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Biological tools such as genetic lineage tracing, three-dimensional confocal

microscopy and next-generation DNA sequencing are providing new ways to

quantify the distribution of clones of normal and mutated cells. Understanding

population-wide clone size distributions in vivo is complicated by multiple cell

types within observed tissues, and overlapping birth and death processes. This

has led to the increased need for mathematically informed models to understand

their biological significance. Standard approaches usually require knowledge of

clonal age. We show that modelling on clone size independent of time is an

alternative method that offers certain analytical advantages; it can help parame-

trize these models, and obtain distributions for counts of mutated or proliferating

cells, for example. When applied to a general birth–death process common in epi-

thelial progenitors, this takes the form of a gambler’s ruin problem, the solution of

which relates to counting Motzkin lattice paths. Applying this approach to muta-

tional processes, alternative, exact, formulations of classic Luria–Delbrück-type

problems emerge. This approach can be extended beyond neutral models of

mutant clonal evolution. Applications of these approaches are twofold. First,

we resolve the probability of progenitor cells generating proliferating or differen-

tiating progeny in clonal lineage tracing experiments in vivo or cell culture

assays where clone age is not known. Second, we model mutation frequency

distributions that deep sequencing of subclonal samples produce.
1. Introduction
One approach to understanding the cellular hierarchy in multicellular organized

tissue has been tracking the fate of individual cells either labelled in vivo or

isolated ex vivo [1–6]. Improved techniques, including genetic lineage tracing

and three-dimensional imaging by confocal microscopy, have helped us further

investigate this basic area of research and have rapidly become the gold standard

approach [7–9]. Typically, a cell type of interest is labelled with an identifier, and

the distribution of its progeny at later time points is observed. Clone distribution

data can then be used to decipher division dynamics across the population of cells

with great resolution. However, the current methods use population averaging,

and are time-dependent posing analytical and technical challenges. There is

thus a need for alternative statistical approaches that may be complementary.

Adult mammalian epithelium has a high rate of cell division during steady

state. Despite this rapid rate of proliferation, the tissue remains in homeostasis

as new cells are being generated at the same rate as loss of differentiated cells in

a birth–death process (a ¼ c in figure 1b). A simple illustration of this is in the

interfollicular epidermis, where cell division occurs in the basal layer of a multi-

layered epithelium. Cell division here can produce proliferating daughters, that

remain in the basal layer, or non-dividing daughters, which are shed to the

suprabasal layers, and eventually lost in a process of differentiation. When

these keratinocytes are grown in culture, a typical cell division can result in

two dividing daughters, one dividing daughter or no dividing daughter out
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Figure 1. Colony formation in normal and mutated cells. (a) Immunofluorescence images of two-cell clones of cultured primary human keratinocytes stained with
the keratinocyte marker keratin14, and the proliferation marker EdU, showing three possible outcomes of division: two non-proliferating daughters (0/2 EdU þ ), a
non-proliferating and a proliferating daughter (1/2 EdUþ), or two proliferating daughters (2/2 EdUþ). Scale bar, 50 mm. (b) Cell division is a birth – death process
with three possible outcomes based on the proliferative ability of its daughters. As above, a dividing cell (P) may divide into two dividing daughters (PP), a dividing
and differentiated daughter (PD), or two differentiated daughters (DD) in proportions a, b and c, respectively. In homeostatic tissues, the number of new dividing
cells is equal to the number of non-dividing cells (a ¼ c). (c) In the presence of mutagens such as UV radiation, this process is imbalanced in p53 mutant clones in
favour of proliferation (a’ . c’). This gives a survival advantage to mutant clones. (d ) Mutant cell formation itself is a birth process that can follow one of three
possibilities. The first is cell division independent and can occur with background exposure. The second and third possibilities occur following cell division, producing
one or two mutant cells out of two daughter cells with probability m1 ¼ 1 2 m0.
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of two total daughters as seen through the uptake of the pro-

liferation marker 5-ethynyl-20-deoxyuridine (EdU; figure 1a).

Genetic lineage tracing in basal keratinocytes has allowed con-

ditional expression of fluorescent proteins, with all subsequent

daughter cells retaining the label, and thus being highlighted

as a clone. The distribution of clone sizes will depend upon the

relative rates of different outcomes of division (a, b and c in

figure 1b) [1]. Reserve stem cells provide significant contribution

during wound healing [3,10]. This balance is also disturbed in

chronic UV irradiation, where p53 mutant keratinocyte clones

gain a survival advantage over non-mutant clones mediated

through increased proportions of proliferative daughters [11]

(a . c in figure 1c). The recent technical advance of live imaging

in epithelia may provide us additional information to these

models, such as the distribution of cell cycle times [12].

One of the main problems for such systems is the estimation

of the rates a, b and c. There are two current approaches. First,

we can use direct microscopic observation. This involves the

observation of many cells over several cell divisions. With a

sufficient number of cell divisions, one can then examine the

proportions of distinct classes of cell divisions to estimate

these parameters. There are several factors that make this

approach difficult. First, tracking cells over long periods of

time is a complex and resource intensive task and more effi-

cient methods are desirable. Second, different classes of cell

(such as P and D) can be visually indistinguishable, and the

only discerning characteristic is whether subsequent division

occurs (implying a P cell). This makes identification of the

three types of cell division associated with a, b and c difficult.

The second estimation approach is to relate the probabil-

ities a and c to the subsequent clone size distribution of

tagged cells. This approach requires sufficient time for the
development of substantive clones, which will contain a mix-

ture of differentiated and proliferating cells. This was

implemented in [2] for example, where estimates of a ¼ c ¼
0.1+0.01 and b ¼ 0.80+0.02 were obtained. However, this

approach involves months of clonal development and is sen-

sitive to the loss of shedding differentiated cells from the

suprabasal layer, which is difficult to quantify.

Both techniques highlight a desire for a method that can

both circumvent some of these technical challenges and is rela-

tively quick to implement. Now, a single labelled proliferating P

cell left to divide in vivo will result in a fully differentiated clone of

size n with some probability pn(a,b,c) that depends upon par-

ameters a, b and c. In longer-term in vivo experiments, these

clones will have entered the suprabasal layer and sloughed

out of the system. We estimate these parameters from the

observed distribution of fully differentiated clones. These

clones are generally small and rapidly form, meaning the

method is relatively quick. Because we are only using counts

of clone sizes, it also circumvents the need to observe all cell

divisions, resulting in a less intensive microscopy technique.

There is also an increasing body of work investigating

the growth dynamics of pre-neoplastic and neoplastic tissue

[13–17]. A growing colony of cells can be modelled as a

branching process. Luria & Delbrück [18] were the first to pro-

duce an analytical examination of the distribution of the

number of mutant cells in growing bacterial colonies. They

used this to show that mutations arise randomly rather than

in response to the environment. Their argument was partly

deterministic, and Lea & Coulson [19] and Bartlett [20,21]

derived approaches with greater stochastic rigour. These

methods generally consider the problem of how many mutants

are present after a fixed amount of time. An unpublished
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Figure 2. A branching process of differentiated and proliferating cells. A single
dividing cell is followed in time with the height of the solid line indicating total
number of cells, and the height of the dashed line indicating number of dividing
cells. In (a), plotted against time, we see the rate of cell division is dependent
upon the number of proliferating cells. In (b), plotted against number of cell
divisions, we see the number of proliferating cells only depends upon the
nature and number of cell divisions, not their timing.
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combinatorial method by Haldane also exists [22] where all

cells divide simultaneously.

These distributions generally assign genes the binary

status of mutated or non-mutated. They do not consider the

number of distinct mutations in a gene, or the number of

different combinations of mutations a subclone of cells may

contain. Modern sequencing techniques mean greater resol-

ution of mutations is now possible, and there is increased

interest in considering distributions associated with

combinations of mutations [23].

As Kendall observed [24,25], there are broadly three

models for mutation formulation (figure 1d ). The first formu-

lation would indicate a single cell converts to mutated status

at any time independent of the cell division process. This may

be the case for continuous exposure to mutagens, such as UV

light [26]. The second formulation is the most common

formulation where mutations occur in one of the two daugh-

ter cells during the cell division process. This is likely to be

the case for many mutational processes, where nucleotide

errors occur on one of the two DNA strands [27]. DNA

repair machinery then erroneously corrects this during check-

points in the cell cycle, resulting in one mutant daughter cell.

The third formulation assumes that both daughter cells are

mutant. This is also a valid model, and is likely to arise

when double-stranded breaks occur. When double-stranded

repair incorrectly repairs the damage, rearrangements result

and both daughter cells will be mutant. Some processes

such as breakage–fusion–bridge cycles will even result in

two mutant daughter cells with distinct rearrangements

[28,29]. For analytical purposes in this paper, we assume

the most common second formulation. Additionally, we

assume that a mutation does not increase the chance of cell

loss through apoptosis.

In this work, we consider a different statistical approach

to clonal distributions. A standard technique to analysing a

branching process involving two classes of objects, such

as mutant/non-mutant, or progenitor/differentiated, is to

write down a Chapman–Kolmogorov equation for Pm,n(t);
the probability of having m and n cells of the two types, at

time t, and obtain a solution [30]. Instead, we determine the

distribution of the number of different types of cells that

are present when a fixed number of cells have accumulated,

rather than the time that has passed. With this approach,

we see that treating cell differentiation or mutation as

time-independent results in exact analytic forms for the

distributions of interest. In §2, we obtain the distribution

for the number of dividing cells in an epithelial population.

We then obtain distributions for the number of mutant cells

in a clone undergoing a pure birth process.
2. Distribution of colony sizes in homeostatic
tissue

Tissue homeostasis is balanced by two types of cells: progeni-

tor (dividing) cells (P) and differentiated (non-dividing) cells

(D). As progenitor cells (P) divide, they produce two daughter

cells which may be either a progenitor cell or a differentiated

cell (D) resulting in the combinations (PP), (PD) or (DD). We

assume the probabilities of these occurring are a, b and c,

respectively, represented in figure 1b. Across a population,

these probabilities are assumed to be constant, holding the

same values for any cell division that takes place at steady
state. There is the possibility that apoptosis may form an

additional component of this process. While one could incor-

porate this as an additional branch in the process of figure 1b,

it is assumed negligible in the following analysis.

For the sake of simplicity, we assume that we start with a

single dividing cell. We also assume the number of descen-

dant cells can be observed, but that (P) and (D) cells cannot

be distinguished. There are two problems we would like to

consider. First, if we trace the lineage of a single cell, then

we wish to determine the distribution of the number of pro-

genitor (P) cells present. Second, the physical similarity

between (P) and (D) cells without any protein markers

make the parameters a, b and c difficult to directly measure.

Thus, we would like a method to estimate them.

Now, our approach is based on the size of the clone

(rather than time passed). Now, with each cell division, irre-

spective of outcome, the colony size n increases by 1 forming

a clone of n þ 1 cells. If the cell division results in two pro-

genitor daughters (PP), the number of dividing cells k
increases to k þ 1. If the cell division results in a progenitor

cell and a differentiated cell (PD), the number of dividing

cells k stays the same. The production of two differentiated

daughters (DD) results in a loss of dividing cells to k 2 1.

We can thus model the number of P cells as a discrete

random walk that can move up, remain flat or move down

with probabilities a, b and c, where we have one forward

step to take at every cell division as in figure 2a,b. Note

that if the colony becomes fully differentiated, k ¼ 0, we

have no dividing cells and our process stops.

We note that the timing of these divisions does not relate

to the count of proliferating cells. In figure 2a, we see the
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time-dependent process, with a division rate that will be

proportional to the number of proliferating cells. In figure 2b, we

see the same information indexed by the number of cell divisions;

the timing is not important. By restricting the stochastic process to

the precise moments when the stochastic variable changes value,

we have identified the embedded Markov chain. This may also be

referred to as the jump chain, and the times between the holding pro-
cess [31]. This is an intuitive technique that can be applied to

discrete processes continuous in time, and was first employed

by Kendall [32] to analyse queues. However, it does not appear

to have been extensively used in clonal dynamics.

Such a problem is closely related to counting Motzkin lattice

paths [33]. Lattice paths are paths connecting positions with inte-

ger coordinates and can take a variety of forms [34,35]. In

particular, Motzkin paths start from the origin (0, 0) on a two-

dimensional integer lattice and allow movement with an up
(1, 1) step, a flat (1, 0) step or a down (1, 21) step such that we

never move below the horizontal axis. There are several path

counting techniques for such conditions [33,36,37], which have

also seen applications to paths similar to the ones we describe

[38,39]. These have been studied for a range of combinatorial pro-

blems [40], including some problems with weighted edges [41].

These paths can be used to represent our problem. The pos-

ition (n, k) corresponds to the total number of cells, n, and the

number of dividing cells, k, respectively. The PP, PD or DD

divisions correspond to the up, flat and down steps, respect-

ively. There are three differences from Motzkin paths to note.

First, we start with one (P) cell, represented by position (1, 1).

Second, we stop if we touch the horizontal axis, because no

dividing (P) cells remain (k ¼ 0). Lastly, we have probabilities

a, b and c associated with each step. Now, we would like to

find the probability Pn,k of finding k dividing cells in a clone

of size n. This probability then corresponds to a weighted

sum of Motzkin paths from (1, 1) to (n, k), where Motzkin

paths in this context do not touch the horizontal axis.
2.1. Motzkin paths describe the entire distribution of
colony sizes

We have the following distribution for the number of

progenitor (P) cells in a colony.

Theorem 2.1. If we seed a single dividing cell, then the probability of
having k(.1) dividing cells when the colony is of size n is given by

Pn,k ¼
Xb(n�k)2c

i¼0

n� 1
k þ 2i� 1

� �

� k þ 2i� 1
i

� �
� k þ 2i� 1

i� 1

� �� �
akþi�1bn�k�2ici:

Proof. We start with Dyck paths: paths from (0,0) to (0,2n) that

do not go below the horizontal axis involving steps of type up,

(1, 1), or down, (1, 21), such as portrayed in figure 3a. The

number of such paths is known to be counted by the Catalan

numbers Cn ¼ 1=(nþ 1)
2n
n

� �
[42]. A Dyck triangle is the col-

lection of paths from (0,0) to (n, k) that do not go below the

horizontal axis and involve up and down steps. Note that n
and k must have the same parity. If Dn,k count these paths

then conditioning over one step we find Dn,k ¼ Dn21,k21 þ
Dn21,k þ 1. It is straightforward to show by substitution

that Dn,k ¼ (k þ 1)=(nþ 1)
nþ 1

1
2(n� k)

� �
satisfies this recurrence,
along with boundary condition D2n,0¼ Cn. This formula differs

from other counts involving Dyck triangles, because this lattice

formulation of the triangle is rotated through p/4 to the usual

presentation [43].

We now turn to Motzkin paths, which are the same as Dyck

paths except we now allow an additional horizontal step (1,0).

Now, any Motzkin path from (0, 0) to (n, k) can be partitioned

into a Dyck path from (0,0) to (k þ 2i, k) involving k þ i up

steps and i down steps, along with n 2 k 2 2i horizontal steps,

where i [ 0, 1, . . . , b(n� k)=2c. For any i, the probability of

such a path arising is akþ ibn 2k 22ici. Then, noting that we have

n
k þ 2i

� �
permutations of the horizontal steps with the Dyck

path steps, we sum across the possibilities to get the following

probability:

mn,k ¼
Xb(n�k)=2c

i¼0

Dkþ2i,k
n

k þ 2i

� �
akþibn�k�2ici

¼
Xb(n�k)=2c

i¼0

n
k þ 2i

� �

� k þ 2i
i

� �
� k þ 2i

i� 1

� �� �
akþibn�k�2ici:

Finally, we note that we are going from position (1, 1) to (n, k)

without touching the horizontal axis, so substituting n! n 2 1

and k! k 2 1 gives the required result: Pn,k ¼ mn21,k21. B

This result allows us to look at the case where all n cells in

the colony are fully differentiated (all are (D) cells), and there

is not further potential for growth. In our Motzkin triangle

analogy, this would be a Motzkin path (with an additional

final down step) from (1, 1) to (n, 0), such as the path in

figure 3e. All colonies that have a corresponding path touch-

ing the horizontal axis thus have no proliferating cells. We

have an absorbing barrier, also known as the gambler’s

ruin problem.

Corollary 2.1. The probability Pn,0 is given by weighted Motzkin
numbers

Pn,0 ¼
Xb(n�2)=2c

i¼0

n� 2
2i

� �
2i
i

� �
� 2i

i� 1

� �� �
aibn�2�2iciþ1

¼
Xb(n�2)=2c

i¼0

n� 2
2i

� �
C2iaibn�2�2iciþ1:

Proof. For the case where there are no dividing cells remain-

ing in the colony, the colony must transit through a

penultimate stage (n 2 1, 1) with only one dividing cell remain-

ing, and undergo an enforced final (DD) division. Multiplying

the formula for Pn2 1,1 by c gives the required result. B

Both these results have corresponding generating func-

tions as described in the following result.

Theorem 2.2. The generating function F(x, t) ¼
P1

n¼0

Pn
k¼0

Pn,kxktn is given by

F(x, t) ¼
1� bt�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(bt� 1)2 � 4act2

q
2a

þ
x(2tax� 1þ btþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(bt� 1)2 � 4act2

q
2a(x� tc� tbx� tax2)

:
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Figure 3. Cell proliferation as a combinatorial branching process with predictable paths. (a) Cell division in progenitor cells is a branching process with three possible
outcomes (PP, PD or DD; figure 1). The expansion of a single cell to form a clone of cells is thus a combinatorial process, where any outcome of total clone size n
and proliferating cells within it k occurs along fixed paths of a Motzkin-like triangle. Clones that reach the horizontal axis have only non-dividing cells, and therefore
do not progress further. (b) Example showing the nine paths that a single proliferating cell can take to reach a clone of n ¼ 5 and k ¼ 3. The first three routes have
three a divisions and one c division, whereas the remaining six routes involve two each of a and b divisions (cumulative probability ¼ 3a3c þ 6a2b2). (c) A Dyck
path, which moves up and down and not below the horizontal axis. (d ) A Motzkin path, which also includes horizontal moves. (e) A gambler’s ruin problem, which
starts from height 1 rather than from the origin, representing the formation of a fully differentiated clone from a single dividing cell.
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Proof. First, we construct a weighted generating function for

paths in a standard Motzkin triangle, m(x, t) ¼
P1

n¼0Pn
k¼0 mn,kxktn, where mn,k are the Motzkin numbers weighted

by the elements a, b and c associated with each path from

(0,0) to (n,k). Now, conditioning over a single step gives the

following recurrence: mnþ1,k ¼ cmn,kþ1þ bmn,k þ amn,k21. Then,

substituting this into the generating function yields the following:

m(x, t) ¼ 1þ
X1
n¼1

Xn

k¼0

mn,kxktn ¼ 1þ
X1
n0¼0

Xn0þ1

k¼0

mn0þ1,kxktn0þ1

¼ 1þ
X1
n0¼0

Xn0þ1

k¼0

(cmn0 ,kþ1 þ bmn0 ,k þ amn0 ,k�1)xktn0þ1

¼ 1þ tc
x(m�m(0, t))þ tbmþ taxm:

Rearranging this equation for m(x, t) results in the expression

m(x, t) ¼ x� tcm(0, t)
x� tc� tbx� tax2

:

To find m(0, t), we note that a Motzkin path from (0, 0) to

(n þ 1, 0) involves one of two possible combinations. First,

we can have an initial horizontal step (weight b) followed by
a weighted Motzkin path of length n. Second, we can have

an up step (weight a), a Motzkin path (length k), a down step

(weight c) and a Motzkin path (length n 2 1 2 k). This is sum-

marized in the following, where mn is the weighted sum of

these paths:

mnþ1 ¼ bmn þ ac
Xn�1

k¼0

mkmn�1�k:

Now, substituting this recurrence into the generating func-

tion m(0, t) ¼
P1

k¼0 mktk ¼ 1þ t
P1

k¼0 mkþ1tk yields m(0, t) ¼
1 þ btm(0, t) þ t2acm(0, t)2. The solution satisfying m(0, 0) ¼ 1

is then

m(0, t) ¼
1� bt�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(bt� 1)2 � 4act2

q
2act2

:

Substituting this into the equation for m(x, t) above then

yields the general form

m(x, t) ¼
2tax� 1þ btþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(bt� 1)2 � 4act2

q
2at(x� tc� tbc� tax2)

:
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The result is obtained by noting that the generating func-

tion for Pn,k corresponds to paths from (1, 1) to (n, k).

Furthermore, a path from (1, 1) to (n, 0) involves a weighted

Motzkin path of length n 2 2, followed by a down step, and

we find that

F(x, t) ¼
X1
n¼0

Pn,0tn þ
X
n,k�1

Pn,kxktn

¼ t2c
X1
n¼0

mn,0tn þ xt
X
n,k�0

mn,kxktn

¼ t2cm(0, t)þ xtm(x, t):

Substituting the weighted Motzkin generating functions

results in the desired form. B

2.2. Gambler’s ruin
We are now in a position to describe the probability of ruin,

or equivalently the probability of a fully differentiated clone,

where we have the following result.

Corollary 2.2. The generating function G(t) ¼
P1

n¼0 Pn,0tn is
given by

G(t) ¼
1� bt�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(bt� 1)2 � 4act2

q
2a

:

This results in an alternative expression for the probability Pn,0

that a clone of size n is fully differentiated:

Pn,0 ¼
�(1=2)n

2a

Xn

r¼0

2(n� r)
n� r

� �

� 2r
r

� �
(bþ 2

ffiffiffiffiffi
ac
p

)
n�r

(b� 2
ffiffiffiffiffi
ac
p

)
r

(2(n� r)� 1)(2r� 1)
:

Furthermore, we find that the probability P0 that a single
proliferating cell will become fully differentiated is given by

P0 ¼
1 a � c
c
a

a . c:

(

Proof. To obtain the generating function G(t), we simply

substitute x ¼ 0 into F(x, t) from theorem 2.2. To obtain the

alternative expression for the probabilities Pn,0 note that we

can write G(t) as

G(t) ¼ 1
2a[1� bt� (1� (bþ 2

ffiffiffiffiffi
ac
p

)t)
1
2(1� (b� 2

ffiffiffiffiffi
ac
p

)t)
1
2]:

A double binomial expansion gives us

G(t) ¼ 1

2a
1� bt�

X1
j¼0

X1
k¼0

2j
j

� �
2k
k

� �
(bþ2

ffiffiffi
ac
p

2 )
j
(b�2

ffiffiffi
ac
p

2 )
k

(2j� 1)(2k � 1)
t jþk

2
4

3
5:

The constant and linear terms cancel, and a reordering of

the summation to collect powers of t leaves us with the

required expression.

Last, we note that G(1) ¼
P1

n¼0 Pn,0 and so substituting

t ¼ 1 into the generating function gives us

G(1) ¼ 1

2a
(1� b�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(b� 1)2 � 4ac

q
) ¼ 1

2a
(aþ c� ja� cj),

where we have used 1 2 b ¼ a þ c. Separately considering the

cases a . c and a � c gives the required results. B
2.3. Estimating differentiation probabilities
We are now in a position to estimate the probabilities a, b and c
of getting the different daughter cell combinations of (PP), (PD)

or (DD), even when (P) and (D) cells are visually indistinguish-

able. Clone size distributions in a range of homeostatic

epithelia demonstrate that dividing progenitor cells have (PP)

outcomes in similar proportions to (DD) outcomes (or a ¼ c)

[11]. Colonies arising from such populations will eventually

become fully differentiated and stop growing, as represented

in the bottom row of figure 3a. Therefore, at late time points

of observation, all colonies of cells with few cell numbers will

be formed exclusively of non-dividing cells, as any colonies

with dividing cells will continue to expand in cell number.

Thus, repeated measurements of small clone sizes, nc, of fully

differentiated non-dividing colonies of size n can readily be

counted. We can then compare these counts with the probabil-

ities fc, bc, c(b2 þ ac),. . .g ¼ fPn,0gn of either corollary 2.2 or 2.1,

and hence determine a, b and c.

We investigated this approach on triplicated sets of 7 day

clonal cultures of human neonatal keratinocytes [44]. These

cells divide faster than once per day, and at this time point,

there is no shedding of differentiated cells, allowing us to

apply our analysis. From a total population of 2086 keratino-

cyte clones, we observed 259, 72 and 53 colonies with two,

three and four cells, respectively. Taking the ratios, we

found that 72/259 ¼ bc/c and 53/72 ¼ c(b2 þ ac)/bc which pro-

vided estimates b ¼ 0.278 and ac ¼ 0.127. The presence of

additional proliferating clones was indicative of a skewed

rate a . c. Noting that b ¼ 1 2 a 2 c finally produces

estimates [a, b, c] ¼ [0.415, 0.278, 0.307].

Small clone sizes form the bulk of clones seen in population

distributions, and have therefore provided robust quantifiable

results at early time points. It is also important to highlight that

this analysis is not affected by the presence of additional

cell populations which have a branching birth process alone

(putative stem cell populations). Compared with the small, dif-

ferentiated and non-expanding small clones, putative stem cell

clones will be much larger, and continue to expand with time,

thus being easily identified and excluded.

2.4. Stochastic processes approach
Finally, we remark that a lot of the derivations using Motzkin

paths can also be replaced with approaches from stochastic

processes. We highlight this with an alternative derivation

of the gambler’s ruin generating function of corollary 2.2 in

appendix A.
3. Exact distributions of Luria – Delbrück type
We now investigate the mutation process of a growing clone of

cells. Here, we assume no death process is involved, and

initially that the mutation provides no additional survival

advantage. In all that follows, k ¼ m þ n is the number of

cells, where m and n count the number of mutants and non-

mutants, respectively. Some aspects of this time-independent

approach have been explored in [45], which we highlight

when relevant.

3.1. The neutral model
Again, we start with a single dividing cell. An example of this

can be seen in figure 4a. The cells are dividing randomly at a
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Figure 4. A branching process of non-mutated and mutated cells. A single
dividing cell is followed in time with the height of the solid line indicating
total number of cells, and the height of the dashed line indicating number of
mutant cells. In (a), plotted against time, we see the rate of cell division is
proportional to the total number of cells, resulting in exponential growth. In
(b), plotted against the number of divisions, we see the number of mutant
cells only depends upon the number of the mutant cell divisions not their
timing.
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rate b according to the following Markovian branching

(Yule–Furry) process. When any non-mutant cell divides

we assume a mutant cell arises with probability m1, such as

the first division of figure 4a at time t1. Conversely, we may

obtain two non-mutants with probability m0 ¼ 1 2 m1, such

as in the second division portrayed at time t2. Finally, any

dividing mutant produces two mutant daughters with prob-

ability 1, as displayed at times t3 and t4. We ignore any back

mutation or loss of mutation.

As the colony grows, the rate of division, bk, increases in

proportion to the number of cells present, k. If tk is the time of

the kth division, then the mean time intervals tkþ 1 2 tk corre-

spondingly decrease as we get exponential growth. Note that

at time tk the colony increases in size (by one cell) to k þ 1

cells. It is this single dividing cell that has the opportunity

to affect the number of mutations at this point; this is inde-

pendent of either the time tk at which this takes place, or

the time tkþ 1 2 tk between divisions. We thus find we are

interested in the embedded Markov (or jump) chain of the

process, which proved so useful in the last section [31].

In figure 4b, we see the mutation process as a discrete pro-

cess on the number of divisions that have taken place. We

assume for the moment that mutant and non-mutant cells

divide at the same rate in a Markovian manner. All cells are

thus equally likely to divide at any point in time. If we have n
non-mutant cells and m mutant cells, we then find that

a mutant will divide with probability m/(m þ n) resulting in

m þ 1 mutants and m þ n þ 1 cells. Conversely, a non-mutant

divides with probability n/(m þ n) resulting in m þ n þ 1
cells. This non-mutant will mutate with probability m1 resulting

in m þ 1 mutants; otherwise, we will still have m mutants, with

probability m0. Then, conditioning over a single cell division

leads to the following correspondence.

Theorem 3.1 (Angerer [45]). If p(k)
m denotes the probability of

having m mutant cells present when the population is of size k, then
we have the following recurrence, which is initialized with p(1)

0 ¼ 1:

p(k)
m ¼

m� 1

k � 1
þ k �m

k � 1
m1

� �
p(k�1)

m�1 þ
k � 1�m

k � 1
m0

� �
p(k�1)

m :

Note that we have reduced the mutation process to a

discrete heterogeneous Markovian random walk starting

from (0, 1) where we have either a horizontal step (1, 0)

with probability ((k 2 m)/k)m0, or the step (1, 1) with prob-

ability m/k þ ((k 2 m)/k)m1. In the next result, we describe

the following general form for the k division distribution of

mutants and non-mutants. These probabilities are simpler

to express in terms of the non-mutants; q(k)
n . We also provide

a corresponding generating function. This generalizes [45]

slightly and provides a constructive proof of the formula

for q(k)
n , which is just validated by induction in [45], giving

little insight into its derivation.

Theorem 3.2. The probability q(k)
n of n non-mutant cells among k

cells, starting from a single non-mutant cell is

q(k)
n ¼

Xn

i¼1

(� 1)k�i n� 1
i� 1

� �
im0 � 1
k � 1

� �
:

These probabilities have the following generating function:

G(x, y) ¼
X1
k,n¼1

q(k)
n xk�1yn�1

¼ (1� x)�m1 (1� y(1� (1� x)m0 ))�1:

Proof. We rearrange the recurrence of theorem 3.1 in terms

of non-mutants to give

(k � 1)q(k)
n ¼ ((k � n� 1)þ (nm1))q(k�1)

n þ (n� 1)m0q(k�1)
n�1 :

Multiplying by xk21yn21 and summing results in the

following partial differential equation:

(m0yþ m1)G ¼ (1� x)
@G
@x
þ m0y(1� y)

@G
@y

:

Note that conserved total probability is equivalent to

boundary condition G(0, y) ¼ 1. We then solve this with the

method of characteristics to give the form stated for G.

Three binomial expansions results in a power series in x,y
with coefficients equal to the expression given for q(k)

n . B

An example of the resulting distributions can be seen in

figure 5a,b.

We note that we have the zero mutant probability

p(k)
0 ¼ q(k)

k ¼ mk�1
0 ¼ (1� m1)k�1, reflecting the requirement

that all k 2 1 divisions are mutant free. We can compare

this with the classic result of Luria–Delbrück, which states

that p0 ¼ e2m, where m is the mean number of mutations.

Now, this is simply the per cell division rate, m1, multiplied

by the number of divisions, k 2 1, and we obtain p0 ¼

e2m1(k21) ¼ (e2m1)k21. Now, e2m1�1 2 m1 and the two forms

agree up to O(m2
1).
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We have the following result concerning the moments.

Theorem 3.3. If E(k)
1 and E(k)

2 represent the first two moments of
the distribution of the number of non-mutants, conditional upon
k cells being present, then we have the following results:

E(k)
1 ¼ 1

(k�1)!

Yk�1

r¼1

(m0 þ r)

and

E(k)
2 ¼ 2

(k�1)!

Yk�1

r¼1

(2m0 þ r)� E(k)
1 :

Proof. Differentiating the definition and functional form of

G in theorem 3.2 gives us

@G
@y

(x, 1) ¼
X1
n,k¼1

(n� 1)q(k)
n xk�1 ¼

X1
k¼1

E(k)
1 xk�1 � (1� x)�1

¼ (1� x)�(1þm0) � (1� x)�1:

A series expansion then provides the form for the first

moment.

The second moment is obtained similarly from

@2G=@y2(x, 1). B

3.2. Incorporating selection
For certain mutations, there may be a subsequent growth advan-

tage. This has been observed with p53 mutations in epidermal

tissue, for example [11]. Our assumption that all cells are equally

likely to divide is no longer valid, with mutants dividing at a

different rate from non-mutants. However, we find that the

mutation process is only dependent upon the ratio of these

rates, and we can condition on the number of cells and apply a

similar technique to the previous section to obtain the following.

Theorem 3.4. Let the division rate for non-mutants and mutants bebn

and bm, respectively, with ratio r¼ bm/bn. If p(k)
m represents the prob-

ability of having m mutant cells when there are k¼m þ n cells
present, then we have the following recurrence, initialized with p(1)

0 ¼ 1:

p(k)
m ¼

r(m� 1)

r(m� 1)þ n
þ n

nþ r(m� 1)
m1

� �
p(k�1)

m�1

þ n� 1

n� 1þ rm
m0

� �
p(k�1)

m :

Proof. We suppose that the mutant cells are dividing at a rate

bm and the non-mutant cells are dividing at a rate bn. We further
suppose we have m and n of these cells, respectively. Then, if Tm is

the time until the next mutant cell divides, this has exponential

distribution with mean 1/(bmm). The time Tn until the next

normal cell divides is similarly exponential with mean time

1/(bnn). Then, if we know we have a cell division at some

point in time, we would like to know which type of cell will

divide first. Specifically, we require

Pr(Tm . Tn) ¼
ð1

0

ðtm

0

bmmebmmtmbnnebnntn dtndtm

¼ nbn

mbm þ nbn
¼ n

rmþ n
:

Thus, we just have to weight the mutant count by the rela-

tive increase in division rate. In particular, if we have m
mutant cells and n 2 1 non-mutant cells, then the probability

that we have m mutants and n non-mutants after the next cell

division requires a non-mutant to divide without a new

mutation forming. This occurs with probability (n 2 1)/(n 2

1 þ rm)m0. Similarly, if we have m 2 1 mutant cells and n
non-mutant cells, then the probability that we have m mutants

and n non-mutants after the next cell division requires a mutant

to divide, or a non-mutant to divide with a new mutation form-

ing. This occurs with probability r(m 2 1)/(r(m 2 1) þ
n) þ(n)/(n þ r(m 2 1))m1. The recurrence is a statement of con-

ditional probability connecting these two observations. B

The recurrence can be used to derive the probabilities p(k)
m

and the moments. However, an application of the generating

function approach of theorem 3.2 to derive an analogous for-

mula proved difficult. An example of the distribution from

theorem 3.4 can be seen in figure 5c, where we have mutation

rate m1 ¼ 0.05 and relative fitness r ¼ 2. This gave a com-

parable distribution to figure 5b, where the mutation rate

is m1 ¼ 0.20 with neutral relative fitness r ¼ 1, although the

variance is notably higher in figure 5c.
4. Distributions of subclones in mutated colonies
In the questions considered in §3, we just have the binary status

of mutated or non-mutated. This is generally the status of a gene,

or a portion of a chromosome that may be of interest, but could

also be the status of a single nucleotide of DNA, which number in

the billions. DNA sequencing techniques now mean that indi-

vidual mutations can be distinguished by their position in the

genome. For example, in figure 6a, we see that five of six cells

are mutant, arising from four mutations produced during
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three cell divisions (†), that combine into four distinct clones. In

figure 6b, we have the distribution of the number of cells for each

mutation. This is a symbolic representation of the mutation and

sequencing depth information obtained from modern exper-

iments and points to other avenues of investigation. First, we

would like to know the number of cells containing a randomly

selected mutation. Second, we would like to know the number

of clones. Third, we would like to know the number of cells in

a randomly selected clone. Finally, we would like to know the

number of distinct mutations in a randomly selected clone. We

have the following results.
4.1. The number of cells containing a specific mutation
We have the following result for the first question.

Theorem 4.1. If p(k)
r is the probability that a randomly selected

mutation exists in r cells in a colony of k cells, then we have

p(k)
r ¼

Xk�rþ1

j¼1

j� 1

(k � 1)2

k � j
r� 1

� �
k � 2
r� 1

� � :

This differs slightly from the original problem considered

by Luria and Delbrück in that instead of asking how many

cells contain a mutation in a specific gene (or region),

which may involve many different mutation events, we ran-

domly sample a mutation from all mutations found in that

region, and count the corresponding number of cells contain-

ing that mutation. We assume each mutation arises only once,

which may not be true for large colonies or small genomes.

Proof. Now, there are k 2 1 divisions that take place to

give a sample size of k. Now, if we randomly select a

mutation, it can arise during any of these divisions with

equal probability. We let q(j,k)
r denote the probability that if

a mutation forms when there are j cells, it is present in r
cells when the cell population is k � j. Then, if p(k)

r is the prob-

ability a randomly selected mutation is in r cells when the

population is of size k, we have

p(k)
r ¼

1

k � 1

Xk�rþ1

j¼1

q(j,k)
r :

If the mutation arises when the population has size j, then

this mutation may be present in any of 1 to k 2 j þ 1 cells

when the population size is k, depending on whether the

cells containing the mutation divide. Thus, j � k 2 r þ 1. Fur-

thermore, following a population size of k 2 1, we either have

r 2 1 copies of the mutation and the next cell division
duplicates a copy, or we have r mutant cells, and the dividing

cell does not contain the mutation of interest. This gives us

the recurrence

q(j,k)
r ¼ q(j,k�1)

r 1� r
k � 1

� �
þ q(j,k�1)

r�1

r� 1

k � 1

� �
:

Now, if we start with the initial value q(j,j)
1 ¼ 1, so that

initially one of j cells carries the mutation, then we can

show by substitution that this recurrence and initial condition

is satisfied by the following expression:

q(j,k)
r ¼ (j� 1)

(k � j)r�1

(k � 1)r
,

where (a)b ¼ a(a 2 1) . . . (a 2 (b 2 1)) is the Pochhammer

symbol. Substituting into the expression above then gives

p(k)
r ¼

Xk�rþ1

j¼1

j� 1

k � 1

(k � j)r�1

(k � 1)r
:

This is equivalent to the expression in the theorem. B

4.2. Distribution of the number of clones
The second problem requires the distribution of the number

of clones. Every time a new mutation occurs, it will occur

in a single cell that belongs to some clone already present.

That cell will divide into two daughters, one of which will

contain the new mutation. That cell will have a new combi-

nation of mutations and a new clone is born. We thus

trivially observe that the number of clones is always one

more than the number of cell divisions that produce new

mutations. Now, mutations can arise during a cell division.

For a colony of size k, we have k 2 1 independent cell div-

isions in total, each of which may generate new mutations

with probability m1. We thus find the following.

Theorem 4.2. If C represents the number of clones, then we find
that for a total population size k, C21 has binomial distribution
Bin(k 2 1, m1).
4.3. Size distribution of mutant clones
The third question concerns the size of the clones. For

example, in figure 6a, we note that clone 2 was formed in

the third cell division, and contains a single cell. The associ-

ated distribution for the size of a random clone is described in

the following result.

Theorem 4.3. Let p(k)
n represent the probability a randomly selected

clone contains n cells, given a total population of k cells. Let p(i,k)
n be
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the corresponding probability for a clone formed in the ith cell
division. Then, p(k)

n ¼ (1=(k � 1))
Pk�n

i¼1 p(i,k)
n , where

p(i,k)
n ¼

Xn�1

j¼0

i(�1)j

k � nþ j
k � i� 1
n� 1� j

� �
k � nþ j� i

j

� �
:

Proof. A new clone arises whenever a mutation occurs. For

a population of size k, a randomly selected mutation arises

with equal probability 1/(k 2 1) at any of the k 2 1 divisions

that have taken place.

Let us suppose the clone appears at division i. We thus

have 1 cell in the clone and i other cells. We let r ¼ 0, 1, . . .

k 2 1 2 i index the remaining divisions and pr
n represent the

probability of having n clonal cells after the cell division

with index r. We thus have initial condition p0
1 ¼ 1. If we

have n clonal cells after the cell division with index r (result-

ing in r þ i þ 1 cells in total), then the next division is a clonal

cell with probability n/(r þ i þ 1). Conditioning over a single

division then results in the recurrence

pr
n ¼

r� 1þ iþ 1� n
r� 1þ iþ 1

� �
pr�1

n þ n� 1

r� 1þ iþ 1

� �
pr�1

n�1

, (rþ i)pr
n ¼ (rþ i� n)pr�1

n þ (n� 1)pr�1
n�1:

If we introduce the generating function

G(x, y) ¼
P

r�0,n�1 pr
nxryn�1, then substituting the recurrence

results in the partial differential equation

(1� x)
@G
@x
þ y(1� y)

@G
@y
¼ yþ i� i

x

� �
Gþ i

x
:

We then solve this using the method of characteristics with

boundary condition G(0, y) ¼ 1 to give

G ¼ 1
xi

ðx

0

izi�1(1� xy� (1� y)z)�1 dz:

Three binomial expansions inside the integral then allow us

to write G as a power series in x, y with coefficient

pr
n ¼

Xn�1

j¼0

i(� 1)j

iþ r� nþ 1þ j
r

n� 1� j

� �
r� nþ 1þ j

j

� �
:

Substituting r ¼ k 2 i 2 1 then gives the desired form. B

4.4. Number of mutations in a random clone
Finally, we need the number of mutations in a randomly

selected clone. For example, note that clone 2 from figure 6a
is composed of three mutations, two of which formed during

the third cell division. In general, we have the following result.

Theorem 4.4. Let Xi be the Bernoulli variable with success
probability 1/(i þ 1) for i ¼ 1,2,. . ., k 2 1. A clone arises at cell
division i with probability 1/(k 2 1), where k is the total popu-
lation size. The number of mutations accumulated by a clone
formed in cell division i is Poisson(l

Pi�1
j¼1 Xj), where e2l ¼ m0.

Proof. New mutations occur during any cell division with

a probability m1 ¼ 1 2 m0. Now, if we assume that different

mutations arise independently, then we can assume they are

Poisson distributed per cell division with some parameter l so

that m0 ¼ e2l. Now, if a clone occurs at division i, then any sub-

sequent mutations form new clones and do not belong to this

clone. However, any earlier mutations may have been incorpor-

ated into its lineage. If the first cell division has a mutation, then it

occurs in this lineage with probability 1/2, the second division
with probability 1/3, the rth with probability 1/(r þ 1). The

total number of mutations in the lineage is then a sum of identical

Poisson variables over cell divisions in this lineage. B
5. Conclusion
We have shown that the number of mutated or proliferating

cells in a clone has a natural dependency upon the total

clone size, rather than time taken for a single cell to grow

into the observed clone. This corresponds to the embedded

Markov (or jump) chain of the continuous process, and com-

binatorial and generating function approaches can reveal

their distributions.

The utility of these techniques has been demonstrated for

epithelial tissue, where the relative likelihoods of different

types of cell division were estimated. This is a model where

different cell fates are the main difficulty. We also demonstrated

for the pure birth process that different cell division rates can also

be examined using these techniques. However, some situations

may involve both complications, and derive from different

models. Intestinal epithelium, for example, has different cell div-

ision rates, and the colonic crypts have a distinct model of tissue

homeostasis. Each individual case will require its own separate

analysis of the underlying jump process. Exploring these

methods across the full range of tissue and/or mutation types

is beyond the scope of this paper. However, we have provided

sufficient examples to demonstrate that the general approach

described is likely to be worth exploring in other scenarios.

The method described makes no assumption about

dynamics, and can resolve population asymmetry (a ¼ c in

figure 1b), invariant asymmetry (a¼ c¼ 0) or imbalanced fate

tilted towards proliferation (a . c) or differentiation (c , a). The

clones can be set in a homeostatic or non-homeostatic tissue or

indeed in a cell culture system. A requirement for the analysis

shown in figure 1 is that terminally differentiated cells are not

lost from the system by apoptosis or shedding. However, these

processes can be accommodated if additional information such

as the rate of cell loss is known. The scope of the method extends

to all systems where cell fate is intrinsic rather than being

regulated by spatial constraints such as in the intestinal crypt.

We have shown how this method can resolve the prob-

abilities of each division outcome in small colony forming

cells in primary human keratinocyte cultures [44]. This is

likely to see applications to mutant keratinocytes such as

resolving the imbalance in fate seen with keratinocytes

harbouring p53 mutations under UV exposure [11].

This method can be applied to early time point data from

in vivo lineage tracing experiments such as those also reported

in [1,46] or analysing the dynamics of small p53 mutant clones.

However, the time-independent approach relies on cells not

being lost from the tissue. In the epidermis, once the surface

is breached by differentiating cells, cell loss complicates the

analysis. Intestinal epithelium is complex and highly dynamic.

The location of stem cells within the crypt is key to the regu-

lation of homeostasis, and live imaging has been required to

resolve that not all Lgr5þ stem cells are functionally equivalent

as was previously thought [47]. Our model does not address

spatial aspects and is not suited to lineages such as enterocytes

which are rapidly lost from the epithelium. Our method could

be used to investigate Paneth cell precursors in a clonal fre-

quency lineage tracing experiment in vivo or in organoid

cultures, as differentiated Paneth cell turnover is slow [48].
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However, to date, there are no published datasets suitable for

such analysis.

In addition in the second part of the paper, we apply

these insights to an emerging problem, the analysis of the fre-

quency of mutations within a sample where the age of the

constituent clones is not known. Such data are being gener-

ated by deep genomic sequencing studies of tumours, for

example, and methods such as the time-independent analysis

we present here are needed to help interpret the data.

The approaches discussed are exact but can be difficult to

handle for large samples sizes and some asymptotics would

be useful. Furthermore, the results all assume that the processes

of cell division are Markovian, and so the cell cycle exponen-

tially distributed. This is unlikely to be accurate, with cell

cycle generally being better approximated by gamma distri-

butions. This may have significant effects on some results and

warrants further exploration.
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Appendix A
Alternative proof of corollary 2.2 using stochastic processes

methods.

Proof. Consider a random walk that moves up or down

by one unit at each step, starting from height 1. We are

interested in the number of steps taken until we first reach

height 0.

We let un denote the probability of being at height 0 after

n steps, where the walk is initially unrestricted and may move

below or above height 0. This requires x up steps and x þ 1

down steps for some x � (n 2 1)/2 and so we obtain the

multinomial sum for n � 1:

un ¼
Xb(n�1)=2c

x¼0

n!

x!(xþ 1)!(n� 2x� 1)!
axbn�2x�1cxþ1:

This can be used to construct an associated generating

function:
4

U(t) ¼
X1
n¼0

untn ¼
X1
n¼1

Xb(n�1)=2c

x¼0

n!

x!(xþ 1)!(n� 2x� 1)!
axbn�2x�1cxþ1tn

¼ c
b

X1
x¼0

X1
n¼2xþ1

n!

x!(xþ 1)!(n� 2x� 1)!
(bt)n ac

b2

� �x
¼ c

b

X1
x¼0

X1
m¼0

(mþ 2xþ 1)!

x!(xþ 1)!(m)!
(bt)mþ2xþ1 ac

b2

� �x

¼ ct
X1
x¼0

2xþ 1

x

� �
(act2)x

X1
m¼0

mþ 2xþ 1

m

� �
(bt)m ¼ ct

X1
x¼0

2xþ 1

x

� �
(act2)x 1

(1� bt)2xþ2

¼ ct

(1� bt)2

X1
x¼0

2xþ 1

x

� �
act2

(1� bt)2

� �x

¼ ct

(1� bt)2

(1� bt)2

2act2

1

(1� (4act2)=(1� bt)2)
1=2
� 1

" #

¼ 1

2at
1� 4act2

(1� bt)2

� ��1=2

� 1

" #
:

� �

Here, we have used the identity 2z

P1
x¼0

2xþ 1
x zx ¼

(1� 4z)�1=2 � 1 on the penultimate line.

Similarly, we let vn denote the probability of being at

height 0 after n steps, this time starting from height 0.

Again, we do not prohibit negative heights. This requires x
up steps and x down steps for some x � n/2, and so we
obtain the multinomial sum for n � 1:

vn ¼
Xbn=2c

x¼0

n!

x!x!(n� 2x)!
axbn�2xcx:

This also has an associated generating function:
V(t) ¼
X1
n¼0

vntn ¼
X1
n¼0

Xbn=2c

x¼0

n!

(x!)2(n� 2x)!
axbn�2xcxtn

¼
X1
x¼0

X1
n¼2x

n!

(x!)2(n� 2x)!

ac
b2

� �x
(bt)n ¼

X1
x¼0

X1
m¼0

(mþ 2x)!

(x!)2m!

ac
b2

� �x
(bt)mþ2x

¼
X1
x¼0

X1
m¼0

mþ 2x
m

� �
2x
x

� �
(act2)x(bt)m ¼

X1
x¼0

2x
x

� �
(act2)x

X1
m¼0

mþ 2x
m

� �
(bt)m

¼
X1
x¼0

2x
x

� �
(act2)x 1

(1� bt)2xþ1
¼ 1

1� bt

X1
x¼0

2x
x

� �
act2

(1� bt)2

� �x

¼ 1

1� bt
1� 4act2

(1� bt)2

� ��1=2

:

We are interested in the first visit to height 0 starting from

height 1. Now, if we know we are at height 0 after n steps,
then there must be a first visit to height zero after r steps

for some r with 1 � r � n. If fr represents the probability of
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a first visit to 0 after r steps, then we then have the discrete

convolution

un ¼
Xn

r¼1
frvn�r:

Multiplying by tn and summing then results in the

following relation between generating functions:

U ¼ FV,

where F ¼
P1

r¼0 frtr is the generating function for the

probabilities fr we desire. Then, substituting the generating
functions above yields the following:

F(t) ¼ 1� bt
2at

1� 1� 4act2

(1� bt)2

� �1=2
" #

:

To obtain the required expression in corollary 2.2, we note

that the generating function G(t) ¼
P1

n¼0 Pn,0tn relates to the

probability of ruin Pn,0 when there are n cells present.

We start from 1 cell, so this involves n 2 1 steps and we

find fn 2 1 ¼ Pn. In terms of generating functions, we find

G(t) ¼ tF(t), which gives the desired form for G(t). B
J.R.Soc.In
References
terface
11:20140654
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