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Abstract

The association between physical appearance and income has been of central interest in

social science. However, most previous studies often measured physical appearance using

classical proxies from subjective opinions based on surveys. In this study, we use novel

data, called CAESAR, which contains three-dimensional (3D) whole-body scans to mitigate

possible reporting and measurement errors. We demonstrate the existence of significant

nonclassical reporting errors in the reported heights and weights by comparing them with

measured counterparts, and show that these discrete measurements are too sparse to pro-

vide a complete description of the body shape. Instead, we use a graphical autoencoder to

obtain intrinsic features, consisting of human body shapes directly from 3D scans and esti-

mate the relationship between body shapes and family income. We also take into account a

possible issue of endogenous body shapes using proxy variables and control functions. The

estimation results reveal a statistically significant relationship between physical appearance

and family income and that these associations differ across genders. This supports the

hypothesis on the physical attractiveness premium in labor market outcomes and its hetero-

geneity across genders.

Introduction

In studies on the association between physical attractiveness and labor market outcomes,

height, weight, and body mass index (BMI) have been popular choices, as measurements of

physical appearance. For instance, Persico et al. [1] and Case and Paxson [2] analyzed the asso-

ciation between height and wages. They found apparent height premium in the labor market

outcomes. Cawley [3] estimated the effects of BMI on wages and reported that weight lowers

the wages of white females. Hamermesh and Biddle studied the impact of facial attractiveness

on wages and demonstrated significant beauty premium [4]. However, these measurements of

physical appearance are acquired through subjective survey responses. This presents a possibil-

ity of attenuation bias from reporting errors on physical appearance, in estimating the relation-

ship between physical appearance and labor market outcomes. In addition, measurements

such as height, weight, and BMI are too sparse to characterize detailed body shapes (see Kan

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0254785 July 30, 2021 1 / 17

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Song S, Baek S (2021) Body shape

matters: Evidence from machine learning on body

shape-income relationship. PLoS ONE 16(7):

e0254785. https://doi.org/10.1371/journal.

pone.0254785

Editor: Konstantinos Tatsiramos, University of

Luxembourg and Luxembourg Institute of Socio-

Economic Research (LISER), LUXEMBOURG

Received: October 29, 2020

Accepted: June 14, 2021

Published: July 30, 2021

Copyright: © 2021 Song, Baek. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: The original data

underlying the results presented in the study are

available from the website for the Civilian American

and European Surface Anthropometry Resource

Project at http://store.sae.org/caesar/. The data

after applying our proposed methods is held in a

public repository at http://bit.ly/shape-matters We

also uploaded the dataset as a Supporting

information file.

Funding: The author(s) received no specific

funding for this work.

https://orcid.org/0000-0003-2941-3653
https://orcid.org/0000-0002-4758-4539
https://doi.org/10.1371/journal.pone.0254785
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0254785&domain=pdf&date_stamp=2021-07-30
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0254785&domain=pdf&date_stamp=2021-07-30
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0254785&domain=pdf&date_stamp=2021-07-30
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0254785&domain=pdf&date_stamp=2021-07-30
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0254785&domain=pdf&date_stamp=2021-07-30
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0254785&domain=pdf&date_stamp=2021-07-30
https://doi.org/10.1371/journal.pone.0254785
https://doi.org/10.1371/journal.pone.0254785
http://creativecommons.org/licenses/by/4.0/
http://store.sae.org/caesar/
http://bit.ly/shape-matters


and Lee [5]). Consequently, measurement errors in the body shapes would make it difficult to

correctly estimate the true relation.

We investigate the properties of reporting errors using a nonparametric conditional mean

and nonlinear quantile functions. The nonparametric estimation of the conditional expecta-

tions of the reporting errors in height, given the true height, shows that the reporting error for

female height is nonclassical in that the reporting error and the true height are dependent. The

quantile regression provides that the conditional median of the reporting error is independent

of the true height. Thus, it would be more plausible to impose a restriction on the conditional

quantile of the reporting error of height than the conditional mean (see Bollinger [6]; Hu and

Schennach [7]; and Song [8]). In contrast, the nonparametric conditional mean and nonlinear

quantile regressions show that there are substantial nonclassical errors in the reported weight

of both genders.

The estimation results for the association between height (or BMI) and family income con-

firm that the reporting errors have substantial impacts on the estimated coefficients. Further-

more, such classical measurements of body shape are too sparse to describe the whole-body

structure. Therefore, analyses with sparse measurements are very sensitive to variable selec-

tion, implying that regressions with the measured height and BMI might suffer from measure-

ment errors of body shape. A handful of papers address this problem by proposing statistical

methods such as bias-correction methods or instrumental-variables approaches that deliver

consistent estimators at the expense of strong assumptions.

The dataset encloses digital 3D whole-body scans of subjects, which is a very unique feature.

3D whole-body scans have been studied in areas such as nutrition/obesity research [9–11],

medicine/nursing [12, 13], psychology/cognition of appearance [14, 15], ergonomics/wearable

product design [16], and more. However, this study is the first to use 3D whole-body scan data

for modeling and analyzing the relationship between family income and body shapes. Indeed,

we argue that the 3D scan data of human body shapes would mitigate problem of measure-

ment errors. As the observed variable for body shapes in the dataset is three-dimensional, it is

challenging to incorporate the data into the family income model. For this, we adopt methods

based on machine learning to identify important features using 3D body scan data. Autoenco-

ders are a certain type of artificial neural network, which possess an hourglass shaped network

architecture. They are useful in extracting intrinsic information from high dimensional input

and finding the most effective way of compressing such information into the lower dimen-

sional encoding. As this study shows, the graphical autoencoder can effectively extract the fea-

tures of the body and is not sensitive to random noises.

In economic studies, the focus on non-Euclidean data, such as human body shapes, geo-

graphical models, social network data, and so on, is increasing. In this study, we introduce a

new methodology developed on deep neural networks and demonstrate its use in analyzing

the economic model when the available data has a non-Euclidean structure. The challenge in

incorporating non-Euclidean data in statistical analyses is that the data has no trivial grid-like

representation. Consequently, encoding the features and characteristics of each data point into

a numerical form is neither straightforward nor consistent. Most existing studies simplify the

non-Euclidean features with some sparse characteristics. For instance, many relevant studies

quantify the geometric characteristics of a human body shape with some sparse measurements,

such as height and weight. However, such methods do not always capture detailed geometric

variations, and often lead to an incorrect statistical conclusion because of the measurement

errors. As a better alternative, we propose a graphical autoencoder that can interface with the

three-dimensional graphical data. The graphical autoencoder permits the incorporation of

non-Euclidean manifold data into the economic analyses. As we will discuss, the direct incor-

poration of the graphical data can reduce measurement errors, because graphical data, in
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general, provides more comprehensive information on non-Euclidean data than do discrete

geometric measurements.

Using the graphical autoencoder, we successfully identify intrinsic features of the body

shape using 3D body scan data. Interestingly, the intrinsic features of the body type are signifi-

cant in explaining family income. Using the graphical autoencoder, we identify two intrinsic

features forming the male body type and three intrinsic features for the female body type. For

both genders, we show that the first feature captures stature, while the second feature captures

obesity. The third feature captures the hip-to-waist ratio of the body shape in the female

sample. In contrast to the conventional principal component analysis (PCA), the graphical

autoencoder allows us to interpret the extracted features. Furthermore, PCA is a linear trans-

formation of the coordinates in the data space, while the autoencoder captures a nonlinear

embedding of the data distribution. As Baek [17] and Freifeld et al. [18] note, the space in the

3D human body scans exhibits properties of nonlinear manifolds. Hence, the intrinsic features

captured by the graphical autoencoder should be a more accurate parameterization of the true

data distribution.

As acknowledged in the literature, body types could be endogenous, in that they can be

driven by unobserved factors of income such as nutrition, personality, ability, and family back-

ground. To identify the relation between body types and family income, we correct for possible

endogeneity issues among body types. Dealing with both endogeneity and measurement errors

simultaneously in the nonlinear models is not as straightforward as in the linear models (see

Song [8]; Song et al. [19]; Kim et al. [20]; and Kim and Song [21] for detailed discussions). We

utilize the proxy variables approach and control functions approach. In particular, our identifi-

cation strategy is to use variations in shoe size, jacket size for males (blouse size for females),

and pants size, as legitimate instrumental variables for stature in the control functions

approach. Testing the null of exogenous stature, we find that the female’s stature is endogenous

but not the male’s.

We summarize the main findings in Fig 1. In the estimation results from the deep-learned

body parameters (right panel), we find that the male’s stature has a positive impact on family

income and is statistically significant at the 5% significance level, while obesity is insignificant.

We estimate that one centimeter increase in stature (converted in height) is associated with

approximately $998 increase in family income for a male who earns $70, 000 of the median

family income. For females, the coefficient of obesity is negative and statistically significant at

the 1% significance level. In contrast, the coefficients of other features such as height and hip-

Fig 1. Summary of the estimation results for family income equation. Estimated coefficients and bootstrapped 90%

confidence bands are reported. The left panel presents results from the conventional body measures and the right panel reports

results from the deep-learned body parameters through the graphical autoencoder.

https://doi.org/10.1371/journal.pone.0254785.g001
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to-waist ratio are statistically insignificant. One unit decrease in obesity (converted in BMI) is

associated with approximately $934 increase in the family income for a female who earns $70,

000 of family income. The results show that physical attractiveness premium continues to

exist, and the relationship between body shapes and income is heterogeneous across genders,

even after controlling for unobserved confounding factors. Education is statistically significant

for both genders; however, experience is significant only for the female samples.

Interestingly, the corresponding estimation results from classical body measures such as

height, BMI, and hip-to-waist ratio (left panel) are substantially different than those from

deep-learned body parameters. For males, the coefficient of height is positive and statistically

significant at the 10% significance level: one centimeter increase in height is associated with

$700 increase in the family income for a male who earns $70, 000 of the median family income,

which is smaller than the effect from the deep-learned body parameters. For females, coeffi-

cients of height, BMI, and hip-to-waist ratio are all statistically insignificant. Thus, we do not

find strong evidence of body shape effects when using the classical body measures among

females. As discussed in the Supporting information, the estimation results with the classical

body measures are volatile across different regression models (i.e., OLS, proxy variable

approach, and control functions approach), while those with the deep-learned body parame-

ters are robust across different models. These suggest that the classical body measures have

limited powers to describe nonlinear body shapes; therefore, any statistical analysis based on

those simple measurements would lead to wrong economic inferences. Our findings also high-

light the importance of correctly measuring body shapes to provide adequate public policies

for improving healthcare and mitigating discrimination and bias in the labor market.

Model and data

We consider the association between family income and body shapes as follows:

Family Incomei ¼ aXi þ bBody Shapesi þ �i; i ¼ 1; . . . ;N; ð1Þ

where Family Incomei is log family income, Body Shapesi is a measure of body types, and �i is

the unobserved causes of family income for individual i, and where Xi is a set of covariates,

including experience, squared experience, race, occupation, education, marital status, and

number of children. We are particularly interested in the parameter β, but we also discuss the

relationship between family income and other individual characteristics through the vector of

parameters α. For conciseness, we only report part of the estimated parameters in the tables

and complete tables are available upon request. Most of the literature on beauty, height, and

weight focuses on the relationship between these factors and individual income or earnings.

Because the data used in this study do not contain individual income, we primarily examine

the relationship between body shapes and family income. This opens up additional channels

through which physical appearance could affect family income. We identify the combined

association between body shapes and family income through the labor market and marriage

market. In fact, as documented in Chiappori et al. [22], various studies found assortative

matching on income, wages, education, and anthropometric characteristics such as weight or

height in the marriage market. Consequently, the total effects of body shapes in the labor mar-

ket and marriage market are identifiable from family income, therefore, it is important to

investigate the relationship between physical attractiveness and family income.

A large body of literature has analyzed the presence of earnings differentials based on physi-

cal appearance. A strand of literature has focused on facial attractiveness. Hamermesh and

Biddle analyzed the association between physical appearance and earnings using interviewers’

ratings of respondents’ physical appearance [4]. They found evidence of a positive relationship
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between looks and earnings. Mobius and Rosenblat examined the sources of beauty premium

and decomposed the beauty premium that arises during the wage negotiation process between

employer and employee in an experimental labor market [23]. They identified transmission

channels through which physical attractiveness raises an employer’s estimate of a worker’s

ability. Scholz and Sicinski studied the association between facial attractiveness and lifetime

earnings and found that the beauty premium exists even after controlling for other factors that

enhance productivity in the labor market earnings [24].

Other threads of literature have analyzed the effects of height on labor market outcomes.

Persico et al. [1] found that an additional inch of height is associated with an increase in wages,

which is a consistent finding in the literature, in addition to racial and gender bias. They

showed that a person’s height as a teenager is the source of the height wage premium. This

implies that there are positive effects of social factors associated with the accumulation of pro-

ductive skills and attributes on the development of human capital and the distribution of eco-

nomic outcomes. Case and Paxson also found substantial returns to height in the labor market

[2]. However, they showed that the height premium is the result of positive correlation

between height and cognitive ability. Lundborg et al. found that the positive height-earnings

association is explained by both cognitive and noncognitive skills observed in tall people [25].

Deaton and Arora reported that taller people evaluate their lives more favorably and their find-

ings are explained by the positive association between height and both family income and edu-

cation [26]. Böckerman and Vainiomäki used twin data to control for unobserved ability and

found a significant height premium in wage for women but not for men [27]. Lindqvist studied

the relationship between height and leadership and confirmed that tall men are significantly

more likely to attain managerial positions [28].

Cawley considered the effects of obesity on wages [3]. He found that weight lowers the

wages of white females and noted that one possible reason for this is that obesity has adverse

impact on the self-esteem of white females. In a similar model, Kan and Lee showed that BMI

is not an appropriate measure of obesity and proposed flexible econometric approaches allow-

ing for nonlinear relation [5]. Rooth used a field experimental approach to find differential

treatment against obese applicants in terms of the number of callbacks for a job interview in

the hiring process in the Swedish labor market [29].

Many relevant studies in the literature on physical appearance quantify the geometric char-

acteristics of a human body shape with some sparse measurements, such as height, weight, or

BMI. However, as we will see in later sections, such quantification methods do not always cap-

ture detailed geometric variations, and often lead to an erroneous explanation of statistical

data. For instance, with height and BMI alone, one can hardly distinguish muscular individuals

from individuals with round body shapes. The situation does not improve even if some new

variables, such as chest circumference, are added, as these variables are still insufficient to cod-

ify all the subtle variations in body shapes. Moreover, often, such additional variables merely

add redundancy, without adding any substantial statistical description of data, as the com-

monly-used anthropometric parameters are highly correlated to each other. In addition, nota-

bly, the manual selection of measurement variables can also introduce one’s bias into the

model. In this study, we compare several common ways of quantifying manifold structured

data with a newly-proposed graphical autoencoder method.

We use a unique data, called the Civilian American European Surface Anthropometry

Resource (CAESAR) dataset. It was collected from a survey of the civilian populations of three

countries representing the North Atlantic Treaty Organization (NATO) countries: the U.S.,

the Netherlands, and Italy. The survey was primarily conducted by the U.S. Air Force and we

used the sample from the U.S. for our study. The survey for the U.S. sample was conducted

from 1998 to 2000 and carried out in 12 different locations, which were selected to obtain
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subjects approximately in proportion to the population in each of the four regions of the U.S.

Census. Survey sites include LA (CA), Detroit (MI), Ames (IA), Dayton (OH), Greensboro

(NC), Marlton (NJ), Ottawa (Ontario, CAN), Minneapolis (MN), Houston (TX), Portland

(OR), San Francisco (CA), and Atlanta (GA). The U.S. data is referred to as the North Ameri-

can sample, as one site in Ottawa, Canada, was added to the sample.

The dataset contains 2,383 individuals, whose ages vary from 18 to 65, with a diverse demo-

graphical population. The dataset contains detailed demographics of subjects, anthropometric

measurements done with a tape measure and caliper, and digital 3D whole-body scans of sub-

jects. In contrast to other traditional surveys, the data contains both reported and measured

height and weight. This feature makes it possible to calculate reporting errors in the survey

data and analyze their relations to the correctly measured height/weight as well as individual

characteristics. In addition, the existence of 3D whole-body scan data enables the CAESAR

data to serve as a good proxy to physical appearance, such that the potential issue of measure-

ment errors can be mitigated.

Reporting errors in height and weight

Several studies in the literature use survey data, and therefore, they assume there are no report-

ing errors in height and weight, or that reporting errors are classical in that they are not corre-

lated with true measures. Exceptionally, Persico et al. [1] and Case and Paxson [2] use

measured height from the British National Child Development Survey, although they also use

self-reported height from the British Cohort Study and the National Longitudinal Survey of

Youth, respectively. Lundborg et al. [25] use measured height from the Swedish National Ser-

vice Administration. As our data contains both reported and measured height and weight, we

can further investigate the properties of the reporting errors. We consider measured height

and weight as the true height and weight, as they are measured by professional tailors. The

reporting errors are calculated as Reporting ErrorH = Reported Height − Height and Reporting

ErrorW = Reported Weight − Weight, respectively.

We test whether the reporting errors depend on true values of height or weight. Fig 2 plots

the estimation of the conditional expectations of the reporting errors in height/weight given

the true measures, namely, E[Reporting ErrorH jHeight] and E[Reporting ErrorW jWeight]

with their 95% confidence bands, respectively. We use nonparametric kernel estimation,

where the kernel function is an Epanechnikov kernel and the bandwidth is chosen using Sil-

verman’s rule-of-thumb. The confidence bands are estimated by a nonparametric bootstrap

method. The solid line represents zero reporting error. The nonparametric plots for height

show that reported height is larger than true height at almost all height levels in both genders,

showing over-reporting patterns. It displays no significant relation between the reporting

error and the true height for males. For females, we observe more reporting error at low height

levels than at the average height level, which indicates that the reporting error for female height

is nonclassical in that the reporting error and the true height are dependent. This result is a

finding that is not captured by the linear mean regression, where the reporting error in height

is not related to the true height for both genders (see the Supporting information for linear

mean regression and quantile regression).

The plots for the reported weight show more substantial nonclassical errors. Males at low

weight levels (below approximately 75 kilograms) have a tendency to over-report their weight;

however, males above approximately 75 kilograms under-report their weight. Similarly,

females at the low weight levels (below approximately 50 kilograms) have a tendency to over-

report their weight; however, females at weight levels above approximately 50 kilograms

under-report their weight. Both plots display an apparent dependence between the reporting
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error and the true weight. This confirms the significant negative relation between the reporting

error and the true weight shown in the linear mean regression provided in the Supporting

information.

Estimation of the association between physical appearance and

labor market outcomes

In this section, we estimate the association between the physical appearance and family income

using various methods. As expected, the reporting errors and measurement errors in body

shapes have significant impacts on the estimated outcomes. We propose a machine learning

method to control for them.

Height, weight, and reporting errors

As in Cawley [3], we consider BMI as a proxy to the body shapes in the regression Eq (1) to

estimate the association between obesity and income. We add height or weight as an additional

regressor to take into account a possible omitted variable problem. Therefore, we consider the

Fig 2. Relationship between reporting error and true measure. Conditional mean of reporting error in height

conditional on true height (top) and reporting error in weight conditional on true weight (bottom).

https://doi.org/10.1371/journal.pone.0254785.g002
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income equations as follows:

Family Incomei ¼ aXi þ b1BMIi þ �i; ð2Þ

Family Incomei ¼ aXi þ b1BMIi þ b2Weighti þ �i; ð3Þ

Family Incomei ¼ aXi þ b1BMIi þ b2Heighti þ �i; ð4Þ

where BMIi is the body mass index. We note that family income could suffer from reporting

error in the survey data. Nevertheless, the reporting error in the dependent variable only

increases the variance of the estimator, so long as the reporting error is uncorrelated with the

regressors, which in our opinion is a reasonable assumption. Thus, we primarily focus on the

reporting error in the proxies to the body shapes. We first estimate the equations using the

reported variables and summarize the estimation results in the Supporting information. The

columns for males in S1 Table show that the coefficient of the reported BMI in Eq (2) is statis-

tically insignificant. Adding the reported weight or height does not change the result for the

reported BMI, as in Eqs (3) and (4). Instead, the estimated coefficient of the reported height or

weight is significant. For females, the coefficients of the reported BMI are insignificant in Eqs

(2) and (4). However, in Eq (3), the reported BMI is negatively correlated with family income,

and the relation is statistically significant at the 1% significance level. It also shows that the

coefficient of the reported height or weight is positive and significant at the 5% significance

level.

We next estimate Eqs (2)–(4) using the measured BMI, height and weight. As shown in S2

Table, the estimation results are somewhat different from those with the reported variables for

all equations. In Eq (2) for males, the coefficient of BMI is still insignificant. When weight is

included, as in Eq (3), its coefficient for males is positive and statistically significant at the 1%

significance level. The coefficient of BMI becomes negative and statistically significant at the

5% significance level. When height is included, as in Eq (4), its coefficient for males is positive

and statistically significant at the 1% significance level. However, the coefficient of BMI is sta-

tistically insignificant. For females, the results are also different from those in the regression

with the reported variables. The coefficient of BMI is always negative and statistically signifi-

cant. The coefficient of height or weight is positive and statistically significant. The results for

Eq (4) are highlighted in Fig 3. It shows that the magnitudes of the coefficients for height are

larger when using measured height. For females, the impact of the measured BMI on family

income is significant in contrast to the insignificant impact of the reported BMI. Different

signs on the effect of BMI across genders are also observed: the positive effect of male BMI as

opposed to negative effect of female BMI. Thus, the analysis confirms that the reporting errors

in body measures have significant impacts on the estimated coefficients. In the Supporting

information, we provide a similar analysis on the regression of family income on height and

weight.

Interestingly, we also observe that the estimation results have significantly changed, as dif-

ferent sets of measures of body types were included in the equations. One possible explanation

for this is that even the measured height and BMI might not be perfect proxies to the body

types, although they are less prone to reporting errors. In fact, height, weight and BMI are sim-

ple measures of body types, and they might miss useful information on true body types (e.g.,

see Kan and Lee [5] and Wada and Tekin [30] for BMI). Several studies propose statistical

methods to reduce the measurement errors in body-shape measurements. Among others, Hu

and Sasaki [31] propose closed-form estimators for nonparametric regressions of obesity on

health care usage, using clinical measurements and self-reporting of BMI. Courtemanche et al.
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[32] propose a rank-based correction method for using validation data to correct the measure-

ment errors in obesity. Murillo et al. [33] reduce bias in obesity by applying regression calibra-

tion, simulation extrapolation, and multiple imputation approaches. We further investigate

the role of the measurement errors using 40 body measurements in place of BMI and height,

and the results confirmed that BMI, height, and weight cannot fully describe body shapes (see

the Supporting information for more details).

Physical appearance and graphical autoencoder

The characterization of geometric quantities, such as the physical appearance of human body

shapes using a sparse set of canonical features (e.g., height and weight) often causes unwanted

bias and misinterpretation of data. For simple shapes such as rectangles, canonical measures

such as width and height, already provide a complete description of the shape. Hence, shape

variation among rectangles could easily be described using the two canonical parameters with-

out much issues. However, this seldom applies to more sophisticated shape variations, if at all.

Instead, the canonical shape descriptors, often hand-selected, might cause nonignorable error

in capturing genuine statistical distribution by overlooking some important geometric features

or measuring highly-correlated variables redundantly, which can be considered as a measure-

ment error of some sort.

Unfortunately, however, extracting a complete and unbiased set of shape descriptors is not

a trivial task. Furthermore, the task is highly problem-specific, such that, for example, the

shape descriptors for car shapes would not be appropriate for describing human body shapes.

Therefore, in this study, we propose a novel data-driven framework for extracting complete

and unbiased shape descriptors from a set of geometric data. The proposed framework utilizes

an autoencoder neural network (Bourlard and Kamp [34]) defined on a graphical model. We

demonstrate that the shape descriptors obtained through the new approach can actually pro-

vide a better description of data.

Fig 4 illustrates a schematic overview of the graphical autoencoder. As the figure shows, the

vertices of a topology-normalized graphical model act as input neurons in the autoencoder

Fig 3. Comparison of reported and measured body measures. We report estimated coefficients and bootstrapped

90% confidence bands. We provide results from reported body measures (Reported) and measured body measures

(Measured). Note that the unit for height is converted into centimeter (cm).

https://doi.org/10.1371/journal.pone.0254785.g003
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model. Then the input neurons are connected to the hidden neurons in the next layer, which

then are connected in chain through the “bottleneck” layer. The bottleneck layer has a signifi-

cantly smaller number of neurons than the input neurons; hence, the dimensionality compres-

sion occurs there. The latter half of the autoencoder is symmetric to the first half and finally

reconstructs the bottleneck encoding into the original graphical model. The training process

of the graphical autoencoder attempts to minimize the discrepancy between the reconstructed

model and the original input by tuning the neural weights of the hidden layers.

Graphical autoencoder on CAESAR dataset. The CAESAR scan dataset includes 15, 178

vertices as well as (x, y, z) coordinate. This gives us 45, 534 inputs for each individual. To

extract body shape parameters that encode the geometric characteristics of a person’s appear-

ance, we designed a graphical autoencoder consisting of seven hidden layers. Each hidden

layer comprises 256–64-16-d-16–64-256 neurons, respectively, where d is the intrinsic data

dimension, or the dimensionality of the embedding. We used the RMSprop optimizer for

training. The dataset was randomly split to a training group used for training and a validation

group that was set aside during the training. The ratio between the number of data samples in

such groups were 80:20, respectively. The training continued until 5,000 epochs with a batch

size of 200 samples. As a criterion to evaluate the performance of the graphical autoencoder,

we used the reconstruction error measured in mean-squared-error (MSE). As described

above, the graphical autoencoder first embeds graphical data into a lower dimensional embed-

ding through the encoder part of the network, which is then reconstructed into a graphical

model through the decoder part. We compared the differences in the reconstructed output

and the original input to the network.

When using the full sample, we found three intrinsic features of body shapes. In particular,

the third feature was associated with femininity/masculinity. Based on such observation, we

conducted another similar experiment for training the graphical autoencoder with separate

genders. Among 2,383 subjects in the CAESAR dataset, there were 1,122 males and 1,261

females. The two groups had been separated into two experiment sessions, in which they were

further separated into training and validation groups with the same 80:20 ratio. The experi-

ment with separate genders demonstrated a similar trend as the experiment with a full sample

in terms of the effect of the intrinsic dimension on the reconstruction error, as visualized in S1

Fig. However, interestingly, this time, the reasonable dimension d of intrinsic parameters was

observed to be 2 for male subjects against 3 in the full sample case. We interpret this result as

follows: as the two genders are now separated, the role of the third parameter (femininity/mas-

culinity) is now less significant than before in the full sample case, and thus, the gain in accu-

racy by including the third parameter in addition to the two parameters becomes negligible for

males. However, such interpretation was not true for the female population, as the accuracy

was in fact higher when the third parameter was included. This is because female body shapes

have greater variation in body curves than males, and therefore, the third component has

Fig 4. Schematic illustration of the proposed graph autoencoder. A discrete-sampled scalar field acts as input and

output nodes of the autoencoder. The intermediate layers are similar to the ordinary autoencoder layers.

https://doi.org/10.1371/journal.pone.0254785.g004
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greater significance for females. Therefore, we select d = 2 for males and d = 3 for females.

Lastly, we also note that the convergence was slower when the two genders were separated and

a measurable gain in accuracy could be observed even after 1, 000 epochs, which was not the

case when the two genders were combined in training. This could be because the number of

training samples in the training dataset is significantly smaller (about a half) than the previous

case, rendering a drop in the representative power of the data.

S2 Fig illustrates the body shape spanned by the two parameters obtained from the graphi-

cal autoencoder for each gender. 3D body shape models are arranged in accordance with their

body shape parameters with increments of −3σ, −1.5σ, 1.5σ, and 3σ with respect to the mean in

each direction, where σ is the standard deviation of each parameter. Body shapes for male

(left) and female (right) display similar patterns over changes in the two parameters. Overall,

the first parameter P1 affects the height of a person. That is, a smaller value in P1 indicates the

person is not tall compared to the other population and vice versa. P2 is how lean a person is.

That is, a large value in P2 results in an obese person, while a small value in P2 results in a more

slim and fit person.

To better understand these parameters, we consider a linear fit of BMI, height, or weight on

each parameter. S3 Fig shows the relationship between body shape parameters and the classical

body measurements for males. P1 is positively correlated with BMI, height, and weight.

Among these body measurements, height is the most highly correlated with P1 (approximately

R2 = 0.70). P2 is negatively correlated with height, but is positively correlated with BMI and

weight. BMI has the highest correlation with P2 (approximately R2 = 0.69). S4 Fig displays the

relationship between body shape parameters and the classical body measurements for females.

The patterns are close to those for males in S3 Fig. As discussed, the female sample produces

an additional feature, P3. We visualize the third parameter for females in S5 Fig. As the figure

shows, P3 captures the ratio of hip to waist for females, which is unique to the female dataset.

For simplicity, we will interpret P1, P2, and P3, as features associated with a person’s stature,

obesity, and hip-to-waist ratio, respectively.

Note that the extracted features P1, P2, and P3 perform better in explaining nonlinear varia-

tions in body shapes than simple measures such as height, BMI, and hip-to-waist ratio. In con-

trast to the classical proxies, P1, P2, and P3 nonlinearly encode the space of 3D body shapes

(Fig 5). From evidence provided by Baek [17] and Freifeld et al. [18], we argue that such a non-

linear parameterization better approximates the actual data manifold. As shown in S2 Fig, the

Fig 5. Graphical illustration of (P1, P2) and the classical proxies.

https://doi.org/10.1371/journal.pone.0254785.g005
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body shape spanned by P1 and P2 displays dynamic and nonlinear patterns as the parameters

vary. In addition, we consider a linear prediction of female P3 using 40 various body measures

provided in S3 Table and report statistically significant variables in S6 Fig. It shows that many

body parts are highly associated with P3. This confirms that P3 captures complexity in female

body shapes and reflects not only hip-to-waist ratio but also variations in other body parts.

Nevertheless, we call P3 hip-to-waist ratio for convenience.

A reviewer suggested that the various body measures could be used as input neurons in

place of 3D scanned data in the autoencoder model. In fact, the extracted features from the

various body measures were better than three classical proxies in describing body shapes and

explaining family income. Nevertheless, they had limited interpretability, as they were unable

to display graphical rendering, as in S2 and S5 Figs. They also failed to capture P3, hip-to-waist

ratio. Moreover, their estimated effects on family income were smaller than those of P1, P2,

and P3.

Extracted body types and family income. We now use the measurements of body type

that are extracted by the graphical autoencoder in the previous section. We estimate the Eq (1)

with the extracted body types in place of a set of body measurements for Bodyi as follows:

Family Incomei ¼ aXi þ P1i þ �i; ð5Þ

Family Incomei ¼ aXi þ P2i þ �i; ð6Þ

( Family Incomei ¼ aXi þ b1P1i þ b2P2i þ �i if male;

Family Incomei ¼ aXi þ b1P1i þ b2P2i þ b3P3i þ �i if female;
ð7Þ

where P1i, P2i and P3i are body types for each individual i. S4 Table reports estimation results

across the gender with the same set of controls. In Eq (7), we add all intrinsic features of the

body shape to the income equation. For males, only the coefficient of the P1 measurement is

statistically significant and P2 is not associated with the family income. One standard deviation

increase in males’ P1 is associated with 0.052 increase in log family income. For females, only

the coefficient of the P2 measurement is statistically significant, and P1 and P3 are not corre-

lated with the family income. When these insignificant variables are dropped in Eqs (5) and

(6), the regression equations obtain higher adjusted R squared. The results show that one stan-

dard deviation decrease in females’ P2 is associated with 0.056 increase in log family income.

For comparison, we replace the extracted body types with height, BMI, and hip-to-waist

ratio, and re-estimate the above equations. Hip-to-waist ratio is calculated as (Hip Circumfer-

ence, Maximum)� (Waist Circumference, Preferred) × 100. As shown in S5 Table, in both

genders, height has positive impact on log family income and is statistically significant. The

estimated coefficients of BMI and hip-to-waist ratio are insignificant. In particular, BMI was

significant at 10% significance level when height and BMI are included. However, BMI

becomes insignificant when hip-to-waist ratio is added. In this case, we observe no gender dif-

ferential in the impact of body types. The results confirm that the estimation of the income

equation with classical body measurements is susceptible to variable-selection and provides

different conclusions than those with our proposed method.

Endogenous body types

If unobserved determinants of family income such as individual ability, personality, and child-

hood nutrition are correlated with physical appearance, the estimates in the previous section

are inconsistent. As well documented in Cawley [35], there is a broad set of causes of obesity;
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however, most studies are able to correct for only a small portion of the possible factors. We

attempt to control for the unobserved determinants of obesity as much as possible using their

observed proxies, which are available in the data. Although these unobserved determinants of

family income have been controlled for, there would be other possible unobserved factors,

such as individual ability, which make individual stature endogenous. As reported in Persico

et al. [1], Case and Paxson [2], and Lundborg et al. [25], stature would be highly correlated

with individual cognitive and noncognitive abilities that potentially cause family income. We

also take into account such possibilities to identify the relationship between body types and

family income.

We summarize the estimated coefficients in S6 Table for the classical body measures and in

S7 Table for the deep-learned body parameters. They show that the estimated effects from the

measured height, BMI, and hip-to-waist ratio are substantially different than those from the

deep learned parameters. One can possibly interpret such difference as a limitation of classical

body measures on describing appearances. In fact, it is widely known in the literature (CDC

document, accessed 2019 [36]) that BMI is a surrogate measure of body fat. Neither does it dis-

tinguish fat, muscle, or bone mass, nor does it describe distribution of fat among people.

Therefore, it is possible that the difference in family income is falsely correlated with stature,

while the true underlying statistics suggests otherwise. To illustrate this problem, consider a

tall and visually obese male and a short and muscular male with the same body mass. In this

case, as there is no difference in BMI, the difference in family income must be explained by

stature, which may lead to an inaccurate conclusion. However, this was not the case for the

deep-learned parameters.

Conclusion

This study examines the relationship between physical appearance and family income. We

demonstrate significant reporting errors in the reported height and weight, and show that

these discrete measurements are too sparse to provide a complete description of body shape.

In fact, we show that these reporting errors are correlated with individual backgrounds. We

also find that the regression of family income on the self-reported measurements suffers from

reporting errors and delivers biased estimates compared to the regression on the true measure-

ments. The findings reveal the importance of measuring body types instead of simply relying

on self-reporting by subjects for public policies.

We introduce a new methodology built on a graphical autoencoder in deep machine learn-

ing. Using three dimensional whole-body scan data, we identify two intrinsic features consist-

ing of human body shapes for males and three intrinsic features for females. These body

features are presumably less likely to suffer from measurement errors in physical appearances.

We also take into account a possible issue of endogenous body shapes by utilizing proxy vari-

ables and control functions approaches. The empirical results document the positive impact of

stature on family income for males. However, results for females show that obesity is the only

significant feature, and it negatively affects family income. The findings support the hypotheses

on the physical attractiveness premium and the differential treatment across the gender in the

labor market outcomes.

Discrimination based on gender/physical appearance can take place both in the labor mar-

ket and the marriage market. While the marriage market is beyond the reach of a public policy,

as far as the labor market is concerned, the policy implications of this current work should be

that (1) efforts to promote the awareness of such discrimination must occur through work-

place ethics/non-discrimination training; and (2) mechanisms to minimize the invasion of
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bias throughout hiring and promotion processes, such as blind interviews, should be

encouraged.

The data set was collected in 2002. Society has certainly changed since then, in terms of the

perception of beauty, people’s awareness of social biases in the socioeconomic market, regula-

tions and policies, and so on. Therefore, the analysis results may or may not be valid today.

Although the scientific contribution of this current work is in the use of a novel dataset and a

new methodology, however, the readers should exercise caution in applying the results pre-

sented in this paper directly to society today. Instead, to obtain a more accurate view of recent

trends, a follow-up study would be necessary with the newest observations and measurements.

Note also that marital status is not statistically significant in all regressions for family income

throughout this study. Therefore, it is possible that the family incomes reported in the survey

data are likely to be individual income. Thus, further investigations with a new survey on indi-

vidual income would be an interesting direction for the future research.

Finally, we believe that the body scans may also provide some interesting additional details

beyond what is presented in this study. For example, geometric measurements of different

body parts (e.g. volume of abdomen, curvature of waist line) may lead to a discovery of new

trends and correlations with socioeconomic outcomes. We also believe that the proposed

method can be applied to many interesting research questions, which deal with geometric data

such as graphical, image, spatial, and social networks data. For example, Hoberg and Phillips

constructed firm pair-wise similarity scores based on text analysis using product descriptions,

to obtain industry classifications [37]. Product similarity was measured by the cosine distance

between the word vectors extracted from product descriptions. The idea of graphical autoen-

coder could be applied, in this case, to encode product descriptions and their similarity rela-

tionships so that more precise competitive connections among firms can emerge.
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S1 Appendix. Online supplementary appendix. We provide more detailed results and addi-

tional analyses to the findings in the main text.
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S1 Dataset. Reproduceability of the results. We provide the source codes and processed data-

set at the following URL: http://bit.ly/shape-matters.

(CSV)

S1 Fig. Result of training graphical autoencoder separately on each gender. The abscissa is

the number of epochs for the training and the ordinate is the model loss in terms of MSE. The

left shows the loss on training dataset (training loss) while the right shows the loss on valida-

tion dataset (validation loss).

(TIF)

S2 Fig. Body shape parameters derived from the graphical autoencoder. 3D body shape

models for male (left) and female (right) are arranged in accordance with their body shape

parameters, with increments of -3σ, -1.5σ, 0, 1.5σ, and 3σ with respect to the mean in each

direction, where σ is the s.d. of each parameter.

(TIF)

S3 Fig. Relationship between body shape parameters and the classical body measurements

for males. The straight line displays the linear fit. The R-squared is reported in the parenthe-

ses.

(TIF)
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S4 Fig. Relationship between body shape parameters and the classical body measurements

for females. The straight line displays the linear fit. The R-squared is reported in the parenthe-

ses.

(TIF)

S5 Fig. The third body shape parameter P3 for females. The third parameter tends to capture

the hip-to-waist ratio of the body shape among the female subsample.

(TIF)

S6 Fig. Various measures and P3 for females. Estimated coefficients and bootstrapped 90%

confidence bands are reported for females. Note that units for all measurements, except cup

size, are converted into centimeters (cm).

(TIF)
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