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Instability Analysis and Free 
Volume Simulations of Shear Band 
Directions and Arrangements in 
Notched Metallic Glasses
Weidong Li1, Yanfei Gao1,2 & Hongbin Bei2

As a commonly used method to enhance the ductility in bulk metallic glasses (BMGs), the introduction 
of geometric constraints blocks and confines the propagation of the shear bands, reduces the degree of 
plastic strain on each shear band so that the catastrophic failure is prevented or delayed, and promotes 
the formation of multiple shear bands. The clustering of multiple shear bands near notches is often 
interpreted as the reason for improved ductility. Experimental works on the shear band arrangements 
in notched metallic glasses have been extensively carried out, but a systematic theoretical study is 
lacking. Using instability theory that predicts the onset of strain localization and the free-volume-
based finite element simulations that predict the evolution of shear bands, this work reveals various 
categories of shear band arrangements in double edge notched BMGs with respect to the mode 
mixity of the applied stress fields. A mechanistic explanation is thus provided to a number of related 
experiments and especially the correlation between various types of shear bands and the stress state.

Similar to the concept of crack tip process zones, notch brittleness or ductility depends on the development of a 
clean process zone in the vicinity of the notch, which could be plastic deformation in metals or crack bridging 
or branching in composites, and a messy process zone right at the notch roots which are governed by damage 
processes on or below the microstructural length scales1,2. For examples, notches may not deteriorate the com-
posite failure strength when the crack bridging zone (e.g., arising from fiber pull-out) is larger than the notch 
size. The study of notch sensitivity in bulk metallic glasses (BMGs), however, is much more complicated because 
of the localized deformation into shear bands, which can easily extend beyond the plastic zone estimated from 
continuum plasticity theory3–5. If the shear bands are not confined, either because the stress field is not decaying 
rapidly from the notch or due to the lack of geometric constraints, the resulting notch toughness will be low. Thus 
one commonly used approach of improving failure resistance and notch ductility is the introduction of geometric 
constraints that block and/or deflect the shear bands. Consequently, the degree of plastic strain on each shear 
band becomes low so that the transition from the shear band to a crack is delayed.

The clustering of multiple shear bands in the vicinity of notch roots has been investigated extensively in exper-
iments6,7. The double edge notched samples under tensile condition have exhibited shear bands that connect 
the notches in Fig. 1(a)8–10, or radial shear bands that extend far from the notch roots in Fig. 1(b)11,12. It is worth 
noting that experiments in Sarac et al.9 were Mode I tests on Zr-based BMG films with a grid of pores at the gauge 
section, which is equivalent to the double edge notched sample since the shear bands are localized in the bridge 
between the holes. These two types of shear bands have not been found to co-exist, as understood by our sche-
matic illustration in Fig. 1(c). The semi-circular shear bands that connect the neighboring notches actually lead to 
out-of-plane shear offset, and these shear bands will grow into the bulk in an inclined direction off the sample sur-
face normal. The radial shear bands from the notch roots are believed to lead to surface ledges at the surface of the 
notch root. However, a mechanistic justification of such shear band arrangements has not been fully understood, 
and it has been suggested that these shear band patterns play an important role in understanding the notech 
sensitivity in recent experiments7,8,13. In addition to these Mode I (tension or compression) tests, Hsueh et al.14,15  
performed combined compression/shear tests with various degrees of mode mixity (i.e., the ratio of Mode II to 
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Mode I components). As shown in Fig. 2(a), when the applied loading condition is near the Mode II, two cate-
gories of shear bands can be found near the stress concentration sites – one being long, radial shear bands that 
extend almost across the entire sample, and the other being heavily curves shear bands that do not extend far 
from the edges. The latter becomes less prominent in Fig. 2(b) when the contribution of Mode II is reduced. Based 
on the measured load-displacement curves, Hsueh et al.14,15 developed a continuum plasticity model that con-
siders the pressure effect in the yield surface, which however cannot address the importance of the non-uniform 
deformation fields and the shear band arrangements in these experiments.

This work presents a mechanistic analysis of the shear band arrangements in double edge notched BMGs, with 
a focus on the geometric constraints and the dependence on the mode mixity of the applied load. As opposed 
to the vast number of continuum plasticity simulations3,4,8,11–15, our analysis has a direct connection to the shear 
banding process, including their initiation from the material instability point of view and the shear band evolu-
tion from the free-volume-based constitutive model.

Problem Definition
Consider a double edge notched specimen, as given in Fig. 3(a). Since the instability theory and the free volume 
model to be presented shortly do not involve any length scale, the deformation response is clearly governed by 
geometric parameters such as the ratios of notch root radius to sample width, notch depth to sample width, 
among many others. However, dimensions are still given in Fig. 3(a) for a convenient comparison to literature 
experiments8–15. The specimen has a dimension of 30 mm ×​20 mm, with two notches of 5 mm in length and 
0.5 mm in width that are located on the center of two side edges. The notch root is of a semi-circular shape with a 
radius of 0.25 mm. The top boundary is subjected to traction components of σ appl

12  and σ appl
22 . Similar to the frac-

ture analysis, the mode mixity of the applied load is introduced as

π
σ σ= .−M 2 tan ( / ) (1)

e appl appl1
22 12

Mode-I (tension/compression) and Mode-II (shear) correspond to Me =​ 1 and 0, respectively. Our simulations 
will be conducted with five representative values, i.e., Me =​ 0, 0.25, 0.5, 0.75 and 1. Both the bottom edge and 

Figure 1.  Schematic illustration of the two types of shear band arrangements commonly observed in 
experiments. (a) Semi-circular shear bands are found to connect the two notches, and these shear bands lead 
to out-of-plane surface steps8–10. (b) Shear bands emanating from the notch roots and leading to in-plane shear 
deformation11,12 (c) A three-dimensional illustration of the surface ledges/steps caused by these two types of 
shear bands.

Figure 2.  Combined compression-shear tests on bulk metallic glasses lead to complex shear band 
arrangements. (a) With a sharp inclined angle, the SEM image exhibits heavily inclined shear bands near the 
stress concentration sites. (b) With a low inclined angle, the shear bands tend to align with the direction of the 
applied shear force. Micrographs are adapted from refs 14 and 15.
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bottom right side edge of the sample are simply supported as given in Fig. 3(a). For the Mode II loading, addi-
tional displacement conditions are required for the top boundary to ensure a simple shear.

Rudnicki-Rice instability theory.  From the continuum mechanics point of view, the onset of strain 
localization results from the material instability and can be described by the general bifurcation theory16. The 
elastic-plastic deformation is initially homogeneous and stable. When reaching a critical condition (e.g., the loss 
of ellipticity in the constitutive law), the homogeneous deformation field becomes unstable, and the strain local-
izes in a narrow band while the surrounding material merely experiences elastic unloading. The exact formulation 
of the critical condition for strain localization is mathematically challenging, but Rudnicki and Rice16 derived a 
closed form representation for the shear band inclination angle. As depicted in Fig. 4, in the principal stress space, 
the shear band plane is parallel to the second principal stress component, and

Figure 3.  Model setup used for both the Rudnicki-Rice instability analysis and the free volume modeling. 
(a) The double-edge notched sample for our numerical simulations. The mode mixity is controlled by varying 
the ratio of the applied tractions, σ appl

22  and σ appl
12 , on the top boundary. (b) Finite element mesh used in both 

elastic stress analysis and free-volume-based shear band simulations. Since the free volume model shows mesh 
size dependence, the mesh density is chosen to be high throughout the highly stressed regime and also the mesh 
design minimizes its directional alignment. (c) Enlarged view near the notch root.

Figure 4.  Schematic illustration of the shear-band plane predicted by the Rudnicki-Rice instability theory 
in the principal stress space. According to the Rudnicki-Rice instability analysis, the strain field will localize 
into a narrow band, with its normal in the plane spanned by σ1 and σIII which are the largest and smallest 
principal stress components, respectively. In other words, the shear-band plane is parallel to the second 
principal stress component, σII. Note that if θ0 =​ 45°, the shear band follows the maximum shear stress plane, 
which however is generally not true.
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Figure 5.  The applied stress versus the engineering strain of the notched sample. σ σ σ= +( ) ( )appl appl
12

2
22

2 , 
ε = ∆ + ∆L L W L( / ) ( /2 )2 2 , and L and W are sample length and width, respectively.

Figure 6.  Predicted shear band configurations at Me =​ 0, corresponding to the Mode-II shear. Prediction 
from (a) the instability theory, and (b–d) the free-volume-based constitutive simulations at three different strain 
stages, which are marked as “A”, “B”, and “C” on Fig. 5.
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, ν is Poisson’s ratio, μ is the coefficient of the internal friction (for 
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and σ′I , σ′II, and σ′III are the principal deviatoric stress components. To apply the Rudnicki-Rice instability theory, 
the elastic fields need to be obtained either from analytical approach or finite element simulations. When showing 
all the shear band directions on a regular grid, one can construct “streamlines” that are tangent to the shear band 
directions at any material point. Such a procedure to predict the shear band directions has been applied to a num-
ber of indentation problems with various geometric constraints such as the bonded interface micro-indentation 
test and the film/substrate system17–19.

Free-volume based constitutive modeling.  The above instability theory can only predict the onset of 
shear band, but not the subsequent evolution of shear bands and their interactions. A number of constitutive laws 
have been proposed in modeling the shear banding behavior of BMGs. These models share a common feature, 
that is, the stress-driven evolution of atomic structure leads to a strain softening behavior. If the structural recov-
ery process is slow, the shear band formation will take place. The exact details in these models are of secondary 
importance if our interests are merely placed on the geometric arrangements of these shear bands. To this end, the 
free volume model20,21 is employed in our numerical simulations.

For a simple shear problem with applied shear stress τ, the shear strain rate is given by

γ α τ∂
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Figure 7.  Predicted shear band configurations at Me =​ 0.25. Prediction from (a) the instability theory, and 
(b–d) the free-volume-based constitutive simulations at three different strain stages, which are marked as “D”, 
“E”, and “F” on Fig. 5.
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where f is the frequency of the atomic vibration, α is a geometric factor on the order of 1, v* is the hard-sphere vol-
ume of an atom, vf is the average free volume per atom, Δ​Gm is the activation energy, Ω is the atomic volume, kB 
is the Boltzmann constant, and T is the absolute temperature. The free volume, vf , can be regarded as an internal 
state variable that describes the structural information. Its evolution is governed by the competition between a 
stress-induced disordering process and a diffusional ordering process. The rate form is given by

α α τ∂
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where nD is the number of atomic jumps needed to annihilate a free volume equal to v* and is usually taken to be 
3–10, and the effective modulus is Ceff =​ E/3(1-v) with E being the Young’s modulus.

The above equations form the basis for a constitutive law, and they can be generalized into the multiaxial stress 
state by using the Mises stress component. This generalized model has been implemented in ABAQUS, a com-
mercial finite element software, through the user-defined material (UMAT) subroutine22, and has been applied to 
study a number of indentation problems18,23. In our finite element simulations for the problem defined in Fig. 3, 
we choose the following constitutive parameters: E/σ0 =​ 240, v =​ 0.333, nD =​ 3, α =​ 0.15, and σ0 =​ kBT/Ω is the 
reference stress that is used to normalize the stress tensor and modulus. It should be noted that this constitutive 
law does not contain a length scale, so that the simulated shear bands will depend on the mesh size in terms of 
the shear band width and also on the directional alignment of the elements since the shear bands may spuriously 
grow into regimes with uniform mesh density when the stress gradient is low22. Consequently, our finite element 
mesh is designed in Fig. 3 to minimize the mesh size and the directional alignment of these elements. Another 
drawback of this model is that the initiation of shear bands is driven by the stress concentration, where the free 
volume increases rapidly according to Eq. (5). Recent experiments have found that the shear banding process 
critically depends on the initial atomic structure, and particularly its fluctuation24–26. As a consequence, the strain 
field is found to fluctuate in early stage of deformation and sometimes even below the macroscopic yield point. 
These observations cannot be simulated in the above free volume model again because of the lack of a length scale.

Results and Discussion
From the free-volume-based finite element simulations, the applied traction versus the engineering strain 
curves are plotted in Fig. 5 for the un-notched sample under plane-strain tension and the notched samples with 

Figure 8.  Predicted shear band configurations at Me =​ 0.5. Prediction from (a) the instability theory, and 
(b–d) the free-volume-based constitutive simulations at three different strain stages, which are marked as “G”, 
“H”, and “I” on Fig. 5.
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a number of mode mixity values. The un-notched sample deforms essentially as a single element, and its peak 
value and the subsequent softening rate are mostly governed by the loading rate and constitutive parameters in 
the free volume model in Eqs (4) and (5). It should be noted that if a failure model is added to the constitutive law 
(e.g., one candidate model being the cavity nucleation and growth in the shear band), the stress-strain curves will 
exhibit sharp stress drops after the peak stress.

Under the Mode II loading condition (Me =​ 0), the predicted shear bands from the Rudnicki-Rice theory 
consist of two categories in Fig. 6(a). The dominant family of shear bands, as shown by black curves, emanates 
from the notch roots and traverses almost through the entire sample. The other family (red shear bands) does 
not extend far from the notch root. Note that these shear bands are predicted from a number of seed points near 
the notch root. The termination of red shear bands simply suggests a change of stress state ahead of these shear 
bands, thus changing the directions of the principal stress components. The average inclination angle from the 
dominant shear bands is found to be about 14°. In the free-volume-based finite element simulations, a shear 
band first appears at the left notch and grows in radial direction, followed by the initiation and growth of two 
shear bands from the right notch. The contour plots represent the free volume field (SDV1), which indicates the 
locations of the shear bands. Shear bands at the right notch are different in the instability theory and free-volume 
model, because the instability theory is based on the stress field before shear band initiation, while the initiation 
and growth of first several shear bands will change the stress field. For example, Singh et al.27,28 introduced radial 
weak zones near a crack tip and found the initiation of cavitation failure in these weak zones was significantly 
promoted due to the interactions of these weak zones.

Under mixed mode loading conditions, Me =​ 0.25, 0.5 and 0.75 in Figs 7, 8 and 9 respectively, a new family 
of shear bands (blue) emerge and gradually extend further into the middle of the sample when the mode mixity 
has an increase degree of Mode I. Eventually, the Mode I loading in Fig. 10 sees the symmetric arrangement of 
black and blue families of shear bands. The red family of shear bands in Figs 7–9 is always contained near the 
notch roots because the change of the stress state does not permit them to extend far. The inclination angle of the 
black family of shear bands increases with respect to Me, reaching about 45° when approaching Mode I loading 
condition in Fig. 10. The free-volume-based finite element simulations largely agree with predictions from the 
instability theory in the following: (i) the inclination angles of the dominant shear bands, and (ii) a number of 
short shear bands that do not extend far from the notch roots. But as we have seen in Fig. 6, the major shear bands 
that appear in early stage will change the stress state near the notch roots, so the secondary shear bands may differ 
from the predictions by the instability theory.

Figure 9.  Predicted shear band configurations at Me =​ 0.75. Prediction from (a) the instability theory, and 
(b–d) the free-volume-based constitutive simulations at three different strain stages, which are marked as “J”, 
“K”, and “L” on Fig. 5.
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Under the Mode I loading condition (Me =​ 1), the Rudnicki-Rice theory predicts symmetric arrange-
ments of radial shear bands from the notch roots, with an inclination angle of about 41° in Fig. 10(a). The 
free-volume-based finite element simulations give an angle of about 47°. Note that the boundary conditions in 
Fig. 3(a) were adopted in the mixed mode loading conditions, and also for Mode I condition for the sake of con-
sistency. These applied boundary conditions will break the symmetry in the x axis, so that only the black family 
of shear bands is observed in Fig. 10(b–d). Experimental observations routinely observe these shear bands11,12, 
also as shown in Fig. 1(a,c). Zhao et al.10 found an inclination angle of 40~41° in their experiments, which agree 
perfectly with our predictions in Fig. 10.

Figure 10.  Predicted shear band configurations at Me =​ 1.0, corresponding to the Mode-I tension. 
Prediction from (a) the instability theory, and (b–d) the free-volume-based constitutive simulations at three 
different strain stages, which are marked as “M”, “N”, and “O” on Fig. 5.

Figure 11.  Direction vectors of the three principal stress components projected on the (x1, x2) plane for 
the Mode-I loading condition as in Fig. 10(a) σI, (b) σII, and (c) σIII,. The direction of σII, in the bridging zone 
between the two notches differs from that elsewhere, indicating a change of shear band direction according to 
the Rudnicki-Rice prediction in Fig. 4.
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A new family of shear bands, as marked green, is found in the Mode I condition in Fig. 10(a). According to 
the Rudnicki-Rice model in Fig. 4, the shear band plane parallel to the second principal stress. Therefore, the 
principal stress directions obtained from the Mode I elastic simulation in Fig. 11 suggest the presence of the 
out-of-plane shear in the region enclosed by the dashed curves but in-plane shear in the remaining area. The 
predicted trajectories in green correspond to the out-of-plane shear bands as depicted in Fig. 1(a). In addition, 
we caution that our predictions here are based on plane-strain condition. Experimental observations8–10 were 
conducted on the surface, where the stress field is close to a plane-stress condition. As shown in Fig. 1(c), the 
traction-free condition on the front surface will further facilitate the initiation of these green shear bands. For 
thin samples, these green shear bands will run through the thickness direction and leave inclined steps (on the 
sample front/back surfaces) when viewing from horizontal direction. For thick samples, their importance dimin-
ishes, and the dominant shear bands are those running in radial direction from the notch roots, resulting in 
steps/ledges at the notch root surface. The free volume simulation is unable to predict these out-of-plane shear 
bands because of the plane strain condition in the finite element simualtions. It should aslo be noted that a recent 
Mode-I tensile test of notched samples found strain hardening as a result of stress-driven diffusional relaxation 
and densification of the metallic glass29. It is probably related to the more complicated dependence of free volume 
field on the multiaxial stress state, while the model adopted in this work only assumes J2 plasticity and does not 
include a long-range diffusional mechanism. Further investigations need to be conducted on the relationship 
between the constitutive model and such an observed strain hardening behavior29.

Predictions in Figs 5–10 are summarized in Fig. 12. First, we note that the radial (black) shear bands dominate 
over the entire span of the mode mixity, while the secondary (blue) shear bands gains a more important role with 
the increase of the mode mixity. Referring back to the experiments in Fig. 2, the loading conditions leads to a shift 
of mode mixity from a low value (near Mode II) to a high value (near Mode I). Our predictions can successfully 
explain the observed shear band arrangements, in which the dominant family of shear bands extends through-
out the sample but the secondary shear bands are confined near the stress concentration sites. These results also 
resemble the localized bands found in concretes30, which clearly demonstrate the role played by the dependence 
of the stress state on the loading conditions. Second, with the increase of the mode mixity from Mode II to Mode 

Figure 12.  Categories of shear band arrangements as summarized from Figs 6–10. Category A represents 
the dominant, radial shear bands whose inclination angles come greater with the increase of the mode mixity. 
Category B represents the secondary radial shear bands, of which the extent of shear-band zone and their 
inclinations angles increase as the mode mixity increases. The shear bands in Category C cluster near the notch 
root and do not extend far beyond a length larger than the root radius. Category D is unique for the Mode I 
condition.

Mode mixity 0 0.25 0.5 0.75 1.0

Shear-band angle from instability theory (in degrees)
Mean value 13.88 19.00 26.53 39.26 41.43

STD 2.25 2.08 3.53 4.92 2.89

Shear-band angle from constitutive modeling (in degrees)
Mean value 14.25 21.79 26.01 43.60 46.72

STD n/a 6.16 0.93 2.45 5.48

Table 1.   Shear band inclination angle, as described by θ in Figs 6–12, with respect to the degree of mode 
mixity. The average values and the standard deviations (STDs) compared between the Rudnicki-Rice instability 
theory and the free-volume-based constitutive modeling.
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I, the angle of the major shear bands increases from about 14° to about 41°. A linear fitting to the data summa-
rized in Table 1 gives

θ = . + .M30 4 13 8, (6)e

as plotted in Fig. 13. Assume that the characteristic time associated with the propagation of individual shear 
bands scales with the ratio of the shear-band traveling distance to the shear band speed. The latter has been found 
to be insensitive to the normal stress on the shear band31. Using an estimate of 100 m/s, it is anticipated that the 
shear-band-propagation time scale is about 0.1 ms in Mode II loading and about 0.07 ms in Mode I loading condi-
tion. These time scales should correspond to the stick-slip behavior, or called flow serrations, on the stress-strain 
curves observed experimentally32.

Conclusion and Summary
In contrast to the vast number of literature works that are based on continuum plasticity model and simulations, 
we predict the initiation of shear bands from the Rudnicki-Rice instability theory, and simulate the shear banding 
process from the free-volume-based finite element method. A systematic study of the shear band orientations and 
arrangements is presented for double edge notched BMGs with various loading conditions. Our analysis enables 
us to develop a mechanistic interpretation of the conditions for semi-circular and radial shears in Fig. 1, as com-
monly observed in experiments, and also our simulation results rationalize the shear band arrangements under 
mixed mode loading conditions in Fig. 2.
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