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ABSTRACT
Background: Sevoflurane postconditioning (S-post) has similar cardioprotective

effects as ischemic preconditioning. However, the underlying mechanism of S-post

has not been fully elucidated. Janus kinase signaling transduction/transcription

activator (JAK2–STAT3) plays an important role in cardioprotection. The purpose

of this study was to determine whether the cardioprotective effects of S-post are

associated with activation of the JAK2–STAT3 signal pathway.

Methods: An adult male Sprague–Dawley (SD) rat model of myocardial ischemia/

reperfusion (I/R) injury was established using the Langendorff isolated heart

perfusion apparatus. At the beginning of reperfusion, 2.4% sevoflurane alone or in

combination with AG490 (a JAK2 selective inhibitor) was used as a postconditioning

treatment. The cardiac function indicators, myocardial infarct size, lactic

dehydrogenase (LDH) release, mitochondrial ultrastructure, mitochondrial reactive

oxygen species (ROS) generation rates, ATP content, protein expression of p-JAK,

p-STAT3, Bcl-2 and Bax were measured.

Results: Compared with the I/R group, S-post significantly increased the expression

of p-JAK, p-STAT3 and Bcl-2 and reduced the protein expression of Bax, which

markedly decreased the myocardial infarction areas, improved the cardiac function

indicators and the mitochondrial ultrastructure, decreased the mitochondrial ROS

and increased the ATP content. However, the cardioprotective effects of S-post were

abolished by treatment with a JAK2 selective inhibitor (p < 0.05).

Conclusion: This study demonstrates that the cardioprotective effects of S-post

are associated with the activation of JAK2–STAT3. The mechanism may be related

to an increased expression of p-JAK2 and p-STAT3 after S-post, which reduced

mitochondrial ROS generation and increased mitochondrial ATP content, thereby

reducing apoptosis and myocardial infarct size.
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INTRODUCTION
Ischemic heart disease is one of the major causes of death worldwide. Early restoration

of hemoperfusion to the ischemic area represents the most effective method for the

treatment of patients with ischemic heart disease. However, the restoration of blood

flow may lead to tissue injury, termed myocardial ischemia/reperfusion (I/R) injury

(Erbel & Budoff, 2012). Studies have shown that the administration of inhalation

anesthetics before ischemia (anesthetic preconditioning (APC)) and immediately at the

onset of reperfusion (anesthetic postconditioning) can effectively reduce myocardial I/R

injury (Lemoine et al., 2016).

Compared to APC, anesthetic postconditioning is more clinically applicable and

attracts more attention (Kloner & Rezkalla, 2006). Sevoflurane, a new type of inhalation

anesthetic with unique physicochemical properties, including easy diffusion and

translocation across the cell membrane, has been widely used for clinical anesthesia.

The application of sevoflurane immediately at the onset of reperfusion (sevoflurane

postconditioning (S-post)) can exert myocardial protective effects (Agarwal et al., 2014).

Previous studies have shown that S-post conferred cardioprotection by attenuating

mitochondrial damage, including a reduction in mitochondrial permeability transition

pore (MPTP) opening (Yao et al., 2009) and an improvement in mitochondrial

bioenergetics (An et al., 2005). However, the molecular mechanisms underlying S-post

cardioprotective effects have not been fully elucidated.

The Janus tyrosine kinase 2 (JAK2) signal transducer and activator of transcription 3

(STAT3) pathway is an important signaling pathway, that is causatively involved in

multiple physiological processes, including cell growth, differentiation, proliferation,

apoptosis and inflammation (Shi et al., 2006). A previous study showed that JAK2–STAT3

is essential for ischemic postconditioning cardioprotection, and the activation of

JAK2–STAT3 in ischemic postconditioning increased the expression of phosphorylated

STAT3 in mitochondria, which improved mitochondrial function and eventually

attenuated myocardial I/R injury (Li et al., 2016). The cardioprotective effects of S-post

were diminished in hearts from diabetic rats whose cardiac STAT3 expression was

decreased (Lin et al., 2016). However, whether the JAK2–STAT3 signal pathway plays

a key role in S-post cardioprotection has not been studied.

In this study, we hypothesized that S-post improved mitochondrial function via the

activation of the JAK2–STAT3 signal pathway, which reduced mitochondrial reactive

oxygen species (ROS) generation and myocardial apoptosis, thereby attenuating

myocardial I/R injury.

MATERIALS AND METHODS
Experimental animal
This study was approved by the First Affiliated Hospital of Xinjiang Medical University,

Animal Ethics Committees (IACUC-20160218-032). The experiments were performed in

adherence with the National Institutes of Health Guidelines for the Use of Laboratory

Animals (revised, 1996). Adult male Sprague–Dawley (SD) rats (body weight 250–300 g)
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were provided by the experimental animal center of the First Affiliated Hospital, Xinjiang

Medical University.

Drugs and reagents
Sevoflurane was purchased from Abbott Laboratories. Rabbit-anti-JAK2 monoclonal

antibody, rabbit-anti p-JAK2 monoclonal antibody, rabbit-anti-STAT3 monoclonal

antibody and rabbit-anti-p-STAT3 monoclonal antibody were purchased from Cell

Signaling Technology (Danvers, MA, USA). JAK2 inhibitor AG490 was purchased from

Sigma-Aldrich (St. Louis, MO, USA). Pentobarbital was purchased from Shanghai Tyrael

Biological Technology Co., Ltd., Shanghai, China.

Experimental groups
A total of 145 rats were randomly divided into five groups (Fig. 1): (1) Sham group

(Sham) (n = 29): The Sham group received a persistent perfusion of Krebs–Henseleit

(K–H) solution for 170 min. (2) Ischemia–reperfusion group (I/R) (n = 29): The I/R

group was equilibrated for 20 min, followed by perfusion of 4 �C St. Thomas cardioplegia;

afterwards, whole heart ischemia was performed at 32 �C for 30 min, and then, the hearts

were perfused with K–H solution for 120 min. (3) S-post group (n = 29): The S-post

group was equilibrated for 20 min, followed by perfusion of 4 �C St. Thomas cardioplegia.

Afterwards, whole heart ischemia was performed for 30 min at 32 �C, and then, the hearts

were perfused with 1.0 MAC (minimum alveolar concentration) of sevoflurane-saturated

K–H solution for 15 min, followed by continuous perfusion of K–H solution for 105 min.

(4) AG490 (n = 29): The heart was perfused with AG490 (100 mM) and K–H solution for

15 min after 30 min of whole heart ischemia followed by continuous perfusion of K–H

solution for 105 min (Barry et al., 2007; Qiao et al., 2016). (5) S-post+AG490 (n = 29):

The heart was perfused with AG490 +1.0 MAC sevoflurane of saturated K–H solution

for 15 min after 30 min of whole heart ischemia followed by continuous perfusion of

K–H solution for 105 min.

Figure 1 The schematic diagram of the experimental procedures. I/R, ischemic/reperfusion; S-post,

sevoflurane postconditioning; AG490, JAK2 selective inhibitor.

Wu et al. (2017), PeerJ, DOI 10.7717/peerj.3196 3/18

http://dx.doi.org/10.7717/peerj.3196
https://peerj.com/


In this study, we used a 1.0 MAC of sevoflurane-saturated K–H solution that was

prepared by dissolving sevoflurane in K–H solution according to a procedure documented

in detail by Yang et al. (2016). During the preparation, an infrared gas-analyzer

(Datex-Ohmeda; GE Healthcare, Fairfield, CT, USA) and a ULT-Svi-22-07 gas detector

(Division Instrument Company, Helsinki, Finland) were employed to monitor the

concentration of sevoflurane in the K–H solution to ensure that the final solution

reached 1.0 MAC.

Langendorff model
The detailed methods have been described previously by our group (Yang et al., 2016).

In brief, the rats were intraperitoneally injected with sodium pentobarbital and heparin.

After anesthetization, the heart was rapidly removed and placed in K–H buffer pre-cooled

to 4 �C to discharge all blood in the heart cavities. The heart was immobilized with a

Langendorff perfusion needle and a No. 4 surgical thread. Retrograde perfusion of the

aorta was performed at 37 �Cusing K–H solution equilibrated in 95%O2 to 5%CO2 mixed

gas under 5.8 kPa perfusion pressure. To measure the pressure, an experimental pressure

transducer system was connected to the pressure measuring tube, which was inserted

into the left ventricle with a rubber balloon through the mitral valve after the left atrial

appendage and pulmonary artery were cut open. The perfusion pressure was kept at

approximately 60–70 mmHg. The left ventricular end-diastolic pressure (LVEDP) was

maintained at 0–10 mmHg by adjusting the size and position of the balloon. The above

steps were completed within 2 min. The inclusion criteria were a heart rate (HR) of >250

beats/min and a left ventricular developed pressure (LVDP) of >80 mmHg after the

isolated heart was equilibrated for 20 min.

Monitoring of hemodynamics
The HR (beats/min), LVEDP (mmHg), maximum rate of increase of LV pressure

(+dp/dtmax, mmHg/s) and LVDP (mmHg) at the end of reperfusion were collected

with the Powerlab/8SP data collection system.

Measurement of the myocardial infarct size
At the end of reperfusion, the heart was immediately placed in the -80 �C freezer for

7 min, and cut into 2–3 mm thick slices along the sagittal plane of the heart that were

stained in 2,3,5-triphenyl-2H-tetrazolium chloride (TTC) solution (37 �C, 1% TTC,

pH 7.4) for 25 min, and then placed in 10% formaldehyde solution for fixation overnight.

The infarct area was analyzed with ImageJ software after images were taken with a

digital camera.

Determination of LDH content
As an extremely stable cytoplasmic enzyme, lactic dehydrogenase (LDH) exists in the

cytoplasm of normal cells and is rapidly released outside the cell once the cytomembrane

is damaged. In our study, isolated heart injury was assessed by measuring the LDH

concentration in the coronary effluent. The LDH levels in the coronary effluent were

determined with the same ELISA kit, following the manufacturer’s instructions.
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Myocardial ATP content measurement
The detailed methods have been described previously by Zhang et al. (2014). In brief, an

ATP assay kit was used to quantify myocardial ATP based on the luciferin–luciferase

reaction. The concentration of myocardial phosphocreatine was measured via reverse

phase high-performance liquid chromatography. A glycogen detection kit was used to

determine the concentration of glycogen in the myocardium.

Determination of mitochondrial ROS generation
We detected the generation rate of mitochondrial ROS via fluorometric methods

(Yang et al., 2016). In one reaction system, 2.9 ml of mitochondrial ROS assay

medium and 0.5 mg of mitochondria were added to a 3 ml quartz cuvette. In the

other reaction system, 3.3 mmol/l succinic acid was loaded as a substrate without

mitochondria before the addition of 3 ml of 5 mmol/l 2′,7′-dichlorofluorescin

diacetate (DCFH-DA). The two reaction system was incubated at 37 �C for 15 min,

and the fluorescence intensity of the reaction system with mitochondria (sample

florescence intensity) and the fluorescence intensity of the reaction system without

mitochondria (basal fluorescence intensity) were then measured. The ROS generation

rate was calculated by subtracting the basal fluorescence intensity from the sample

florescence intensity.

Levels of phosphorylation of p-JAK2, p-STAT3, Bcl-2 and
Bax were measured via Western blot
Cardiac muscle in the risk area was stored in liquid nitrogen. A sample containing 30 mg

of protein for SDS-PAGE (Invitrogen, Grand Island, NY, USA) was lysed, sealed and

transferred onto a membrane. Then, it was incubated overnight with diluted p-JAK2,

p-STAT3, Bcl-2 and Bax antibody solutions (4 �C, 1:1,000). The membrane was then

cleaned with TBST solution. Finally, it was incubated at room temperature with

HRP-tagged second antibody (1:10,000) for 1 h. The target protein bands were

analyzed with the Quantity One 2.6.2 image analysis system.

Statistical analysis
Statistical analysis was performed using the GraphPad Prism 6.0 (GraphPad Software,

San Diego, CA, USA). The data are presented as the mean ± SEM. All of the data were

analyzed by one-way ANOVA. Statistical analyses were performed using Student’s t-test

for two groups and by ANOVA followed by Tukey’s post hoc test for multiple groups.

p < 0.05 and p < 0.01 were considered statistically significantly.

RESULTS
Cardiac function indicators
Compared with the I/R group, S-post significantly increased LVDP and +dp/dtmax

values, whereas LVEDP was significantly decreased at the end of reperfusion

(p < 0.05). However, AG490 abolished the effects of S-post on the cardiac function

Wu et al. (2017), PeerJ, DOI 10.7717/peerj.3196 5/18

http://dx.doi.org/10.7717/peerj.3196
https://peerj.com/


indicators (AG490 and S-post+AG490 groups compared with the S-post group,

p < 0.05, Figs. 2A–2D).

Myocardial infarction area and LDH release
Compared with the I/R group, S-post significantly decreased the myocardial infarction

area and LDH release (p < 0.05). However, no significant differences in myocardial

infarction area or LDH release were observed among the AG490, S-post+AG490 and I/R

groups (p > 0.05, Figs. 3A–3C).

S-post increases the levels of p-JAK2, p-STAT3 and Bcl-2,
and reduces the level of Bax in the myocardium following I/R
Compared to the I/R group, myocardial p-JAK2, p-STAT3 and Bcl-2 expression in the

S-post group was significantly increased, but Bax expression was decreased (p < 0.05).

Compared to the S-post group, myocardial p-JAK2, p-STAT3 and Bcl-2 expression in the

AG490 and S-post+AG490 groups was significantly decreased, and Bax expression was

increased (p < 0.05, Figs. 4A–4D).

Figure 2 S-post improve myocardial function in vitro model. Hemodynamic changes were measured

at the end of reperfusion (n = 12/group). (A) Heart rate (HR, beat/per min); (B) left ventricular

developed pressure (LVDP, mmHg); (C) left ventricular end-diastolic pressure (LVEDP, mmHg);

(D) maximum rate of increase of LV pressure (+dp/dtmax, mmHg/s). �p < 0.05 compared with sham

group, #p < 0.05 compared with I/R group and &p < 0.05 compared with S-post group.
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S-post alleviated mitochondrial ultrastructural damage and
improved myocardial energy metabolism
In the Sham group, the mitochondrial ultrastructure was intact. The myofilaments

were not dissolved, and the cristae were closely connected. In the I/R group, dissolved

filaments, a dilated sarcoplasmic reticulum, swollen mitochondria, and broken cristae

gaps were observed. In the S-post group, mitochondria appeared to be intact with an

orderly arrangement, but slight swelling was still observed. In the S-post+AG490 and

AG490 groups, the damage to the myocardial ultrastructure was similar to that in the

I/R group, and no significant differences were detected between the AG490 and S-post

+AG490 groups (Fig. 5A). To further confirm whether S-post improves myocardial

energy metabolism, we detected myocardial ATP content via the bioluminescence

method. Compared to the Sham group, the myocardial ATP content of the I/R was

significantly lower. Compared to the I/R group, S-post significantly increased the

ATP content (p < 0.05, Fig. 5B). However, there was no significant difference in

myocardial ATP content among the AG490, S-post+AG490 and I/R groups (p > 0.05,

Fig. 5B).

Figure 3 S-post reduce myocardial infarct size and LDH release (n = 12/group). (A) Myocardial

infarct size, the infarction zone (white) and risky zone (red). (B) Myocardial infarct size (IS) expressed as

the percentage of the infarct area relative to the total at-risk area after 2 h of reperfusion; (C) The LDH

release level. �p < 0.05 compared with sham group, #p < 0.05 compared with I/R group and &p < 0.05

compared with S-post group.
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Mitochondrial ROS production rates
The mitochondrial ROS production rates in the I/R group were significantly higher

than those in the Sham group. However, S-post significantly decreased the mitochondrial

ROS production rates (p < 0.05, Fig. 6), and the mitochondrial ROS production rates

were not significantly different among the AG490, S-post+AG490 and I/R groups after

the application of the JAK2 selective inhibitor; no significant differences between the

AG490 and S-post+AG490 groups were detected (p > 0.05, Fig. 6).

DISCUSSION
Our study suggested that the cardioprotective effects of S-post are associated with the

activation of JAK2–STAT3. The mechanism may be related to the increase in the

Figure 4 The changes in the levels of p-JAK2, p-STAT3, Bcl-2 and Bax at the end of reperfusion

(n = 5/group). �p < 0.05 compared with sham group, #p < 0.05 compared with I/R group and
&p < 0.05 compared with S-post group.
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expression of p-JAK2 and p-STAT3 after S-post, which led to reduced mitochondrial ROS

generation and increased mitochondrial ATP content, thereby reducing apoptosis and

myocardial infarct size.

An effective treatment of ischemic heart disease is the rapid restoration of blood flow

(reperfusion) to the ischemic area. However, reperfusion may induce myocardial I/R

injury. In Kersten et al. (1997) reported that volatile APC produced similar myocardial

protection as ischemic preconditioning and were the first to propose the concept of APC.

Studies have shown that sevoflurane preconditioning can produce myocardial protection

similar to ischemic preconditioning, which can improve myocardial contractility (Obal

et al., 2003) and reduce the incidence of arrhythmia (Deyhimy et al., 2007), while also

Figure 5 S-post alleviated mitochondrial ultrastructural damage and improved myocardial energy

metabolism. (A) The changes in the mitochondrial ultrastructural (n = 6/group); (B) Mitochondrial

ATP content (n = 6/group). �p < 0.05 compared with sham group, #p < 0.05 compared with I/R group

and &p < 0.05 compared with S-post group.

Figure 6 S-post reduced mitochondrial ROS production.Mitochondrial ROS production rates (RPR)

at the end of reperfusion. Data are presented as the mean ± SEM (n = 6/group). �p < 0.05 compared with

sham group, #p < 0.05 compared with I/R group and &p < 0.05 compared with S-post group.
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improving myocardial perfusion and reducing myocardial infarct size by reducing the

resistance of coronary arteries. Corresponding to APC, intervention with anesthetics

during the early phase of reperfusion is known as anesthetic postconditioning (Luna-Ortiz

et al., 2011). Anesthetic postconditioning can rescue myocardial ischemia and reduce

infarct size to minimize reperfusion injury, and it therefore has strong practicality and

operability in clinics (Zaugg et al., 2014). Studies have confirmed that S-post provides

good myocardial protection and is a promising treatment method for myocardial injury

(Yao et al., 2010).

Sevoflurane is a classic volatile anesthetic that has been widely used in clinical

practice. During the actual application process, the MAC can be used to precisely

control its inhaled and exhaled concentrations, making it simple, controllable,

safe, and effective (Wang et al., 2013). Ischemic pre- and postconditioning, as well as

S-post, have demonstrated significant myocardial protective effects. This is mainly

achieved by elevating RISK survival signaling pathways and inhibiting Bax protein

levels, thus ultimately inhibiting cardiomyocyte apoptosis (Kloner & Rezkalla, 2006;

Zhang et al., 2014).

Despite significant improvements in the treatment of I/R injury, mortality and

morbidity remain high in patients who have undergone cardiac surgery. Previous studies

show that S-post can protect the myocardium from I/R injury (Zhang et al., 2014).

Compared with other intravenous and inhalational anesthetics, sevoflurane can decrease

the postoperative mortality rate (De Hert et al., 2009). Isoflurane, however, induces

significantly greater neurodegeneration than an equipotent MAC of sevoflurane (Liu

et al., 2016). The immediate application of sevoflurane can exert myocardial protective

effects in clinical anesthesia (Huseidzinovic et al., 2007). However, the mechanism that

underlies S-post cardioprotection has not been fully elucidated.

The JAK2–STAT3 signal pathway is a central component of organ protection, and it is

involved in many organs such as the heart, brain, kidney and liver (Das et al., 2012;

Grozovsky et al., 2015; Kim et al., 2016; Li, Li & Li, 2015; Si et al., 2014). JAK2–STAT3 signal

pathways play key roles in ischemic preconditioning, particularly by protecting the

myocardium at a late stage of preconditioning and by upregulating protection proteins,

such as LOS and COX-2, and the proportions of anti-apoptosis proteins (Gross, Hsu &

Gross, 2006). Zhao et al. (2011) demonstrated that the phosphorylation of STAT3 by

JAK2 protein results in an increased expression in genes related to cell survival. Activated

STAT3 is related to antioxidant effects, including the inhibition of the opening of

the MPTP, anti-inflammatory effects and the increased expression of free radical

scavengers (Boengler et al., 2010; Negoro et al., 2001; Schabitz et al., 2003). A previous

study conducted by Kim et al. (2016) showed that S-post reduced apoptosis by

upregulating the expression of p-JAK2 and p-STAT3 after transient global ischemia.

However, whether the JAK2–STAT3 signal pathway plays a key role in S-post

cardioprotection has not been studied. In this study, we demonstrated that S-post

significantly increased the expression of p-JAK2 and p-STAT3, which markedly

decreased the myocardial infarction area, improved cardiac function indicators and

mitochondrial ultrastructure, regulated downstream ROS levels, suppressed myocardial
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cell apoptosis and the cardioprotective effects of S-post were abolished by the JAK2

selective inhibitor.

Some studies showed that myocardial apoptosis is an important aspect of myocardial

I/R injury, which has been widely recognized (Huang et al., 2015; Liu et al., 2014;

Sodha et al., 2008). Previous investigations indicated that activated JAK2 and STAT3 are

sufficient to protect the myocardium against apoptosis (Jiang et al., 2015; Tian et al.,

2011). The JAK2 selective inhibitor AG490 could abolish the cardioprotective effects

induced by ischemic preconditioning (Aleshin et al., 2008). Our results showed that S-post

reduced apoptosis by increasing the expression of Bcl-2 and decreasing the expression

of Bax. However, the administration of AG490 reversed the cardioprotective effects of

S-post on apoptosis and the JAK2–STAT3 pathway.

In addition, our latest studies have shown that mitochondria are the terminal

operating apparatuses of S-post mediated cardioprotection (Yu et al., 2016a, 2016b).

Mitochondria are major sources of ROS during myocardial I/R. The results of the current

study suggested that the downregulation of the expression of Bcl-2 may induce the

generation of ROS (Alexandre et al., 2007). To explore whether ROS participates in

JAK2–STAT3 signaling induced apoptosis, we evaluated the mitochondrial ROS

production rates. In this study, S-post significantly decreased the mitochondrial

ROS production rates, but this beneficial effect was completely abolished by AG490. Our

results indicate that S-post reduced ROS production via the activation of the JAK2–STAT3

signal pathway, thereby leading to a decrease in myocardial apoptosis. During myocardial

I/R injury, preconditioning can decrease mitochondrial ROS production and inhibit

the translocation of Bax to mitochondria and can inhibit apoptosis, ultimately improving

cell viability (Zu et al., 2011; Zuo et al., 2015c). However, by activating myocardial survival

signaling pathways, postconditioning can regulate the Bcl-2/Bax balance, maintain the

morphological and functional stability of mitochondria, and promote ATP synthesis, thus

ultimately inhibiting cardiomyocyte apoptosis, and achieving the same myocardial

protective effects as preconditioning (Zhang et al., 2014). During the reperfusion period, a

large amount of ROS is generated, causing myocardial Ca2+ overload, which can impair

mitochondrial function, induce inflammatory mediator production, and finally result

in an increase in myocardial cell apoptosis (Garciarena et al., 2011). In particular, the ROS

that are released in a large amount within a few minutes after the beginning of reperfusion

are considered to be a key trigger leading to myocardial ischemia–reperfusion injuries

(Becker, 2004). Studies have demonstrated that S-post can prevent a high level of ROS

production during the reperfusion period by triggering a lower level of ROS production

(Fradorf et al., 2010), thereby playing a role in the suppression of myocardial apoptosis.

Recent studies have shown that extracellular signal-regulated kinase (ERK) and

phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) are involved in S-post-

mediated myocardial protection (Chen et al., 2008). The specific inhibition of ERK1/2 and

PI3K/Akt can completely eliminate the myocardial protective effects of S-post (Fang et al.,

2010; Hausenloy et al., 2005). In addition, mitochondrial ATP-sensitive potassium

channels (mitoKATP) play an important role in myocardial I/R injury (Kowaltowski et al.,

2001). It has been shown that sevoflurane provides its postconditioning effect by
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increasing the opening probability of mitoKATP (Kohro et al., 2001; Yao et al., 2010) and

that S-post can reduce the production of mitochondrial ROS. Thus, the mechanism by

which S-post exerts its myocardial protective effects may also be associated with the

activation of ERK1/2 and PI3K/Akt, and the opening of mitoKATP, thereby reducing the

production of ROS (Yang et al., 2016; Yu et al., 2015).

Reactive oxygen species are involved in many diseases, including neurological diseases

(Zuo et al., 2015b), heart failure (Zuo et al., 2015a) and hypertension (Zuo et al., 2014b).

A large number of studies have shown that ischemic postconditioning can significantly

reduce ROS production, thereby reducing myocardial I/R injury (Barsukevich et al., 2015;

Singh et al., 2012; Zhao et al., 2003). However, ROS play a dual role in myocardial

protection. In the early stage of I/R, low levels of ROS can activate a variety of protective

signaling pathways, while high levels of ROS can cause oxidative stress injury in

cardiomyocytes. Therefore, it is necessary to minimize mitochondrial ROS production to

prevent cardiomyocyte I/R injury (He et al., 2016). Recent studies have shown that

pre- and postconditioning can significantly reduce ROS production, which is associated

with the activation of multiple upstream signaling pathways in mitochondria, eventually

stabilizing mitochondrial function and inhibiting apoptosis (Jin et al., 2012; Penna et al.,

2009; Zuo et al., 2014a, 2015c). Yu et al. (2015) and our group have found that the

myocardial protection provided by S-post is associated with an inhibition of

mitochondrial ROS production. In this study, we confirmed that S-post activated the

JAK2–STAT3 signaling pathway, upregulated Bcl-2 protein levels, and inhibited Bax

protein levels, ultimately inhibiting cardiomyocyte apoptosis and reducing myocardial

infarct size.

Limitations
There are some limitations to this study. First, we only observed the potential

JAK2–STAT3 signaling pathways mechanisms in the myocardial protective function of

S-post; the role of other signaling pathways should be considered in future studies.

Second, this study did not involve mitochondrial morphology and function-related

content, and further studies of these factors should be conducted. Finally, further

experiments will need to be conducted to determine whether pre- and postconditioning

have different effects on mitochondrial ROS.

CONCLUSION
This study demonstrated that the cardioprotective effects of S-post are associated with the

activation of JAK2–STAT3. The mechanism may be related to an increased the expression

of p-JAK2 and p-STAT3 after S-post, which lead to reduced mitochondrial ROS

generation and increased mitochondrial ATP content, thereby reducing apoptosis and

myocardial infarct size.
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