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Background
Asthma is a common chronic disease of the airways. According to a medical 
expenditure survey in the United States from 2008 to 2013, asthma has a prevalence 
of 4.8% and imposes significant economic burden, including costs due to missed work 

Abstract 

Background:  The pathogenesis of asthma is a complex process involving multiple 
genes and pathways. Identifying biomarkers from asthma datasets, especially those 
that include heterogeneous subpopulations, is challenging. Potentially, autoencoders 
provide ideal frameworks for such tasks as they can embed complex, noisy high-
dimensional gene expression data into a low-dimensional latent space in an 
unsupervised fashion, enabling us to extract distinguishing features from expression 
data.

Results:  Here, we developed a framework combining a denoising autoencoder and 
a supervised learning classifier to identify gene signatures related to asthma severity. 
Using the trained autoencoder with 50 hidden units, we found that hierarchical 
clustering on the low-dimensional embedding corresponds well with previously 
defined and clinically relevant clusters of patients. Moreover, each hidden unit has 
contributions from each of the genes, and pathway analysis of these contributions 
shows that the hidden units are significantly enriched in known asthma-related 
pathways. We then used genes that contribute most to the hidden units to develop 
a secondary random-forest classifier for directly predicting asthma severity. The 
feature importance metric from this classifier identified a signature based on 50 key 
genes, which are associated with severity. Furthermore, we can use these key genes 
to successfully estimate FEV1/FVC ratios across patients, via support-vector-machine 
regression.

Conclusion:  We found that the denoising autoencoder framework can extract 
meaningful patterns corresponding to functional gene groups and patient clusters 
from the gene expression of asthma patients.
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and school, medication and mortality [1].
Asthma is recognized as a heterogeneous and complex disease involving many 

biological pathways [2]. Among asthma patients identified as severe, subpopulations 
with diverse pathogenicity may exist that respond differently to medications [3]. Thus, 
identifying distinct subgroups of asthma patients is crucial for personalized medical 
decisions and management. Several researchers have investigated aspects of asthma 
heterogeneity and tried to identify subgroups based on different types of indicators. 
Simpson et  al. [4] categorized asthma patients into four subtypes, eosinophilic, 
neutrophilic, mixed granulocytic and paucigranulocytic, based on the count and 
components of white blood cells in induced sputum [5]. The Severe Asthma Research 
Program performed hierarchical clustering on phenotypic measures of 856 patients 
and revealed five groups with distinct phenotypic features [6]. Yan et al. [7] identified 
three transcriptomic endotypes of asthma (TEAs) using unsupervised clustering on 
gene expression of induced sputum of asthma patients, demonstrating the predictive 
potential of molecular profiles on disease phenotypes. Each of these studies tried to 
interpret the identified subgroups by investigating how they associate with disease 
phenotypes, but did not explicitly evaluate their association with disease severity. 
Thus, we still lack a stringent set of indicators of severe phenotypes. As many asthma 
subgroups contain a non-trivial proportion of severe patients, work is needed to 
further characterize specific genes or pathways that lead to more severe phenotypes 
within each patient subgroup.

Scientists have extensively used transcriptome profiling to study human diseases 
at a molecular level. Gene transcripts that show significant differential expression and 
structural aberrations associated with disease phenotypes provide promising markers 
of clinical significance [8]. Easily obtained non-invasive biospecimens are useful sources 
of markers with high potential for convenient and efficient clinical applications [7]. 
Hekking et al. identified differentially expressed gene and pathway signatures for adult- 
and childhood-onset severe asthma from transcriptomes of brushings and sputum [9].

The pathogenicity of asthma involves complex and non-linear interactions between 
several biological pathways [10]. Thus, higher-order, non-linear features will be necessary 
to capture the intrinsic structure of gene expression data. Researchers can apply non-
linear generative models in order to obtain more stable representations of the data for 
robust feature extraction. For example, a denoising autoencoder attempts to reconstruct 
the original data from a randomly corrupted input, and the resulting model can 
potentially map the high-dimensional input data to lower-dimensional representations 
that are robust to small noise in the input [11]. This framework is therefore suitable 
for extracting useful features in noisy and high-dimensional transcriptome data. As 
an example, Tan et  al. applied this method to breast cancer gene expression data and 
identified features that are related to the prognosis of patient survival [12].

To reveal the intrinsic structure and to extract predictive features from heterogeneous 
transcriptome data, we propose a framework called dAsthma that uses a denoising 
autoencoder to generate robust and non-linear representations with clinical relevance. 
We argue that (1) this simple structure can retrieve components that have biological 
relevance and are explainable, (2) the hidden units produce clearer patterns than the 
raw data to categorize patients into heterogeneous groups, and (3) components of the 
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clinically relevant hidden units may contain genes that are functionally associated with 
the pathogenesis of asthma, serving as potential sources for biomarker discovery.

Results
Training the denoising autoencoder

We used a one-layer denoising autoencoder model comprised of an encoder and a 
decoder (Fig. 1). The encoder embeds the original input data into a lower-dimensional 
space, the hidden layer, and the decoder reconstructs the input from the values of the 
hidden layer. We tuned the parameters of the model using cross-validation by training 
on 90% of the randomly selected sample and testing on the remaining 10% and repeated 
this process 10 times. Both the training and testing loss showed proper convergence 
(Additional 1: Fig S1, S2), indicating that we largely avoided overfitting. We then 
projected the input data from all non-control input samples to the embedding space of 
the trained model, obtaining a set of 50-dimensional vectors.

Hidden units associate with TEA clusters

By encoding the original data into the hidden vector space, the model produced a sparse 
embedding space; moreover, we could observe distinct patterns related to clinical traits 
(Fig. 2a). Some hidden units showed approximately complementary behaviors (e.g., H26 
and H38), indicating their distinct relevance to key molecular mechanisms and clinical 
subgroups of patients.

To better interpret the learned patterns, we evaluated the embeddings of all input data 
for their correlations with identified clinical traits. We first removed hidden units with 
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Fig. 1  Denoising autoencoder model architecture
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variance < 0.001. Using the embeddings of the highly variable hidden units, the samples 
formed several small clusters corresponding to the previously defined TEA clusters, with 
high homogeneity (Fig. 2a). We found that TEA1 contained a larger proportion of severe 
patients than TEA3 (Additional 1: Fig S4). TEA2 was relatively harder to distinguish 
because it was somewhat of an intermediate between TEA1 and TEA3, as some of the 
TEA2 samples were spread across several clusters.

Generally, the values of hidden units showed gradual monotonic changes, either 
increasing or decreasing, from TEA1 to TEA3 (Additional 1: Fig S5), indicating 
associations of the hidden units with clinical traits of the samples. We selected five 
hidden units (H26, H27, H36, H38, H45) that were significantly correlated with TEA 
cluster labels (Spearman correlation > 0.65), namely Hsig. Based on the performance of 
these five hidden units, we further categorized them into two major classes: one that 
was negatively correlated with TEA cluster labels (H26, H27; Fig. 2b) and one that was 
positively correlated (H36, H38, H45; Fig. 2c).

Annotation of relevant hidden units

To further understand the biological significance of the hidden units, we tried to 
associate them with functional enrichment based on the weights of the encoder network 

a

c

b

Fig. 2  Identification of clinically relevant hidden units. a Heatmap of hidden layer embeddings. The sidebar 
indicates the TEA cluster assignment of the sample. b Hidden units that are negatively correlated with the 
TEA cluster label (H26, H27). c Hidden units that are positively correlated with the TEA cluster label (H36, H38, 
H45)
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that mapped the input to the hidden unit space. This weight represents the contribution 
of the gene to the value of the hidden unit and can be considered the component of the 
hidden unit. Thus, we could infer biological significance of the hidden units from the 
weights of the encoder.

The weight distribution of the encoder layer showed similar patterns for hidden 
units belonging to the same set (Fig. 3a). The negative set showed a nearly symmetric 
distribution with a slight negative skew, whereas the positive set showed a highly 
positively skewed shape. Using encoder weights for all 22,148 genes as the ranking score, 
we performed gene set enrichment analysis using Kyoto Encyclopedia of Genes and 
Genomes (KEGG) pathway gene sets to obtain functional enrichments of Hsig. Similar 
to the weight distribution, hidden units from the same set showed strong resemblance 
with respect to enrichment of functional terms (Additional 1: Fig S6). Notably, many 
of the enriched functional terms were related to molecular functions and signaling 
pathways associated with disease pathogenesis and autoimmune response, whereas 
deficient terms included “gene expression machinery” and “metabolism”. Specifically, 
the enrichment of the term “asthma” showed high significance in all five hidden units 
(Fig. 3b, Additional 1: Fig S7).

We then extracted the top-weighted genes of Hsig as potential clinical markers for 
downstream analysis. For each hidden unit, we extracted the top 200 genes with the 
highest weights; we removed ribosome-related genes from the analysis to prevent 
ribosome functional roles from dominating the selected gene set. Concordant with 
previous observations, the gene sets for hidden units belonging to the same class 
were highly similar. By merging the top-weighted genes from all five hidden units, 
we obtained a list of 330 genes. We identified several genes that showed distinct 
differential patterns of weights between the positive and negative set (Fig. 3c). Gene 
ontology (GO) analysis revealed an enrichment of disease-related terms like “antigen 
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Fig. 3  Annotation of hidden units. a Distribution of encoder weights of Hsig. The positive and negative sets 
show very different distribution patterns. b Gene set enrichment of the asthma pathway from KEGG (KEGG_
ASTHMA) for H26 and H38. c Intersection between top weighted 200 genes of the positively (H26, H27) and 
negatively (H36, H38, H45) related hidden units (duplicates removed)
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processing and presentation”, “immune response” and “interferon-gamma signaling 
pathway” (Additional 1: Fig S8).

Top‑weighted genes associate with asthma severity

In order to assess the clinical relevance of the learned model, we investigated the 
association between hidden unit values and clinical data. Generally, the performance 
of hidden units showed distinct correlations with various clinical traits (Additional 
1: Fig S9). We then tested the predictive performance of some clinical traits using 
the embedding values of Hsig and the expression of the combined list of their top-
weighted genes.

We first associate the value of all hidden units, Hsig and the top-weighted genes 
with the asthma severity levels of the patients. We only used samples labeled as 
“mild” or “severe” for the classification analysis. Given each training dataset, we 
trained a random forest classifier and assessed the predictive accuracy on the test 
data, represented by the area under the receiver operating characteristic curve 
(AUROC) value (Fig. 4a).

From the top-weighted genes, we then performed feature selection to obtain the 
most relevant genes. We considered 50 genes with the top average importance as 
the most relevant to the prediction of severity (Fig.  4b, Additional 1: Table  S1). 
Expression of these genes reached an average AUROC of 0.8066 (average AUROC 
is 0.6221 for randomly selected 50 genes from all expressed genes) in predicting 
severity level. This indicates the top weighted genes are related to severity and the 
latent patterns unsupervised learned by the autoencoder are biological relevant.

We also evaluate the performance of differentially expressed genes (DEGs) 
from severe versus mild patient group (AUROC: 0.9318, see Methods for details) 
(Additional 1: Fig S10). There is no overlapping between our selected genes with 
DEGs, but network analysis showed that our selected genes have significantly 
higher interconnectivity and higher centrality in the network (Wilcoxon test, 
p-value = 0.003) compared to the DEGs (Additional 1: Fig S11). This is not surprising 
since the severity related DEGs is specifically selected to be discriminative. In 
contrast, the top-weighted genes are defined from the most representative patterns 
among all the samples (including control, mild, moderate and severe groups) learned 
by unsupervised learning. They are not necessarily associated with severity, but can 
still achieve high predictive performance, though not as high as specific DEGs. Also, 
they play more central roles through network interactions. This further indicates 
our framework can capture the biological relevant information.

Our list of selected genes included genes related to autoimmune responses, such 
as antigen processing and presentation, T-cell toxicity, interferon signaling and cell 
adhesion (Fig. 4c). In the context of a protein–protein interaction network, we identified 
genes residing in various functional modules (Fig. 4d). Specifically, several genes, such 
as human leukocyte antigen genes and cathepsin L1, belonged to a module related to 
immune response. In addition, the list included genes with potential relevance to asthma 
pathogenesis, such as immunoglobulin heavy chain (IGHG1, IGHA1 and IGHV3-48), 
inflammation (S100A9) [13] and iron response (IREB2) [14, 15] genes.
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Prediction of clinical measurements

To evaluate an individual’s lung function, clinicians use the ratio of the volume 
forcefully exhaled in one second versus the maximum volume of a forceful exhale (i.e., 
the FEV1/FVC ratio) [16]. A significantly reduced FEV1/FVC ratio is a sign of airflow 
obstruction, and is considered a criterion for asthma severity.

We found that the hidden units in Hsig generally showed a higher absolute value of 
correlation with the FEV1/FVC ratio, in both the positively and negatively correlated 
subsets, compared to other hidden units, indicating clinical relevance of these hidden 
units (Fig. 5a).

Finally, we tried to predict the pre- and post-treatment FEV1/FVC ratios with the 
value of hidden units and expression of their top-weighted genes using a support 
vector regression (SVR) and least absolute shrinkage and selection operator (LASSO) 

a

b

d

c

Fig. 4  Prediction of asthma severity and feature selection. a AUROC of the prediction of asthma severity 
using selected genes compared to randomly selected genes. b Importance of the selected genes. c GO term 
enrichment of the selected genes. d Selected genes in the context of a PPI network
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(Fig. 5b, c, Additional 1: Table S2, S3 and Fig S12, S13). The selected genes achieved 
the highest predictive performance, in terms of both mean squared error and 
explained variance. Together, these results suggest that the selected hidden units and 
genes are clinically relevant and could be used as markers for asthma severity.

Discussion
Research suggests that asthma is a heterogeneous disease, as its pathogenicity may largely 
depend on a patient’s individual genetic variability [17]. For several previously proposed 
subsetting methods of the asthma population, many of the resulting subpopulations 
contain a non-trivial proportion of severe cases [7]. This indicates that severe asthma 
may be the result of multiple subtype-specific mechanisms. Thus, diagnosis from disease 
phenotypes solely may not provide sufficient information for personalized treatment. 
To identify the molecular regulatory mechanisms associated with asthma severity, we 
developed a framework called dAsthma using a denoising autoencoder model trained 
on gene expression profiles of sputum from asthma patients. The model can map high-
dimensional expression data to a lower-dimensional latent vector space composed 
of 50 hidden units, and cluster the patients into clinically relevant subgroups using 
the embeddings in the latent space. We then investigated how the hidden units were 
associated with biological pathways and clinical traits. From the most relevant hidden 

a

b c

Fig. 5  Prediction of FEV1/FVC ratio. a Spearman correlation between hidden unit values and 
pre-/post-treatment FEV1/FVC. b Plot of predicted value versus true value of pre-treatment FEV1/FVC using 
support vector machine regression with selected gene expression. c Plot of predicted value versus true value 
of post-treatment FEV1/FVC using support vector machine regression with selected gene expression
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units, we discovered a set of 50 genes whose expression profiles combined could predict 
asthma severity with high accuracy.

The dAsthma framework learns a more robust representation of the data by adding 
random noise to the input data. It looks for definitive features that account for the 
variations among the dataset. Compared with raw gene expression data, which produce 
less distinguishable patterns in clustering analysis, the hidden unit values learned by 
the dAsthma model can identify distinct clusters that partly overlap with previously 
identified patient groups out of the noisy data. We note that these clusters are generated 
in an unsupervised fashion, that is from mere gene expression data with no external 
information provided. We tuned the autoencoder model of our framework to make it 
more robust. We selected an optimal learning and corruption rate by performing a grid 
search of hyper-parameters. The dataset that we used to train our model was relatively 
small; this may limit the ability of the autoencoder to identify underlying patterns of the 
data due to lack of information, and could introduce an additional risk of overfitting. We 
tested our model using cross-validation and found good convergence of both training 
and test loss. We selected the model architecture (i.e., the number of hidden nodes) 
based on the following considerations: As a smaller number of hidden units may fail 
to capture some subtle structures among the dataset, we used a relatively larger and 
presumably redundant number (50 hiddenunits), allowing us to retain as much useful 
information as possible. We then filtered the 50 learned hidden units for conciseness 
and specificity. Among these hidden units, some showed almost uniform values across 
all samples; these were of less interest and were discarded. In addition, some highly 
variable hidden units showed similar performance and components. We collapsed these 
highly correlated hidden units for downstream analysis.

Neural network-like models become less interpretable as they grow deeper and more 
complex. Especially when applied to biological data, associating a learned model with 
the underlying mechanisms of molecular functions and disease pathology is challenging. 
Our dAsthma framework uses a simple, low-complexity structure to achieve better 
interpretability. The learned patterns can be interpreted from two perspectives. The 
first is to study the enrichment of biological pathways of the hidden units based on their 
components (i.e., genes weighted by their contributions to the hidden units). The second 
is to associate the patterns with external information about clinical measurements, such 
as asthma severity. These analyses showed that the hidden representations learned by 
the denoising autoencoder could bridge gene expression and clinical traits. Overall, the 
hidden units can be recognized as “gene modules” that represent key biological pathways 
in the pathogenicity of asthma, which lead to various disease phenotypes.

The definition of asthma severity is mainly based on phenotypic traits and may vary 
across studies. The top severity-associated genes selected from the components of the most 
clinically relevant hidden units potentially could be used to characterize asthma severity 
for different subtypes, as the denoising autoencoder in dAsthma tends to identify features 
that account for variations among the asthma patient population. We also showed that 
our selected genes, though showing lower predictive ability, generally have more central 
biological roles in the interaction network than severity related DEGs. Previous work by 
de la Fuente [18] highlighted that key regulators that significantly alter pivotal biological 
processes in diseases are not always found in the most differentially expressed genes. 
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Thus, integrating regulatory or co-functioning information beyond mere differential 
expression would facilitate the identification of disease-causing genes and pathways. As our 
autoencoder-based framework could detect such information in an unsupervised fashion, 
we believe that further exploration of these models on biological data would facilitate 
the understanding of the function of complex regulatory behaviors especially in human 
diseases.

Conclusions
We have demonstrated the strength and application of our dAsthma framework, which 
makes use of a denoising autoencoder for extracting clinically relevant patterns in an 
unsupervised fashion. From the patterns, we demonstrate a rational way to select potential 
biological relevant genes from the noisy gene expression data of sputum of asthma patients. 
Compared to straightforward differential expression analysis, our method identifies gene 
signatures with significant higher centrality, which tend to play more pivot role in the 
biological network.

Methods
Data

The raw expression data was provided by Yan [7]. After quantile normalization, all 
expression data was scaled to [0,1] in a sample-wise fashion by the min–max method, i.e., 
x̃ =

x−min(x)
max (x)−min(x) , for each sample.

Implementation and training of the denoising autoencoder

The denoising autoencoder is comprised of two symmetric neural networks: an encoder 
network and a decoder network. The encoder network first maps a corrupted input X∗ , i.e.,

The decoder network then tries to produce a reconstructed input Z from the hidden 
vector space that resembles the original input as much as possible:

Specifically, we constrain the weights of the decoder network to be the transpose of that 
of the encoder. The loss function is cross-entropy loss:

Then, the derivative can be calculated as follows:

y = sigmoid
(

Wx∗ + b
)

z = sigmoid
(

WTy+ b′
)

L =
∑

i

−xilogzi − (1− xi)log(1− zi)
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Weights are shared between the encoder and the decoder (i.e., the weight matrix of the 
decoder is a transposition of that of the encoder). The output layers of the encoder and 
decoder are activated with a sigmoid function.

We tuned the parameters of the model using different values. In particular, we tested 
the hidden nodes from 10 to 70, and epochs with 30, 50, 100 and 150. Finally, as a trade-
off between the performance and redundancy of the hidden nodes (Additional 1: Fig S3), 
we used a model with 50 hidden units, 100 epochs, a learning rate of 0.1 and a corruption 
rate of 0.001, to minimize the cross-entropy loss. After tuning the parameters, the model 
was evaluated with random training and test data of the original data set for 10 times: 
the model was first trained using a randomly selected 90% of the samples, and then 
tested on the remaining 10%. Cross-validation on the testing set between the true and 
predicted value was used for the evaluation.

Gene set enrichment analysis

We used the fgsea function (from the R package fgsea) [19] to perform gene set 
enrichment analysis. The fgsea function expects an input of statistic array for genes 
in a gene list of interest, as a measurement of the relevance of the genes to a desired 
phenotype. In our scenario, for each hidden unit we regard the learned weights of the 
input features (genes) as the statistic array. We used the curated KEGG gene set from 
MSigDB v6.2 (downloaded from https​://softw​are.broad​insti​tute.org/gsea/downl​
oads.jsp) for the analysis. We ran the analysis for 1000 permutations. The output was 
visualized as a plot of enrichment scores against genes ranked by statistical values.

Prediction of clinical traits

Generally, the prediction of severity (also, the pre- and post-treatment FEV1/FVC 
ratios) was evaluated using four-fold cross-validation. The data was randomly split into 
four equal parts. For each part, the target value was predicted using a model trained with 
the other three parts. The predicted values of the four parts were then concatenated and 
compared to the true values.

For prediction of severity, only samples labeled as “mild” and “severe” were used for 
the analysis. We performed a random forest (using the R package caret) on the training 
data with default parameter settings. Altering the parameters (i.e., the number of trees 
and number of features for splitting the nodes) did not significantly impact the results 
(data not shown). The AUROC reported is the average over ten repeats of four-fold 
cross-validation. We also compared the result with randomly sampled 50 genes and 
averaged over 1,000 random samplings.

∂L

∂Wij
=

(

zj − xj
)

yi +

[

∑

k

(zk − xk)Wik

]

yi
(

1− yi
)

x∗j

∂L

∂bi
=

[

∑

k

(zk − xk)Wik

]

yi
(

1− yi
)

∂L

∂b′j
= zj − xj

https://software.broadinstitute.org/gsea/downloads.jsp
https://software.broadinstitute.org/gsea/downloads.jsp
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For prediction of the pre- and post-treatment FEV1/FVC ratio, both support vector 
regression (SVR) using the R package e1071 and LASSO (using the R package glmnet) 
were used. The predictive power of the trained model was assessed by calculating the 
Pearson correlation between the predicted values and true values.

Feature selection

An initial gene set was generated by merging the top-weighted genes for the five most 
clinically relevant hidden units. The merged gene list, containing 330 genes, was used 
as input to a random forest classifier to predict the severity label (“mild” or “severe”), 
with all samples used. For a random forest regression model, the importance of the input 
variables was calculated as follows: for each tree, the out-of-bag mean-squared error 
was computed before and after randomly permuting a variable. The importance of the 
variable was defined as the average difference of the out-of-bag mean-squared error 
before/after permutation over all trees.

The importance of the features in the learned model was then extracted from the 
learned model. We used 50 genes with the highest importance averaged over 50 trials as 
the selected genes for downstream analysis.

Differential expression analysis

DEGs related to severity were selected with a linear model against mild/severe labels 
using package limma [20]. We used genes with adjusted p-value < 0.1 as significant 
DEGs, resulting in a list of 24 genes.

Network analysis

Proteins corresponding to the selected genes are provided via STRING (https​://strin​
g-db.org/). For microarray probes targeting multiple proteins, all of the corresponding 
proteins are included. To visualize the role of these proteins in the context of a protein–
protein interaction (PPI) network, we also included nodes of first-shell interactions 
(colored in grey in Fig.  4d) with the query proteins (colored in red in Fig.  4d). Only 
experimentally validated and database-curated interactions are included.
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