seven input features: right<br>atrium (AVR), left atrium<br>(AVL), anterior atrium<br>(AVF),<br>photoplethysmography<br>(PPG), oxygen saturation<br>(SPO2), pulse transit time<br>(PTT), heart rate (HR)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Blood pressure                     | NR                                                                                   | CART (classification<br>and regression tree)<br>model | Four evaluation<br>indexes: accuracy rate,<br>root mean square error<br>(RMSE), deviation rate,<br>and the Theil inequality<br>coefficient (TIC)                                                                                                                                                                                        |
| Völzke et al.<br>[31] 2013 | Germany          | Training set:<br>803 Validation<br>set: 802<br>External<br>validation<br>cohort: 2887 | Age, mean arterial<br>pressure, rs16998073,<br>serum glucose, and urinary<br>albumin<br>concentrations, the<br>interaction between age<br>and serum glucose,<br>interaction between<br>rs16998073 and urinary<br>albumin concentrations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Incident<br>hypertension           | SBP $\geq$ 140 mmHg and DBP $\geq$ 90 mmHg                                           | Bayesian network                                      | Training set:<br>AUC = 0.78 [0.74–0.82],<br>Validation set:<br>AUC = 0.79 [0.75–0.83],<br>External validation set:<br>AUC = 0.77 [0.74–0.80];<br>Training set: HL Chi-<br>square = 11.82<br>(p = 0.16), Validation<br>set: HL Chi-<br>square = 11.65<br>(p = 0.17), External<br>validation set: H-L Chi-<br>square = 40.6<br>(p < 0.01) |
| Lee et al. [51]<br>2014    | Korea            | 12,789                                                                                | Women: Height, age,<br>neckC, axillaryC, ribC,<br>waistC, pelvicC, rib_hip,<br>waist_hip, pelvic_hip,<br>rib_pelvic, axillary_rib,<br>chest_rib, axillary_chest,<br>forehead_neck (CFS),<br>height, age, foreheadC,<br>neckC, hipC, axillary_hip,<br>axillary_pelvic,<br>chest_pelvic, chest_rib<br>(NB-wrapper)<br>Men: Age, foreheadC,<br>neckC, axillaryC, chestC,<br>RibC, waistC, pelvicC,<br>hipC, rib_hip, waist_hip,<br>rib_pelvic, waist_pelvic,<br>chest_waist, forehead_rib,<br>chest_rib, axillary_chest,<br>forehead_neck (CFS),<br>height, age, foreheadC,<br>neckC, axillaryC, hipC,<br>rib_hip, pelvic_hip,<br>neck_pelvic, waist_pelvic,<br>chest_waist, chest_rib,<br>neck_chest, forehead_neck<br>(NB-wrapper) | Hypertension<br>and<br>hypotension | SBP ≥ 140 mmHg<br>and/or DBP ≥ 90<br>mmHg or physician-<br>diagnosed<br>hypertension | Naive Bayes<br>algorithm (NB)                         | Women: AUC = 0.696<br>(NB-CFS), 0.713 (NB-<br>wrapper)<br>Men: AUC = 0.64<br>(NB-CFS), 0.646 (NB-<br>wrapper)                                                                                                                                                                                                                           |

| Study                    | Data<br>Location | Sample Size                                                                                                  | Risk Factors Included                                                                                                                                                                                                                                                                                                          | Outcome<br>Considered     | Definition of<br>Outcome Predicted                                                                                                                                                                                                     | Modeling Method<br>Used                                                                                                                                                                                                                                   | Performance Measure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|--------------------------|------------------|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Xu et al. [56]<br>2019   | China            | 4796                                                                                                         | M1 Model: Age, SBP, DBP,<br>hypertension parental<br>history, WC, interaction<br>item of age with WC, and<br>interaction item of age with<br>DBP<br>W1 Model: Age, SBP, DBP,<br>WC, fruit and vegetable<br>intake, hypertension<br>parental history,<br>interaction item of age with<br>WC, and interaction of age<br>with DBP | Hypertension              | $SBP \ge 140 \text{ mm Hg}$<br>and/or DBP $\ge 90 \text{ mm}$<br>Hg and/or a diagnosis<br>of hypertension by a<br>physician and<br>currently receiving<br>anti-hypertension<br>treatment                                               | Artificial neural<br>network (ANN),<br>naive Bayes classifier<br>(NBC), and<br>classification and<br>regression tree<br>(CART)                                                                                                                            | Testing Set Men:<br>AUC = $0.773 [0.752-$<br>0.793] (ANN), $0.760[0.738-0.781]$ (NBC),<br>0.722 [0.699-0.743]<br>(CART)<br>Testing Set Women:<br>AUC = $0.756 [0.737-$<br>0.775] (ANN), $0.761[0.742-0.779]$ (NBC),<br>0.698 [0.677-0.717]<br>(CART)<br>Testing Set Men:<br>Modified<br>Nam-D'Agostino test<br>Chi-square = $29.274$ ,<br>p = $0.0006$ (ANN);<br>82.269, p < $0.00001(NBC); 5.249, p = 0.072(CART)Testing Set women:ModifiedNam-D'Agostino testChi-square = 4.744,p = 0.314 (ANN);189.754$ , p < $0.0001(NBC); 19.733,p = 0.0005 (CART)$ |
| Wang et al.<br>[57] 2015 | USA              | 308,711                                                                                                      | Exercise, diabetes,<br>hyperlipemia, age,<br>marriage, education,<br>income, weight, height, sex,<br>smoke, drink                                                                                                                                                                                                              | Hypertension              | NR                                                                                                                                                                                                                                     | Multi-layer<br>perception neural<br>network                                                                                                                                                                                                               | Accuracy, sensitivity,<br>specificity, and AUC.<br>Average AUC = 0.77<br>with h vary from 8 to 11<br>(neural network);<br>Accuracy = 72% (neural<br>network)                                                                                                                                                                                                                                                                                                                                                                                             |
| Ture et al.<br>[59] 2005 | Turkey           | 694                                                                                                          | Age, sex, family history of<br>hypertension, smoking<br>habits, lipoprotein (a),<br>triglyceride, uric acid, total<br>cholesterol, and BMI                                                                                                                                                                                     | Essential<br>hypertension | The average of 3 or<br>more DBP<br>measurements on at<br>least 3 subsequent<br>visits is $\geq$ 90 mmHg,<br>or when the average of<br>multiple SBP readings<br>on 3 or more<br>subsequent visits is<br>consistently $\geq$ 140<br>mmHg | Three decision trees<br>(Chi-squared<br>automatic<br>interaction detector.<br>Classification and<br>regression tree,<br>quick, unbiased,<br>efficient statistical<br>tree); two neural<br>networks (multi-<br>layer perceptron,<br>radial basis function) | Sensitivity, specificity,<br>and predictive rate<br>(PR). Values not<br>reported.                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Zhao et al.<br>[73] 2008 | China/<br>Asians | Total: 4759<br>(2411<br>hypertensive<br>and 2,348 age-<br>matched and<br>sex-matched<br>healthy<br>controle) | MDR Model: 4-locus<br>model consisted of the SNP<br>KCNMB1-rs11739136,<br>RGS2-rs34717272,<br>PRKG1-rs1881597, and<br>MYLK-rs36025624; CART<br>Model: RGS2, PRKG1,<br>KCNMB1, and MYLK                                                                                                                                         | Hypertension<br>CHECK     | Average SBP $\geq$ 150 mm Hg, an average DBP $\geq$ 95 mm Hg, or current use of antihypertensive medication                                                                                                                            | Multifactor-<br>dimensionality<br>reduction (MDR)<br>and classification<br>and regression trees<br>(CART)                                                                                                                                                 | MDR Model:<br>Accuracy = 52.98%,<br>cross-validation<br>consistency = 9.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

| Study                    | Data<br>Location | Sample Size                                                          | Risk Factors Included                      | Outcome<br>Considered | Definition of<br>Outcome Predicted                                                                                                                                                               | Modeling Method<br>Used                                   | Performance Measure                                                                                                        |
|--------------------------|------------------|----------------------------------------------------------------------|--------------------------------------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
| Wang et al.<br>[57] 2014 | China/<br>Asians | 1009<br>hypertensive<br>patients and 756<br>normotensive<br>controls | Genes                                      | Hypertension          | $\begin{array}{l} Mean \ SBP \geq 140 \\ mmHg \ and/or \\ DBP \geq 90 \ mmHg \ on \\ two \ occasions \ and/or \\ the \ current \ usage \ of \\ antihypertensive \ drug \\ treatment \end{array}$ | Multifactor<br>dimensionality<br>reduction (MDR)<br>model | The best MDR model<br>testing<br>accuracy = 0.6331,<br>cross-validation<br>consistency = 10                                |
| Zhao et al.<br>[74] 2014 | China/<br>Asians | 1009<br>hypertensive<br>patients and 756<br>normotensive<br>controls | The best MDR model included rs5804 and BMI | Hypertension          | Mean SBP of at least<br>140 mmHg or a mean<br>DBP of at least 90<br>mmHg or the current<br>intake of<br>antihypertensive drugs                                                                   | Multifactor<br>dimensionality<br>reduction (MDR)<br>model | The best MDR model:<br>testing accuracy of<br>0.7309 and a maximum<br>cross-validation<br>consistency of 10<br>(P < 0.001) |

#### ICD, international classification of diseases

https://doi.org/10.1371/journal.pone.0266334.t003

Q-statistic p < 0.001) (Fig 5). Like traditional regression-based models, we did not perform stratified pooled results by modeling type due to diversity in the modeling method. The 95% approximate prediction interval for the overall C-statistics was from 0.63 to 0.84 (Fig 5).

We explored possible sources of heterogeneity in the overall pooled C-statistics through meta-regression as before. However, meta-regression did not identify any of age of the participants (p = 0.358), the number of risk factors considered in the model (p = 0.812), sex of the participants, that is being male compared to female (p = 0.886) and both male and female compared to female-only (p = 0.787), sample size considered in the model (p = 0.577), or ethnicity of the study participants (p = 0.326) as the potential source of high heterogeneity in the C-statistic.

#### Study characteristics of externally validated models

Only four models [22, 30–32] were found to be externally validated in a different population. Detailed characteristics of the studies that validated these four models are presented in S3 Table. The Framingham hypertension risk model (FHRS) is the only validated model in more than one external population. The FHRS [22] model was validated by eight different studies in diverse populations of 122,348 participants. Study participants had an age range of 18 to 84 years with follow-up time (mean/median/total) from 1.6 years to 25 years. Almost all studies reported performance measures of the FHRS. The Hosmer-Lemeshow test was used to report calibration, while the C-statistic (or AUC) was used to report discrimination. The values of the reported C-statistic ranged from 0.54 to 0.84. Models by Lim et al. [30], Völzke et al. [31], and Kanegae et al. [32] were validated only once in an external population by the same authors. Within these three models, performances were best for the model by Kanegae et al. [32], with a C-statistic of 0.85 [0.76–0.91].

#### Meta-analysis of externally validated models

The pooled C-statistic of the FHRS [22] model was 0.75 [0.68–0.80] with high heterogeneity in the discriminative performance of this model ( $I^2 = 99.6$ , Cochran Q-statistic p < 0.001) (S3 Fig). The 95% approximate prediction interval for the C-statistic in the FHRS [22] was from 0.47 to 0.91 (S3 Fig). As the other three models were externally validated only once, pooling their performance measure was irrelevant.

| Study                               |              |   | C-statist<br>with 95% | tic<br>CI | Weight |
|-------------------------------------|--------------|---|-----------------------|-----------|--------|
| Utrans at al. 2010                  |              |   | 0.001.000             | 0.001     | 2.4.4  |
| Huang et al., 2010                  | _            | - | 0.90 [ 0.86,          | 0.93]     | 3.14   |
| Sakr et al., 2018 (ANN_10-fold CV)  |              |   | 0.67 [ 0.66,          | 0.68]     | 3.48   |
| Sakr et al., 2018 (LB_10-fold CV)   |              |   | 0.69 [ 0.68,          | 0.70]     | 3.48   |
| Sakr et al., 2018 (LWB_10-fold CV)  |              |   | 0.67 [ 0.66,          | 0.68]     | 3.48   |
| Sakr et al., 2018 (RTF_10-fold CV)  |              |   | 0.93 [ 0.93,          | 0.93]     | 3.47   |
| Sakr et al., 2018 (BN_10-fold CV)   |              |   | 0.70 [ 0.69,          | 0.71]     | 3.47   |
| Sakr et al., 2018 (SVM_10-fold CV)  |              |   | 0.71 [ 0.70,          | 0.72]     | 3.47   |
| Sakr et al., 2018 (ANN_HO)          | -            |   | 0.74 [ 0.73,          | 0.75]     | 3.47   |
| Sakr et al., 2018 (LB_HO)           | •            |   | 0.70 [ 0.69,          | 0.71]     | 3.47   |
| Sakr et al., 2018 (LWB_HO)          |              |   | 0.70 [ 0.69,          | 0.71]     | 3.47   |
| Sakr et al., 2018 (RTF_HO)          |              |   | 0.89 [ 0.88,          | 0.89]     | 3.47   |
| Sakr et al., 2018 (BN_HO)           |              |   | 0.72 [ 0.71,          | 0.73]     | 3.47   |
| Sakr et al., 2018 (SVM_HO)          |              |   | 0.59 [ 0.58,          | 0.60]     | 3.48   |
| Tayefi et al., 2016 (Model 1)       | +            |   | 0.72 [ 0.70,          | 0.74]     | 3.45   |
| Tayefi et al., 2016 (Model 2)       | -            |   | 0.68 [ 0.66,          | 0.70]     | 3.45   |
| Ye et al., 2018 (Retrospective)     |              |   | 0.92 [ 0.92,          | 0.92]     | 3.48   |
| Ye et al., 2018 (Prospective)       |              |   | 0.87 [ 0.87,          | 0.87]     | 3.48   |
| Völzke et al., 2013 (Validation)    |              |   | 0.79 [ 0.75,          | 0.83]     | 3.32   |
| Lee et al., 2014 (Women_NB-CFS)     |              |   | 0.70 [ 0.68,          | 0.71]     | 3.46   |
| Lee et al., 2014 (Women_NB-wrapper) | +            |   | 0.71 [ 0.70,          | 0.73]     | 3.46   |
| Lee et al., 2014 (Men_NB-CFS)       |              |   | 0.64 [ 0.62,          | 0.66]     | 3.46   |
| Lee et al., 2014 (Men_NB-wrapper)   | +            |   | 0.65 [ 0.63,          | 0.66]     | 3.46   |
| Xu et al., 2019 (Men_ANN)           | +            |   | 0.77 [ 0.75,          | 0.79]     | 3.44   |
| Xu et al., 2019 (Men_NBC)           | +            |   | 0.76 [ 0.74,          | 0.78]     | 3.44   |
| Xu et al., 2019 (Men_CART)          | +            |   | 0.72 [ 0.70,          | 0.74]     | 3.44   |
| Xu et al., 2019 (Women_ANN)         | +            |   | 0.76 [ 0.74,          | 0.77]     | 3.45   |
| Xu et al., 2019 (Women_NBC)         | +            |   | 0.76 [ 0.74,          | 0.78]     | 3.45   |
| Xu et al., 2019 (Women_CART)        | -            |   | 0.70 [ 0.68,          | 0.72]     | 3.45   |
| Wang et al., 2015                   |              |   | 0.77 [ 0.77,          | 0.77]     | 3.48   |
| Overall                             | •            |   | 0.76 [ 0.72,          | 0.79]     |        |
| Prediction interval                 |              | • | 0.75 [ 0.63,          | 0.84]     |        |
| Ω                                   | 40 0.60 0.80 | , | -                     |           |        |
| Random-effects REML model           |              |   |                       |           |        |

# Meta-analysis of C-statistic

Fig 5. Forest plot of machine regression-based models with 95% prediction interval.

https://doi.org/10.1371/journal.pone.0266334.g005

We explored possible sources of heterogeneity in the pooled C-statistics through metaregression, and only the ethnicity (Whites versus Asians) of the study participants (p = 0.044) was identified as a source of high heterogeneity in the C-statistic of the FHRS model [22].

# Models developed using genetic risk factors/biomarkers

Genetic risk factors/biomarkers often contribute significantly to developing hypertension, and models were developed considering both conventional risk factors and biomarkers. In addition, there were models where biomarkers were used primarily in model building. Information about models developed using biomarkers (e.g., genetic risk scores) is presented in <u>S4 Table</u>. There were 11 studies where genetic risk factors/biomarkers were used in model building. Biomarkers are often considered very important for increasing the predictive performance of models. However, the pooled predictive performance (C-statistic) of the models that considered biomarkers primarily was 0.76 [0.71–0.80] (S4 Fig) and did not show an overall improvement in the models' predictive performance. Including genetic factors/biomarkers in the model has some drawbacks. Because information on those biomarkers is frequently unavailable and interpreting the models becomes difficult, the models become less suitable for daily clinical practice.

# Discussion

Many hypertension risk prediction models with reasonable predictive performance were identified in this systematic review, but only a few had external validation. Bias and applicability were noted as major concerns in many studies. Overall, there was little difference in the predictive performance of traditional statistical and machine learning models. Our findings are expanded on in the sections that follow.

The models were developed mostly in Caucasian or Asian populations. Because certain ethnic groups are more prone to hypertension (e.g., people of African descent [33]), research should include a diverse range of patients to create hypertension risk prediction models. Most of the traditionally developed models considered conventional risk factors for hypertension, which are readily available in clinical practice. Some models also used genetic risk factors, although the inclusion of genetic risk factors into the model did not improve the overall predictive performance of the models. The pooled analysis identified the overall predictive performance of the traditional regression-based models was good but with high heterogeneity. Stratified analysis by modeling methodology (e.g., logistic, Cox) within traditional regressionbased models did not show much difference in predictive performance, and heterogeneity was still observed within the modeling methodology. The traditional models we identified in our search were mostly internally validated, often considered not enough for models' generalizability [34]. The FHRS [22] was the only model that had multiple external validations and good/ acceptable pooled predictive performance. However, because the FHRS [22] showed high heterogeneity in its predictive performance, with ethnicity serving as a source of heterogeneity, and the model was built predominantly in a White population, we must proceed with caution when applying it to a completely different population. Models that have only single, or no validation need external validation, preferably by a different group of investigators, to guarantee the model's generalizability to a different population. Only a few traditional models were converted into risk score after their development. Presenting the risk derived from the model through scoring instead of a complex mathematical formula may facilitate the use of prediction models and subsequently improve the uptake of prediction models in clinical practice. The risk of bias (ROB) was "high" or "unclear" in a large portion of traditional model studies. This is primarily because many studies failed to meet the criteria in the "analysis" domain of ROB. In many studies, the applicability of the models was rated as "high concern" or "unclear concern" due to a failure to properly fulfil the "participants" criteria. Several models were developed in a specific population, making the models less applicable to the general adult population.

Since machine learning tools are more recent, advanced, and have a reputation for producing more accurate predictive performance, we assumed that models developed with these tools would outperform traditional regression-based models. However, we did not notice much difference in predictive performance between these two types of models. A few machine learning-based models (e.g., models by Huang et al. [35], Sakr et al. [36], and Ye et al. [37]) showed excellent discriminative performance; however, none of these models has ever been externally validated in an entirely different new population. In fact, none of the machine learning-based models have been externally validated. Consequently, the performance of those models in a new setting/population is quite uncertain. We also noticed high heterogeneity in the predictive performance (C-statistic) of machine learning models. Meta-regression using potential sources of heterogeneity failed to identify the real source of heterogeneity. One possible explanation is a difference in the methodology used to develop the machine learning-based models. Due to the various methods considered in different models, we were unable to investigate this potential source. We did not notice higher expected variability in machine learning-based models' future predictive performance compared to traditional regression-based models, as the 95% prediction interval for machine learning-based models was similar to traditional regressionbased models.

We did not find any studies in this review that assessed the impact of adopting hypertension risk prediction models in clinical settings. Ideally, a prediction model, regardless of its development, should have an impact study to assess whether it improves clinical decision-making and patient health outcomes [5, 38].

There were two previous reviews on a similar topic where hypertension risk prediction models were identified through a systematic search and described their characteristics. Our review is different from previous studies and contributes to information on the prediction of hypertension risk and the identification of associated risk factors in the following ways: 1) we synthesized performance of the prediction models through meta-analysis and explored potential sources of heterogeneity; 2) we compared the performance of the prediction models developed using traditional statistical regression-based models and more recent machine learning-based models; 3) we provided a thorough evaluation of the quality of the studies among traditionally developed regression-based models; and 4) we described several additional models that have recently been derived.

One of our study's strengths is the extent of the systematic search, which includes four different databases, grey literature, and extensive use of the reference lists of the identified studies. To the best of our knowledge, this is the first study where a meta-analysis of predictive performance, together with assessment of heterogeneity, comparison of the predictive performance of traditional regression based-models and machine learning-based models, and a detailed critical appraisal of studies in hypertension risk prediction models has been performed. Nevertheless, our study also has limitations. We excluded non-English and non-French publications. While it is widely perceived that the English language is the primary language of science, the choice of scientific results in a particular language can incorporate language bias and may lead to incorrect conclusions [39]. We were only able to use C-statistics to compare the model performance, which could be insensitive to distinguish a model's ability to correctly stratify patients into clinically relevant risk groups [39, 40]. Calibration was quantified by different measures, and different studies often reported different calibration measures. This led to difficulty in synthesizing calibration measures through meta-analysis. A meta-analysis of calibration measures (e.g., O/E ratio) along with C-statistics could provide a comprehensive summary of the performance of these models [19]. Failing to assess publication bias amongst the studies is another potential limitation of this study. Recent guidelines [19] did not emphasize the need to assess publication bias for prediction model performance, which encouraged

us not to do so. Although studies have considered publication bias in a similar scenario before, we believe existing traditional publication bias assessment tools (e.g., funnel plot, Egger's test, Begg's test) are more appropriate for studies assessing statistically significant results (e.g., randomized controlled trial (RCT)) than studies assessing predictive performance (e.g., C-statistic) of the prognostic models. Instead, we assessed ROB using the PROBAST checklist. We also could not appraise studies that use machine learning algorithms to predict hypertension. Although most of the PROBAST signaling questions also apply to appraise machine learning algorithms, additional signaling questions are recommended to add due to differences in data analysis methods for machine learning algorithms and regression-based models [14, 15]. Machine learning algorithms use different variable selection strategies, different estimation techniques for variable-outcome estimations, and different ways to adjust for overfitting [14, 15]. When additional questions are added to the PROBAST, these questions need to be appropriately phrased, and specific guidance on assessing these signaling questions also needs to be provided [14, 15]. Considering these additional works, we refrain from appraising studies considered machine learning algorithms. Finally, despite our attempt to capture potential sources of heterogeneity in our study, we asked readers to be cautious while interpreting our findings as there may be a potential bias in our findings due to a limited number of studies included in the analysis and the study's failure to incorporate additional potential sources of bias in the analysis.

In summary, we attempted to provide a comprehensive evaluation of hypertension risk prediction models. We identified many models with acceptable-to-good predictive performance. We did not notice significant differences in the predictive performance of traditional regression-based models and machine learning-based models. Including genetic risk factors/biomarkers also did not show much improvement in the models' predictive performance. The quality of the studies was reasonable, with areas where further improvement is needed. Only a few of the multiple models developed had been externally validated, which is a concern. Also, there is a lack of impact studies. Models with external validation and impact studies are required to implement a prediction model in a clinical practice guideline. A model with accurate prediction is not beneficial if it is not generalizable to a different population or improves clinical decision-making and patient health outcomes.

# Supporting information

**S1 Checklist. PRISMA 2020 checklist.** (DOCX)

**S1** Fig. The number of PROBAST criteria satisfied by different studies. (DOC)

**S2** Fig. Response to different signaling questions by the number of studies. (DOC)

**S3** Fig. Forest plot of externally validated models with 95% prediction interval. (DOC)

S4 Fig. Forest plot of models primarily developed using genetic risk factors/biomarkers with a 95% prediction interval. (DOC)

**S1 Table.** Keywords used to search in MEDLINE. (DOC)

S2 Table. Study quality assessment using PROBAST. (DOC)

S3 Table. Information about external validation studies of existing traditional hypertension prediction models from selected studies. (DOC)

S4 Table. Information about existing hypertension prediction models developed using biomarkers (genetic risk score) from the selected studies.

(DOC)

# **Author Contributions**

Conceptualization: Mohammad Ziaul Islam Chowdhury.

Data curation: Mohammad Ziaul Islam Chowdhury, Iffat Naeem.

Formal analysis: Mohammad Ziaul Islam Chowdhury.

- **Investigation:** Mohammad Ziaul Islam Chowdhury, Iffat Naeem, Hude Quan, Alexander A. Leung, Khokan C. Sikdar, Maeve O'Beirne.
- **Methodology:** Mohammad Ziaul Islam Chowdhury, Hude Quan, Alexander A. Leung, Tanvir C. Turin.

Software: Mohammad Ziaul Islam Chowdhury.

Supervision: Hude Quan, Alexander A. Leung, Khokan C. Sikdar, Maeve O'Beirne, Tanvir C. Turin.

Validation: Mohammad Ziaul Islam Chowdhury, Iffat Naeem.

Visualization: Mohammad Ziaul Islam Chowdhury.

Writing - original draft: Mohammad Ziaul Islam Chowdhury.

Writing - review & editing: Mohammad Ziaul Islam Chowdhury, Alexander A. Leung.

#### References

- Mills KT, Bundy JD, Kelly TN, Reed JE, Kearney PM, Reynolds K, et al. Global Disparities of Hypertension Prevalence and Control: A Systematic Analysis of Population-Based Studies From 90 Countries. *Circulation* Published Online First: 2016. https://doi.org/10.1161/CIRCULATIONAHA.115.018912 PMID: 27502908
- CDC. High Blood Pressure Fact Sheet. Div Hear Dis Stroke Prev 2016. https://doi.org/10.1111/jch. 12894 PMID: 27515460
- 3. Mendis S, Puska P, Norrving B. Global atlas on cardiovascular disease prevention and control. *World Heal Organ* 2011.
- 4. Health NI of. Primary Prevention of Hypertension: Clinical and Public Health Advisory from the National H E A LT H AND SERVICES. *Rev Bras Ciência e Mov* 2002; 10:49–54.
- Chowdhury MZI, Turin TC. Precision health through prediction modelling: Factors to consider before implementing a prediction model in clinical practice. J Prim Health Care 2020; 12:3–9. <u>https://doi.org/ 10.1071/HC19087</u> PMID: 32223844
- Usher-Smith JA, Silarova B, Schuit E, Moons KGM, Griffin SJ. Impact of provision of cardiovascular disease risk estimates to healthcare professionals and patients: a systematic review. BMJ Open. 2015. https://doi.org/10.1136/bmjopen-2015-008717 PMID: 26503388
- Lopez-Gonzalez AA, Aguilo A, Frontera M, Bennasar-Veny M, Campos I, Vicente-Herrero T, et al. Effectiveness of the Heart Age tool for improving modifiable cardiovascular risk factors in a Southern European population: A randomized trial. *Eur J Prev Cardiol* Published Online First: 2015. <u>https://doi.org/10.1177/2047487313518479</u> PMID: 24491403

- Chowdhury MZI, Naeem I, Quan H, Leung AA, Sikdar KC, O'Beirne M, et al. Summarising and synthesising regression coefficients through systematic review and meta-analysis for improving hypertension prediction using metamodelling: Protocol. *BMJ Open* 2020; 10. <u>https://doi.org/10.1136/bmjopen-2019-036388</u> PMID: 32276958
- Chowdhury MZI, Yeasmin F, Rabi DM, Ronksley PE, Turin TC. Prognostic tools for cardiovascular disease in patients with type 2 diabetes: A systematic review and meta-analysis of C-statistics. *J Diabetes Complications* 2019; 33:98–111. https://doi.org/10.1016/j.jdiacomp.2018.10.010 PMID: 30446478
- Echouffo-Tcheugui JB, Batty GD, Kivimäki M, Kengne AP. Risk Models to Predict Hypertension: A Systematic Review. *PLoS One* 2013; 8. https://doi.org/10.1371/journal.pone.0067370 PMID: 23861760
- Sun D, Liu J, Xiao L, Liu Y, Wang Z, Li C, et al. Recent development of risk-prediction models for incident hypertension: An updated systematic review. *PLoS One* 2017; 12:1–19.
- Hamoen M, De Kroon MLA, Welten M, Raat H, Twisk JWR, Heymans MW, et al. Childhood predictionmodels for hypertension later in life: A systematic review. J Hypertens 2019; 37:865–877. <u>https://doi.org/10.1097/HJH.00000000001970 PMID: 30362985</u>
- Munn Z, Stern C, Aromataris E, Lockwood C, Jordan Z. What kind of systematic review should i conduct? A proposed typology and guidance for systematic reviewers in the medical and health sciences. BMC Med. Res. Methodol. 2018. https://doi.org/10.1186/s12874-017-0468-4 PMID: 29316881
- 14. Moons KGM, Wolff RF, Riley RD, Whiting PF, Westwood M, Collins GS, et al. PROBAST: A tool to assess risk of bias and applicability of prediction model studies: Explanation and elaboration. Ann. Intern. Med. 2019. https://doi.org/10.7326/M18-1377 PMID: 30596876
- Wolff RF, Moons KGM, Riley RD, Whiting PF, Westwood M, Collins GS, et al. PROBAST: A tool to assess the risk of bias and applicability of prediction model studies. *Ann Intern Med* Published Online First: 2019. https://doi.org/10.7326/M18-1376 PMID: 30596875
- Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gøtzsche PC, Ioannidis JPA, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: Explanation and elaboration. PLoS Med. 2009. https://doi.org/10.1371/journal.pmed.1000100 PMID: 19621070
- Snell KIE, Ensor J, Debray TPA, Moons KGM, Riley RD. Meta-analysis of prediction model performance across multiple studies: Which scale helps ensure between-study normality for the C-statistic and calibration measures? *Stat Methods Med Res* 2018; 27:3505–3522. <u>https://doi.org/10.1177/0962280217705678 PMID: 28480827</u>
- Debray TPA, Damen JAAG, Riley RD, Snell K, Reitsma JB, Hooft L, et al. A framework for meta-analysis of prediction model studies with binary and time-to-event outcomes. *Stat Methods Med Res* 2019; 28:2768–2786. https://doi.org/10.1177/0962280218785504 PMID: 30032705
- Debray TPA, Damen JAAG, Snell KIE, Ensor J, Hooft L, Reitsma JB, et al. A guide to systematic review and meta-analysis of prediction model performance. BMJ. 2017. <u>https://doi.org/10.1136/bmj.i6460</u> PMID: 28057641
- Higgins JPT, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. Br. Med. J. 2003. https://doi.org/10.1136/bmj.327.7414.557 PMID: 12958120
- Syllos DH, Calsavara VF, Bensenor IM, Lotufo PA. Validating the Framingham Hypertension Risk Score: A 4-year follow-up from the Brazilian Longitudinal Study of the Adult Health (ELSA-Brasil). J Clin Hypertens 2020; 22:850–856. https://doi.org/10.1111/jch.13855 PMID: 32304277
- Parikh NI, Pencina MJ, Wang TJ, Benjamin EJ, Lanier KJ, Levy D, et al. A risk score for predicting nearterm incidence of hypertension: The Framingham Heart Study. *Ann Intern Med* Published Online First: 2008. https://doi.org/10.7326/0003-4819-148-2-200801150-00005 PMID: 18195335
- Otsuka T, Kachi Y, Takada H, Kato K, Kodani E, Ibuki C, et al. Development of a risk prediction model for incident hypertension in a working-age Japanese male population. *Hypertens Res* 2015; 38:419– 425. https://doi.org/10.1038/hr.2014.159 PMID: 25391458
- Chien KL, Hsu HC, Su TC, Chang WT, Sung FC, Chen MF, et al. Prediction models for the risk of newonset hypertension in ethnic Chinese in Taiwan. J Hum Hypertens 2011; 25:294–303. https://doi.org/ 10.1038/jhh.2010.63 PMID: 20613783
- 25. Bozorgmanesh M, Hadaegh F, Mehrabi Y, Azizi F. A point-score system superior to blood pressure measures alone for predicting incident hypertension: Tehran Lipid and Glucose Study. *J Hypertens* 2011; 29:1486–1493. https://doi.org/10.1097/HJH.0b013e328348fdb2 PMID: 21720268
- 26. Kadomatsu Y, Tsukamoto M, Sasakabe T, Kawai S, Naito M, Kubo Y, et al. A risk score predicting new incidence of hypertension in Japan. *J Hum Hypertens* 2019; 33:748–755. <u>https://doi.org/10.1038/</u>s41371-019-0226-7 PMID: 31431683

- Wang B, Liu Y, Sun X, Yin Z, Li H, Ren Y, et al. Prediction model and assessment of probability of incident hypertension: the Rural Chinese Cohort Study. *J Hum Hypertens* Published Online First: 2020. https://doi.org/10.1038/s41371-020-0314-8 PMID: 32107452
- Díaz-Gutiérrez J, Ruiz-Estigarribia L, Bes-Rastrollo M, Ruiz-Canela M, Martin-Moreno JM, Martínez-González MA. The role of lifestyle behaviour on the risk of hypertension in the SUN cohort: The hypertension preventive score. *Prev Med (Baltim)* 2019; 123:171–178. <u>https://doi.org/10.1016/j.ypmed.</u> 2019.03.026 PMID: 30902699
- 29. Sathish T, Kannan S, Sarma PS, Razum O, Thrift AG, Thankappan KR. A Risk Score to Predict Hypertension in Primary Care Settings in Rural India. *Asia-Pacific J Public Heal* 2016; 28:26S–31S. https:// doi.org/10.1177/1010539515604701 PMID: 26354334
- Lim NK, Son KH, Lee KS, Park HY, Cho MC. Predicting the Risk of Incident Hypertension in a Korean Middle-Aged Population: Korean Genome and Epidemiology Study. *J Clin Hypertens* 2013; 15:344– 349.
- Völzke H, Fung G, Ittermann T, Yu S, Baumeister SE, Dörr M, et al. A new, accurate predictive model for incident hypertension. J Hypertens 2013; 31:2142–2150. https://doi.org/10.1097/HJH. 0b013e328364a16d PMID: 24077244
- Kanegae H, Oikawa T, Suzuki K, Okawara Y, Kario K. Developing and validating a new precise risk-prediction model for new-onset hypertension: The Jichi Genki hypertension prediction model (JG model). J Clin Hypertens 2018; 20:880–890. https://doi.org/10.1111/jch.13270 PMID: 29604170
- **33.** Lackland DT. Racial differences in hypertension: Implications for high blood pressure management. *Am J Med Sci* 2014; 348:135–138. https://doi.org/10.1097/MAJ.00000000000308 PMID: 24983758
- Chowdhury MZI, Turin TC. Validating Prediction Models for use in Clinical Practice: Concept, Steps, and Procedures Focusing on Hypertension Risk Prediction. *Hypertens J* 2021; 7:54–62.
- Huang S, Xu Y, Yue L, Wei S, Liu L, Gan X, et al. Evaluating the risk of hypertension using an artificial neural network method in rural residents over the age of 35 years in a Chinese area. *Hypertens Res* 2010; 33:722–726. https://doi.org/10.1038/hr.2010.73 PMID: 20505678
- **36.** Sakr S, Elshawi R, Ahmed A, Qureshi WT, Brawner C, Keteyian S, et al. Using machine learning on cardiorespiratory fitness data for predicting hypertension: The Henry Ford exercise testing (FIT) Project. *PLoS One* 2018; 13:1–18.
- Ye C, Fu T, Hao S, Zhang Y, Wang O, Jin B, et al. Prediction of incident hypertension within the next year: Prospective study using statewide electronic health records and machine learning. *J Med Internet Res* 2018; 20. https://doi.org/10.2196/jmir.9268 PMID: 29382633
- Kappen TH, van Klei WA, van Wolfswinkel L, Kalkman CJ, Vergouwe Y, Moons KGM. Evaluating the impact of prediction models: lessons learned, challenges, and recommendations. *Diagnostic Progn Res* Published Online First: 2018. https://doi.org/10.1186/s41512-018-0033-6 PMID: 31093561
- Chowdhury MZI, Yeasmin F, Rabi DM, Ronksley PE, Turin TC. Predicting the risk of stroke among patients with type 2 diabetes: A systematic review and meta-analysis of C-statistics. *BMJ Open* 2019; 9:1–22. https://doi.org/10.1136/bmjopen-2019-030833 PMID: 31273011
- 40. Cook NR, Ridker PM. Advances in measuring the effect of individual predictors of cardiovascular risk: The role of reclassification measures. *Ann Intern Med* Published Online First: 2009. <u>https://doi.org/10.7326/0003-4819-150-11-200906020-00007</u> PMID: 19487714
- Pearson TA, LaCroix AZ, Mead LA, Liang KY. The prediction of midlife coronary heart disease and hypertension in young adults: The Johns Hopkins multiple risk equations. *Am J Prev Med* 1990; 6:23– 28. PMID: 2383409
- Paynter NP, Cook NR, Everett BM, Sesso HD, Buring JE, Ridker PM. Prediction of Incident Hypertension Risk in Women with Currently Normal Blood Pressure. Am J Med 2009; 122:464–471. <u>https://doi.org/10.1016/j.amjmed.2008.10.034</u> PMID: 19375556
- 43. Kivimäki M, Batty GD, Singh-Manoux A, Ferrie JE, Tabak AG, Jokela M, et al. Validating the framingham hypertension risk score: Results from the whitehall II study. *Hypertension* 2009; 54:496–501. https://doi.org/10.1161/HYPERTENSIONAHA.109.132373 PMID: 19597041
- 44. Kivimäki M, Tabak AG, Batty GD, Ferrie JE, Nabi H, Marmot MG, et al. Incremental predictive value of adding past blood pressure measurements to the framingham hypertension risk equation: The whitehall II study. *Hypertension* 2010; 55:1058–1062. https://doi.org/10.1161/HYPERTENSIONAHA.109. 144220 PMID: 20157053
- 45. Kshirsagar A V., Chiu Y lin, Bomback AS, August PA, Viera AJ, Colindres RE, et al. A hypertension risk score for middle-aged and older adults. *J Clin Hypertens* 2010; 12:800–808. <u>https://doi.org/10.1111/j.1751-7176.2010.00343.x</u> PMID: 21029343

- 46. Fava C, Sjögren M, Montagnana M, Danese E, Almgren P, Engström G, et al. Prediction of blood pressure changes over time and incidence of hypertension by a genetic risk score in swedes. *Hypertension* 2013; 61:319–326. https://doi.org/10.1161/HYPERTENSIONAHA.112.202655 PMID: 23232644
- Choi YH, Chowdhury R, Swaminathan B. Prediction of hypertension based on the genetic analysis of longitudinal phenotypes: A comparison of different modeling approaches for the binary trait of hypertension. *BMC Proc* 2014; 8:8–13. https://doi.org/10.1186/1753-6561-8-S1-S78 PMID: 25519406
- Lim NK, Lee JY, Lee JY, Park HY, Cho MC. The role of genetic risk score in predicting the risk of hypertension in the Korean population: Korean genome and epidemiology study. *PLoS One* 2015; 10:1–11. https://doi.org/10.1371/journal.pone.0131603 PMID: 26110887
- Asgari S, Khalili D, Mehrabi Y, Kazempour-Ardebili S, Azizi F, Hadaegh F. Incidence and risk factors of isolated systolic and diastolic hypertension: a 10 year follow-up of the Tehran Lipids and Glucose Study. *Blood Press* 2016; 25:177–183. https://doi.org/10.3109/08037051.2015.1116221 PMID: 26643588
- Lee JW, Lim NK, Baek TH, Park SH, Park HY. Anthropometric indices as predictors of hypertension among men and women aged 40–69 years in the Korean population: The Korean Genome and Epidemiology Study. *BMC Public Health* 2015; 15:1–7. https://doi.org/10.1186/1471-2458-15-1 PMID: 25563658
- Lee BJ, Kim JY. A comparison of the predictive power of anthropometric indices for hypertension and hypotension risk. *PLoS One* 2014; 9. https://doi.org/10.1371/journal.pone.0084897 PMID: 24465449
- Chen Y, Wang C, Liu Y, Yuan Z, Zhang W, Li X, et al. Incident hypertension and its prediction model in a prospective northern urban Han Chinese cohort study. *J Hum Hypertens* 2016; 30:794–800. https:// doi.org/10.1038/jhh.2016.23 PMID: 27251078
- Wang Y, Ma Z, Xu C, Wang Z, Yang X. Prediction of transfer among multiple states of blood pressure based on Markov model: An 18-year cohort study. J Hypertens 2018; 36:1506–1513. <u>https://doi.org/10.1097/HJH.000000000001722</u> PMID: 29771738
- Niiranen TJ, Havulinna AS, Langén VL, Salomaa V, Jula AM. Prediction of Blood Pressure and Blood Pressure Change With a Genetic Risk Score. J Clin Hypertens 2016; 18:181–186. <u>https://doi.org/10.1111/jch.12702</u> PMID: 26435379
- 55. Yeh CJ, Pan WH, Jong YS, Kuo YY, Lo CH. Incidence and predictors of isolated systolic hypertension and isolated diastolic hypertension in Taiwan. J Formos Med Assoc 2001; 100:668–675. PMID: 11760372
- 56. Xu F, Zhu J, Sun N, Wang L, Xie C, Tang Q, et al. Development and validation of prediction models for hypertension risks in rural Chinese populations. J Glob Health 2019; 9. https://doi.org/10.7189/jogh.09. 020601 PMID: 31788232
- Wang A, An N, Chen G, Li L, Alterovitz G. Predicting hypertension without measurement: A non-invasive, questionnaire-based approach. *Expert Syst Appl* 2015; 42:7601–7609.
- Muntner P, Woodward M, Mann DM, Shimbo D, Michos ED, Blumenthal RS, et al. Comparison of the framingham heart study hypertension model with blood pressure alone in the prediction of risk of hypertension: The multi-ethnic study of atherosclerosis. *Hypertension* 2010; 55:1339–1345. https://doi.org/ 10.1161/HYPERTENSIONAHA.109.149609 PMID: 20439822
- Ture M, Kurt I, Turhan Kurum A, Ozdamar K. Comparing classification techniques for predicting essential hypertension. *Expert Syst Appl* 2005; 29:583–588.
- Yamakado M, Nagao K, Imaizumi A, Tani M, Toda A, Tanaka T, et al. Plasma Free Amino Acid Profiles Predict Four-Year Risk of Developing Diabetes, Metabolic Syndrome, Dyslipidemia, and Hypertension in Japanese Population. *Sci Rep* 2015; 5:1–12.
- **61.** Qi Y, Zhao H, Wang Y, Wang Y, Lu C, Xiao Y, et al. Replication of the top 10 most significant polymorphisms from a large blood pressure genome-wide association study of northeastern Han Chinese East Asians. *Hypertens Res* 2014; 37:134–138. https://doi.org/10.1038/hr.2013.132 PMID: 24196197
- Lu X, Huang J, Wang L, Chen S, Yang X, Li J, et al. Genetic predisposition to higher blood pressure increases risk of incident hypertension and cardiovascular diseases in Chinese. *Hypertension* 2015; 66:786–792. https://doi.org/10.1161/HYPERTENSIONAHA.115.05961 PMID: 26283040
- **63.** Zhang W, Wang L, Chen Y, Tang F, Xue F, Zhang C. Identification of hypertension predictors and application to hypertension prediction in an urban Han Chinese population: A longitudinal study, 2005–2010. *Prev Chronic Dis* 2015; 12:1–10.
- Falk CT. Risk factors for coronary artery disease and the use of neural networks to predict the presence or absence of high blood pressure. *BMC Genet* 2003; 4 Suppl 1:1–6. <u>https://doi.org/10.1186/1471-</u> 2156-4-S1-S67 PMID: 14975135

- 65. Farran B, Channanath AM, Behbehani K, Thanaraj TA. Predictive models to assess risk of type 2 diabetes, hypertension and comorbidity: Machine-learning algorithms and validation using national health data from Kuwait-a cohort study. *BMJ Open* 2013; 3:1–10.
- Kwong EWY, Wu H, Pang GKH. A prediction model of blood pressure for telemedicine. *Health Informatics J* 2018; 24:227–244. https://doi.org/10.1177/1460458216663025 PMID: 27496863
- 67. Polak S, Mendyk A. Artificial neural networks based Internet hypertension prediction tool development and validation. *Appl Soft Comput J* 2008; 8:734–739.
- Priyadarshini R, Barik RK, Dubey H. DeepFog: Fog computing-based deep neural architecture for prediction of stress types, diabetes and hypertension attacks. *Computation* 2018; 6. <u>https://doi.org/10.</u> 3390/computation6040062
- 69. Tayefi M, Esmaeili H, Saberi Karimian M, Amirabadi Zadeh A, Ebrahimi M, Safarian M, et al. The application of a decision tree to establish the parameters associated with hypertension. *Comput Methods Programs Biomed* 2017; 139:83–91. https://doi.org/10.1016/j.cmpb.2016.10.020 PMID: 28187897
- 70. Wu TH, Pang GKH, Kwong EWY. Predicting systolic blood pressure using machine learning. 2014 7th Int Conf Inf Autom Sustain "Sharpening Futur with Sustain Technol ICIAfS 2014 2014;: 1–6.
- Wu TH, Kwong EWY, Pang GKH. Bio-medical application on predicting systolic blood pressure using neural networks. Proc—2015 IEEE 1st Int Conf Big Data Comput Serv Appl BigDataService 2015 2015;: 456–461.
- 72. Zhang B, Wei Z, Ren J, Cheng Y, Zheng Z. An Empirical Study on Predicting Blood Pressure Using Classification and Regression Trees. *IEEE Access* 2018; 6:21758–21768.
- Zhao Q, Wang L, Yang W, Chen S, Huang J, Fan Z, et al. Interactions among genetic variants from contractile pathway of vascular smooth muscle cell in essential hypertension susceptibility of Chinese Han population. *Pharmacogenet Genomics* 2008; 18:459–466. <u>https://doi.org/10.1097/FPC.</u> 0b013e3282f97fb2 PMID: 18496125
- 74. Zhao H, Qi Y, Wang Y, Wang Y, Lu C, Xiao Y, et al. Interactive contribution of serine/threonine kinase 39 gene multiple polymorphisms to hypertension among northeastern Han Chinese. *Sci Rep* 2014; 4:1–7. https://doi.org/10.1038/srep05116 PMID: 24873805