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Abstract

Highly spread through the Amazon River basin, Prochilodus nigricans have had its taxo-

nomic validity recently questioned, when genetic differences between Western and Eastern

Amazon populations from the Brazilian shield were detected. This area has been seeing as

a region of high ichthyofaunal diversity and endemism, in which the hybrid origin of the

Tapajós River basin has been raised. In this paper, we report a new molecular lineage within

P. nigricans of Tapajós River, highlighting this region still hides taxonomically significant

diversity. Haplotype networks were reconstructed using the mitochondrial COI and ATP6/8

markers, which were also used to calculate genetic distances among clusters. We addition-

ally conducted a delimiting species approach by employing a Generalized Mixed Yule-Coa-

lescent model (GMYC) with COI sequences produced here, and previous ones published

for individuals sampled across the Amazon River basin. In addition to the genetic differentia-

tion within P. nigricans, our findings favor the hypothesis of hybrid origin of the Tapajós

River basin and reaffirm the importance of studies aiming to investigate hidden diversity to

address taxonomic and biogeographic issues, that certainly benefit better biodiversity con-

servation actions.

1. Introduction

Freshwater ecosystems are exposed to great human-promoted impacts and transformations

[1], making studies focusing on the discovery and comprehension of the extent biodiversity

crucial for their conservation [2,3]. With over 5,160 freshwater fish species described in the

South American rivers, this region harbors one-third of fish species of the entire planet, and

the expectation is that this number is 42% higher [4]. Under this perspective, the Amazon

River basin occupies a remarkable position, since its large extension is home for a huge diver-

sity of fish species [5], many of which remain unknown.

Among the fish diversity from the Amazon basin, Prochilodus nigricans (Prochilodontidae,

Characiformes) is one of the three species of the genus found in the Amazon River basin and

presents the largest geographic distribution through the drainage in comparison with its
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congeners [6]. Known as Black prochilodus or curimbatá, P. nigricans is an abundant species

that initiates spawning migration as soon as the flooding season starts [7,8]. With a detritivor-

ous diet, this fish plays an essential functional role in ecosystems by modulating the fluxes of

energy and nutrients [9–12]. P. nigricans also assumes an important economic and social role

in Brazil, since it is one of the dominant species in local fisheries and highly used by the river-

ine community for subsistence [13,14].

Recently, studies on molecular phylogeny have questioned the monophyly of P. nigricans
pointing out the existence of two mitochondrial lineages in the Amazon River basin [15,16]. A

lineage includes specimens of P. nigricans from lowlands of Western Amazon and its main-

stream, while a second one is considered a complex of species that includes what is described

as P. nigricans from uplands of the Eastern Amazon (Araguaia River, Upper and Middle Tapa-

jós River), P. britskii from Apiacás (Upper Tapajós River), P. brevis from northeastern Brazil

(Ceará and Rio Grande do Norte states), P. lacustris from Parnaı́ba River, and P. rubrotaenia-
tus from the Upper Orinoco and Upper Essequibo River basins [15,16]. Namely, within this

complex lineage two taxonomic units, P. britskii and the P. nigricans Eastern Amazon group,

were also found in the Tapajós River basin.

The Amazon biogeography is quite complex, and this is particularly evident in the Tapajós

River basin. Distinct cladistic approaches and a broad sampling across the Amazon showed an

intricate history for this hydrographic system, in which the Tapajós River basin was depicted

as non-monophyletic, showing a high degree of historical hybridism [17]. In this scenario, the

occurrence of new taxonomic units into the Tapajós River basin can be expected. Considering

the Brazilian Shield is an underestimated region of high ichthyofaunal diversity and endemism

[18], and the previously reported Prochilodus phylogeny [15,16] included few individuals from

Tapajós River, this basin still requires a more extensive sampling.

In this sense, and taking into account the importance of DNA-based approaches for delim-

iting species [5,19–22], we analyzed P. nigricans throughout the Tapajós River basin to investi-

gate if this hydrographic system still hides taxonomically significant diversity for this

important fishery resource, which represents the third most captured taxon (in tons) in the

Brazilian Amazon River basin [23]. We implemented COI and ATP6/8 molecular analyses and

used well-established algorithms for species-delimitation analyses. Our data raised a new

Molecular Operational Taxonomic Units (MOTUs) within P. nigricans and certainly contrib-

utes for better estimating of biodiversity into the taxon.

2. Material and methods

2.1. Study area

The Tapajós River basin (Fig 1) is one of the largest watersheds constituting the Amazon River

basin, encompassing an area of 493,986 hectares [24] and discharging approximately 6.4% of

all water carried to the Amazon River [25]. This drainage hosts portion of Amazonian and

Cerrado biomes, being also recognized as a peculiar ecoregion [26]. Located at the Brazilian

Shield western portion, the Tapajós is a 795 km long clearwater river formed by the confluence

of the Juruena and Teles Pires tributaries, whose present the length of 1240 km and 1457 km,

respectively [27–29].

2.2. Biological sampling and ethical requirements

This study was carried out in accordance with the Brazilian law for environmental protection

under the license for fish collection (SISBIO 41778–7), access of genetic material (SISGEN

AAA03B9), and was approved by the Animal Ethics Committee of the Universidade Federal

de São Carlos (CEUA/UFSCar 3752060715).
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Biological samples of P. nigricans from the Tapajós River basin were collected during 2015.

We sampled small fragments of fin tissue from adult specimens only, and most of the fish were

returned alive to the river. Fin samples were additionally provided by local fishermen. We also

obtained fin tissue samples from other Amazon rivers through collaborators and scientific col-

lections (Table 1). All tissue samples were preserved in alcohol 95%, and species identification

was performed based on morphological criteria, following Castro and Vari [6]. When avail-

able, new vouchers were deposited into the biological collection of the Laboratório de Ictiolo-

gia e Sistemática at Universidade Federal de São Carlos (LISDEBE/UFSCar, São Carlos, SP).

Further information on this dataset, including available vouchers and Genbank (https://www.

ncbi.nlm.nih.gov/nucleotide/) accession numbers are provided in Table 1.

In total, we analyzed 48 samples of P. nigricans. From this total, 38 were collected through

the Tapajós River basin: 28 from the Tapajós River main channel, and nine from first and second-

order tributaries (six from Juruena, one from Teles Pires, and two from Apiacás rivers). Ten sam-

ples were obtained from the Xingu (1) and Tocantins-Araguaia (9) drainages (Fig 1, Table 1).

Additionally, we retrieved 48 sequences of P. nigricans and some congeneric nominal species

from previous studies [15,16,30–32], available at Genbank and Barcode of Life Data Base (BOLD

Systems, https://www.boldsystems.org/index.php/databases) public databases (S1 Table).

Fig 1. Study area. Map showing the collection sites of the Prochilodus nigricans samples within the Tapajós, Xingu and Tocantins-Araguaia basins. Image created via

QGIS 2.18 –‘Las Palmas’ (www.qgis.org). Free vector data from Instituto Brasileiro de Geografia e Estatı́stica—IBGE (https://www.ibge.gov.br).

https://doi.org/10.1371/journal.pone.0237916.g001
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Table 1. Sampling information.

ID River Locality, State Accession Number

COI ATP6/8

A1 Arinos1 � Juara, MT MN996677 MT052031

A2 Arinos1 Juara, MT MN996681 MT052032

A3 Arinos1 Juara, MT MN996682 MT052033

B1 Sangue1 � Juara, MT MN996680 MT052034

B2 Sangue1 Juara, MT MN996679 MT052035

B3 Sangue1 Juara, MT MN996678 MT052036

D1 Tapajós Itaituba, PA - MT052043

D2 Tapajós Itaituba, PA MN996695 MT052051

D3 Tapajós Itaituba, PA MN996685 MT052041

D4 Tapajós Itaituba, PA MN996686 MT052042

D5 Tapajós Itaituba, PA MN996692 MT052040

D6 Tapajós Itaituba, PA MN996698 MT052053

D7 Tapajós Itaituba, PA - MT052054

D8 Tapajós Itaituba, PA - MT052048

D10 Tapajós Itaituba, PA - MT052046

D11 Tapajós Itaituba, PA MN996699 MT052055

D12 Tapajós Itaituba, PA - MT052050

D13 Tapajós Itaituba, PA - MT052044

D14 Tapajós Itaituba, PA - MT052052

D15 Tapajós Itaituba, PA - MT052056

D16 Tapajós Itaituba, PA MN996696 MT052057

D17 Tapajós Itaituba, PA - MT052058

D18 Tapajós Itaituba, PA - MT052045

D20 Tapajós Itaituba, PA MN996701 MT052059

D21 Tapajós Itaituba, PA - MT052049

D22 Tapajós Itaituba, PA - MT052047

D23 Tapajós Itaituba, PA MN996684 -

D24 Tapajós Itaituba, PA MN996700 -

D26 Tapajós Itaituba, PA MN996697 -

D27 Tapajós Itaituba, PA MN996690 -

D28 Tapajós Itaituba, PA MN996688 -

D29 Tapajós Itaituba, PA MN996689 -

D30 Tapajós Itaituba, PA MN996691 -

D31 Tapajós Itaituba, PA MN996694 -

E1 Teles Pires Sorriso, MT MN996693 MT052037

I1 Apiacás2 Alta Floresta, MT - MT052039

I7 Apiacás2 Alta Floresta, MT MN996687 -

F1 Teles Pires Cotriguaçu, MT MN996683 MT052038

XI01 Curuá3 � Altamira, PA MN996674 -

TA04 Araguaia Barra do Garça, MT MN996675 -

TA06 Araguaia Barra do Garça, MT MN996676 -

TA07 Araguaia Barra do Garça, MT MN996673 -

TA15 Araguaia Barra do Garça, MT MN996671 -

TA17 Araguaia Barra do Garça, MT MN996672 -

TA18 Araguaia Barra do Garça, MT MN996668 -

TA43 Tocantins Palmas, TO MN996670 -

(Continued)
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2.3. DNA extraction, amplification, and sequencing

Total genomic DNA was extracted following the saline precipitation protocol described by

Aljanabi & Martinez [33]. Each DNA sample was quantified using an Eppendorf BioPhot-

ometer (Eppendorf, Hamburg, Germany), and standardized aliquots at 50 ng/ μL were pre-

pared. Polymerase Chain Reaction (PCR) was carried out in order to amplify the COI and

ATP synthase subunit six (ATPase6) and eight (ATPase8) genes of the mitochondrial DNA

(mtDNA). The primers Fish F1 and Fish R1, and ATP 8.2_L8331 and CO3.2_H9236 were

used to amplify COI and ATP6/8 regions, respectively [34,35].

Polymerase chain reactions consisted of 50 ng of DNA template, 1.25 μL of buffer (10x), 0.2

mM of dNTPs, 1 mM of MgCl2, 0.4 μM of each primer, 0,5 U Taq Platinum (InvitrogenTM)

and ultra-pure distilled water to make up a final volume of 12.5 μL. DNA amplification reac-

tions were carried out in an Applied Biosystems Veriti1 96-Well Thermal Cycler under the

following conditions: COI—1 cycle [94˚C/2 min], 35 cycles [94˚C/30 sec, 59˚C/30 sec, 72˚C/1

min], 1 cycle [72˚C/10 min], and ATP6/8, 1 cycle [94˚C/3 min], 30 cycles [94˚C/45 sec, 58˚C/

1 min, 72˚C/1 min], 1 cycle [72˚C/2 min]. PCR products were purified with 20% Polyethylene

glycol (PEG) protocol [36] to remove unincorporated dNTPs and the excess of primers or

unspecific bands. Sequencing was performed in an ABI 3730XL automatic sequencer (Applied

Biosystems, Foster City, California, USA).

2.4. Data analyses

After sequencing, we first aligned and edited the data using ClustalW [37] and Geneious

v.7.1.7 (Biomatters, Auckland, New Zealand) [38], respectively. Median Joining haplotype net-

works for both COI and ATP6/8 markers were reconstructed using PopART (Population

Analysis with Reticulate Trees) [39]. We included 22 public sequences of P. nigricans and con-

generic nominal species from the Brazilian Shield for the COI analyses. MEGA v.7 [40] was

used to perform maximum-likelihood (ML) under HKY+I model and Neighbor-Joining (NJ)

based on Kimura-2-parameters (K2P) analyses, both with 1000 of bootstrap replicates. Intra

and intergroups genetic distances, based on K2P, with samples collected in both the Tapajós

River basin and Eastern Amazon area were estimated also using the MEGA v.7 software.

General Mixed Yule Coalescent (GMYC) [41] approach was implemented for COI

sequences in R with the SPLITS package (SPecies’ LImits by Threshold Statistics) [42], consid-

ering the single threshold under the default settings (interval = c(1,10)). GMYC combines sto-

chastic lineage growth models with coalescence ones to detect intra and interspecific

evolutionary processes (coalescence and speciation/extinction events, respectively) and has

Table 1. (Continued)

ID River Locality, State Accession Number

COI ATP6/8

TA45 Tocantins Palmas, TO MN996669 -

TA48 Tocantins Palmas, TO MN996667 -

Sample field code (ID) and collection sites of the analyzed samples of Prochilodus nigricans for both COI and ATP6/8 genes, and their respective Genbank accession

numbers.
1Juruena Tributary
2Teles Pires Tributary
3Xingu Basin.

�Vouchers: A1 (LISDEBE 7257), B1 (LISDEBE 7258) and XI01 (ZMUSP 096335).

https://doi.org/10.1371/journal.pone.0237916.t001
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been commonly applied to identify MOTUs in studies concerning taxonomic issues [43–46].

For this analysis, a COI ultrametric topology was produced using the Bayesian Inference (BI)

method implemented by BEAST v.2.0 [47] in CIPRES Science Gateway [48] (www.phylo.org).

We also used the site model, based on Bayesian Information Criteria (BIC), as suggested by

JModeltest [49] (COI = HKY+I), and lognormal relaxed molecular clock model and birth-

death tree prior, according to Costa-Silva et al. [50]. Two independent runs of four Markov

chains of 120 million generations were conducted, sampling every 10000 steps, with 30% of

the first topologies being discarded as burn-in. The combination of the independent tree and

log files was performed with the LogCombiner v.1.8 software [51] and stationarity and conver-

gence were assessed with Tracer v1.5 [52], considering values of the effective sample size (ESS)

of all parameters equal or higher than 200. A maximum clade credibility tree was summarized

in TreeAnnotator v.1.8 [53], and later visualized in the FigTree v.1.4 software, which is avail-

able at http://tree.bio.ed.ac.uk/software/figtree/.

GMYC, ML, and NJ analyses were performed gathering all COI dataset, which comprised

the newly generated sequences in addition to those downloaded from the databases.

3. Results and discussion

The total dataset generated in this study consisted of 35 COI and 29 ATP6/8 sequences, after

alignment and editing (Table 1). COI fragments ranged from 561 to 564 bp and presented 26

polymorphic sites and 16 parsimony informative ones. The average ATP6/8 sequence length

was 985 bp and included 18 variable sites, 11 of which were parsimony informative. The COI

and ATP6/8 networks included 19 and 12 haplotypes, respectively, revealing individuals

within the Tapajós mainstream assigned to highly divergent haplotypes, showing at least nine

and six mutational steps from the most frequent haplotype for COI and ATP6/8, respectively

(See S1 Fig).

The maximum likelihood results of the GMYC model performed with COI was signifi-

cantly higher (L = 696.0997) than that of the null model (L0 = 642.3439), allowing us to reject

the hypothesis that all individuals belong to the same molecular unit. The GMYC single

threshold analysis revealed the occurrence of three MOTUs within the Amazon River basin

(Fig 2), increasing the number of MOTUs reported in previous studies [15,16] in this large

basin. Our study recovered the previous Western and Eastern Amazon MOTUs (showed,

respectively, in blue and green clusters in Fig 2) and raised an additional one, named hereafter

Tapajós MOTU (orange cluster in Fig 2).

The pairwise K2P distances between this new molecular lineage and rest of the Eastern

group were 0.017 ± 0.004 and 0.01 ± 0.003 for COI and ATP6/8, respectively. Although both

values were lower than that commonly used as an initial threshold for the molecular identifica-

tion approach [54], our distance values were similar to those found between other Prochilodus
species, which ranged from 1.2% to 10.3% [16]. The distances within groups using the COI

data were 0.011 ± 0.002 for the Eastern group and 0.002 ± 0.001 for the new MOTU, while

with ATP6/8 it ranged from 0.001 ± 0.000 and 0.002 ± 0.001 for the Eastern group and the new

MOTU, respectively.

It is noteworthy that two of the P. nigricans MOTUs observed here are co-occurrents into

the Tapajós River, and in the phylogenetic tree were shown as paraphyletic (Fig 2). This result

corroborates previous biogeographic findings, in which the Tapajós River basin was seen as

non-monophyletic, indicating a possible hybrid origin of this hydrographic system [17]. As

stated by Dagosta and de Pinna [17], the Tapajós mainstream is related to the rivers of the

Western Amazon, while the Juruena and Teles Pires tributaries are related to the Eastern

drainages of the Brazilian shield. The same pattern of relationship was here verified among the
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P. nigricans lineages through the GMYC analysis (Fig 2), which was also well supported by the

ML (>79) and NJ (>74) topologies (S2 Fig). The Tapajós and Western Amazon lineages come

up as sister groups, whereas the samples of P. nigricans collected within the tributaries of the

Tapajós River (See Table 1 and S1 Table) represented the Eastern Amazon lineage. It is worthy

to note that individuals of both Tapajós and Eastern Amazon lineages were seen in sympatry

at least in part of the collection sites. Given the entanglement of the Amazon River basin,

diverse phylogeographic hypotheses [55,56] have been hitherto postulated to explain it. Within

this framework, and considering our results, P. nigricans raises a possible and interesting

model to test such ideas. Different migratory fish groups such as Brycon [57], Leporinus [5],

and Zungaro [19] have been showing hidden diversity, particularly in the Tapajós River basin.

Overall, these results appear indicating both the high level of endemism [18] and the putative

historical hybridism [6] can be important drives of fish diversity in this peculiar system.

Our findings reinforce the importance of molecular species delimitation approach in inves-

tigating hidden biodiversity into the Amazon ichthyofauna. Since the Amazon River basin is

in the spotlight as a candidate area for the construction of diverse hydroelectric plants [58,59]

and threatened by other factors, such as overharvesting, deforestation and climate change

[13,60,61], the development of studies focusing on biodiversity survey is of paramount impor-

tance for effective conservation management plans [3,62,63], aiming at maintaining the maxi-

mum genetic diversity and evolutionary potential for a species [64,65].

Overall, the present study was able to reveal hidden biodiversity in P. nigricans, delimitating

genetic lineages, and helping to characterize a new MOTU that must be better investigated to

confirm the existence of a new species. Moreover, our findings raise new insights for a further

approach related to the possible historical hybrid origin of the Tapajós River basin.

Supporting information

S1 Fig. Haplotype networks using samples from the Tapajós River basin and the Eastern

Amazon clade. A. COI, B. ATP6/8.

(TIF)

S2 Fig. COI topologies including the generated data and the sequences retrieved from pub-

lic databases. A. Maximum likelihood, B. Neighbor joining.

(TIF)

S1 Table.
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