@’PLOS ‘ ONE

CrossMark

click for updates

E OPEN ACCESS

Citation: Yoon Y, Kim BH (2016) Secret Forwarding
of Events over Distributed Publish/Subscribe Overlay
Network. PLoS ONE 11(7): €0158516. doi:10.1371/
journal.pone.0158516

Editor: Cheng-Yi Xia, Tianjin University of
Technology, CHINA

Received: February 15, 2016
Accepted: June 16, 2016
Published: July 1, 2016

Copyright: © 2016 Yoon, Kim. This is an open
access article distributed under the terms of the
Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

Data Availability Statement: The Facebook data
used in our study are originally from the "User
Interactions in Social Networks and their Implications”
study (published at EuroSys'09) whose authors were
contacted at bowlin@cs.ucsb.edu.

Funding: This work was supported by the Hongik
University new faculty research support fund (http://
www.hongik.ac.kr). The funders had no role in study
design, data collection and analysis, decision to
publish, or preparation of the manuscript.

Competing Interests: The authors have declared
that no competing interests exist.

Secret Forwarding of Events over Distributed
Publish/Subscribe Overlay Network

Young Yoon'*, Beom Heyn Kim?

1 Department of Computer Engineering, Hongik University, Seoul, South Korea, 2 Department of Computer
Science, University of Toronto, Toronto, Canada

* young.yoon @hongik.ac.kr

Abstract

Publish/subscribe is a communication paradigm where loosely-coupled clients communi-
cate in an asynchronous fashion. Publish/subscribe supports the flexible development of
large-scale, event-driven and ubiquitous systems. Publish/subscribe is prevalent in a num-
ber of application domains such as social networking, distributed business processes and
real-time mission-critical systems. Many publish/subscribe applications are sensitive to
message loss and violation of privacy. To overcome such issues, we propose a novel
method of using secret sharing and replication techniques. This is to reliably and confiden-
tially deliver decryption keys along with encrypted publications even under the presence of
several Byzantine brokers across publish/subscribe overlay networks. We also propose a
framework for dynamically and strategically allocating broker replicas based on flexibly
definable criteria for reliability and performance. Moreover, a thorough evaluation is done
through a case study on social networks using the real trace of interactions among Face-
book users.

Introduction

Publish/Subscribe (in short pub/sub) is a communication paradigm where loosely-coupled cli-
ents communicate in an asynchronous fashion. Subscribers issue subscriptions to express their
interest in certain topics and/or content. Publishers disseminate their publications to the sub-
scribers through a pub/sub routing system without directly being aware of their identities and/
or locations [1]. Because of such asynchronous nature, pub/sub paradigm supports the flexible
development of large-scale, event-driven and ubiquitous systems. Pub/sub is prevalent in many
application domains such as distributed business activity monitoring [2], stock price monitor-
ing for algorithmic trading systems [3], complex-event processing [4] and mission-critical sys-
tems such as air traffic control system [5]. A multi-national research group has adopted pub/
sub routing paradigm to improve the architecture of Internet that recently exhibits more con-
tent-oriented communication patterns [6, 7]. Many social networking services are built around
the pub/sub abstraction [8, 9]. Recently, notable international consortiums such as Allseen and
OIC acknowledge pub/sub as the critical communication substrate for Internet of Everything
(IoE) platforms, and naturally protocol standards such as MQTT and CoAP are receiving great

PLOS ONE | DOI:10.1371/journal.pone.0158516 July 1,2016

1/23

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0158516&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://www.hongik.ac.kr
http://www.hongik.ac.kr

@'PLOS ‘ ONE

Secret Forwarding in Publish/Subscribe Overlays

attention from the IoE application developers who need to implement pub/sub communication
[10, 11]. We can also envision potential applications of pub/sub systems in the study of com-
plex networks that analyzes the patterns of connections between elements of real systems [12-
16]. For instance, multivariate signals are measured from the distributed conductance sensors
in order to analyze oil-water flow patterns, which are subsequently visualized in terms of com-
munity structure [17]. These sensors can be deployed on a pub/sub system so that interested
patterns can be filtered and delivered in a more scalable and efficient way.

Pub/sub systems are typically formed into an overlay of distributed event matching and
forwarding brokers [8-11, 18, 19] in order to process a large volume of events in a scalable man-
ner. In reference implementations of pub/sub broker overlay [20, 21], a publisher first dissemi-
nates an advertisement to all the brokers before publishing events. We call a published event as a
publication. Publication can be labeled with a specific topic and can contain messages or con-
tent. If a subscription matches an advertisement in the SRT (Subscription Routing Table),
which is essentially a list of [advertisement, last hop] tuples, the subscription is for-
warded to the 1ast hop broker where the advertisement came from. In this way, subscriptions
are routed towards the publisher. Subscriptions are used to construct the PRT (Publication
Routing Table). The PRT is a list of [subscription, last hop] tuples, which is used to
route publications. If a publication matches a subscription in the PRT, it is forwarded to the
last hop broker where the subscription came from. This process continues until the publica-
tion finally reaches the subscriber. Fig 1 shows an example of content-based routing. In Step I,
an advertisement (M) arrives at B;. In Step 2, a matching subscription (M,) arrives at B. Since
M, matches M, at broker B;, M, is relayed to B; which is the 1ast hop of M;. After the com-
pletion of these steps, PRTs are updated accordingly along the path () from B, to Bs. Based on
the routing information on the PRTs on p, a publication (e.g., M3) that matches the subscription
M, can be delivered to the subscriber S; through p. Subscribers can specify an interest on a par-
ticular topic such as (class, =,bar) in M,. Subscribers can also express the interest in a
more fine-grained way by being specific on the content. For example, S; expressed the interest
over particular value range for the attribute price, as shown in Fig 1.

Our major concern is that the pub/sub brokers can fail or be compromised and thus behave
arbitrarily to hamper reliable and secure event delivery. We refer to an arbitrarily-behaving
pub/sub broker as a Byzantine broker. Byzantine brokers can be present across and along
many end-to-end delivery paths between publishers and subscribers. Any arbitrary behavior of
the Byzantine brokers can subvert applications running on pub/sub overlays and lead to very

SRT of B2

M, ADV: (class,=,foo),(price,>,15) If SUB intersects Forward to
M, PUB: (class,=,foo),(price,30)
(class,=,foo),(price,>, | B,
15)
If PUB intersects Forward to
M, SUB:
(class,=,foo),(price,>,20) | (class,=,fo0),(price,>, | B,
20)

Fig 1. An example of routing state updates on pub/sub overlay.

doi:10.1371/journal.pone.0158516.g001

PLOS ONE | DOI:10.1371/journal.pone.0158516 July 1,2016 2/23

@’PLOS ‘ ONE

Secret Forwarding in Publish/Subscribe Overlays

harmful result to end-users. Therefore, we need to devise a novel solution that can effectively
deal with this issue. Specifically, we aim to ensure the satisfaction of the following require-
ments, even under the presence of Byzantine brokers [22]. First, we must make sure that publi-
cation messages are delivered to the interested subscribers without any loss (a reliability
requirement). Second, we should not let a subscriber or a Byzantine broker access the sensitive
content in a publication message without access privilege (a confidentiality requirement).

As discussed further in the related work section, existing works for countering the violation
of the aforementioned requirements typically employ replication and encryption techniques.
Replicated brokers can decrease the possibility of message loss. Encryption can protect the pri-
vate portion of publication messages. However, to the best of our knowledge, these works over-
look the possibility of the decryption keys getting compromised and abused by Byzantine
brokers. Byzantine brokers can drop the keys to prevent the interested subscribers from
decrypting publication messages. Using the compromised keys Byzantine brokers may decrypt
private publication messages and disclose them to unauthorized subscribers. Byzantine brokers
can simply drop both the encrypted messages and the decryption keys. We need a solution that
addresses such threats to the reliable and secure operation of pub/sub middleware.

In this paper, we present a novel method that applies the secret sharing technique [23] to a
group of replicated brokers chained on a pub/sub overlay [24]. To give a high-level overview of
our solution, broker replicas are first placed along the end-to-end paths between publishers
and subscribers. Publishers split the decryption key by using the secret sharing scheme. Spit
keys that we call secret shares are propagated along with the encrypted publication messages.
The secret shares are generated and forwarded to the replicated brokers in such a way that the
original decryption keys cannot be reconstructed by Byzantine brokers. With this method, con-
fidential publication message is safe from being leaked. The replicas are used to prevent the
Byzantine brokers from dropping publications and keys, or sending publications to unautho-
rized subscribers.

Our method may introduce increased performance overhead due to the addition of more
brokers to the pub/sub overlay. Therefore, we also face the challenge of utilizing the given bro-
ker replicas in the most efficient manner. To address these challenges, we propose a framework
for dynamically and strategically allocating broker replicas based on reliability and perfor-
mance criteria that can be defined flexibly by pub/sub overlay administrators.

We evaluated the effectiveness of our solution by applying it to a service that publishes the
interactions that happened in a social network service. Specifically, we retrieved the real trace
of interactions among anonymous Facebook users and re-played the trace on the pub/sub mid-
dleware equipped with our new solution.

The rest of the paper is organized as follows. First, we present the details of our secret forward-
ing method and discuss various adaptations. Second, we describe the framework for allocating
replicas according to dynamically changing demand on reliability and performance. Third, we
analyze the performance evaluation result. Finally, we discuss related works and conclude.

The Secret Forwarding Method

In this section, we introduce a method that guarantees a reliable and confidential delivery even
under the presence of Byzantine brokers. The main point of our solution is to enforce a secret-
sharing scheme [23] for securely delivering decryption keys.

Secret Sharing in a Pub/Sub Overlay

One of our major concerns is that Byzantine brokers may arbitrarily process the encrypted
publication messages using a compromised decryption key. Therefore, it is imperative that the

PLOS ONE | DOI:10.1371/journal.pone.0158516 July 1,2016 3/28

el e
@) PLOS ‘ ONE Secret Forwarding in Publish/Subscribe Overlays

Byzantine Byzantine Non-Byzantine
broker broker broker

Fig 2. A simple broker replication example for handling the case where a Byzantine broker violates
the reliable publication delivery requirement.

doi:10.1371/journal.pone.0158516.g002

key should be protected from the Byzantine brokers. Here, we employ Shamir’s secret sharing
scheme [23]. With this technique, a secret can be split into # shares in such a way that at least k
shares are needed to reconstruct the original secret. In other words, even if up to k-1 shares are
compromised, the original secret cannot be re-generated. This is called the (k, n) threshold
scheme with the constraint that k > 1 and n > k. In our context, the secret is the key necessary
for subscribers to decrypt the publication messages that are encrypted by publishers. In this
section, we focus on the case where the Byzantine brokers reside along the end-to-end path
between publishers and subscribers. We show how the original decryption key should be split
by a publisher assuming that there is up to f number of Byzantine brokers at the next immedi-
ate hop. Then, we explain how the split secret shares should be propagated towards the inter-
ested subscribers.

Initial Key Split. Suppose the publisher P; sends out a publication p; via broker B; as
shown in Fig 2. Assume that B; is the Byzantine broker and drops p;. In order to prevent the
loss of messages, a redundant path can be established via replica B;. Duplicate publications can
be sent through the redundant paths so that at least one message is guaranteed to be forwarded
towards the subscribers. With the replica, the pub/sub overlay becomes tolerant to a single fail-
ure of reliable delivery. As a generalization, if there are f failures at each hop on an overlay, at
least f+ 1 replicas are needed on that hop. These replicas form a group that we call a virtual
node.

For decryption keys, we use the secure in-band key delivery strategy. Similar to the previous
case, we need to add broker replicas in order to tolerate node failures. However, the simple rep-
lication technique we used in the previous example is not sufficiently safe for the case of trans-
ferring the decryption key. The difficulty stems from the fact that it is impossible to perfectly
detect whether a broker is Byzantine or not. In order to prevent the Byzantine brokers from
obtaining the decryption keys, we choose to employ the secret sharing technique to safely split
the decryption keys into multiple shares, initially at the publishers. Assume that there are r rep-
licas in the virtual node V which is the next hop of publisher P. The brokers in V to which the
publishers are directly connected are referred to as publisher-edge brokers. A secret can be split
into r shares by a publisher, and these shares can be evenly distributed among the r replicas at
V. Having only one secret share, each replica cannot reconstruct the original secret. However,
we cannot rule out the possibility of multiple Byzantine brokers colluding to collect a sufficient
number of shares required for the reconstruction of the original secret. Also, assuming that (k,
n) threshold scheme is used by the publishers, the f Byzantine brokers among the publisher-
edge brokers may drop k secret shares. Even if other non-Byzantine brokers correctly deliver k-

PLOS ONE | DOI:10.1371/journal.pone.0158516 July 1,2016 4/23

@’PLOS ‘ ONE

Secret Forwarding in Publish/Subscribe Overlays

1 secret shares to the authorized subscribers, those secret shares are not sufficient for recon-
structing the secret decryption key. Based on this observation, we have to first assume that the
number of Byzantine brokers should be less than k in order to prevent these brokers from
breaking the (k,) threshold scheme and the requirement of reliably delivering the secret
decryption key to the authorized subscribers.

This assumption is more formally stated in Assumption 1 as follows.

Assumption 1 At every virtual node V, there are Uzﬂj + 1 brokers that are non-Byzantine.

For example, if there are 5 brokers in a virtual node, we assume that there are up to 2
(= |3]) Byzantine brokers and there are at least 3 (= |2] + 1) non-Byzantine brokers.

Assumption 1 reflects the maximum fault-tolerance we aim to achieve. This is a reasonable
assumption given the following threat model. Each server running a broker replica follows
independent authentication and authorization process, thus a security breach on a particular
server does not immediately and/or automatically lead to another security breach on other
servers.

Given Assumption 1 and the (k,) threshold scheme, we have to ensure that k secret shares
among the n secret shares must be delivered only to k non-Byzantine brokers. In other words,
if there are f Byzantine brokers, there have to be at least f+ 1 additional replicas that are non-
Byzantine brokers. Therefore, the threshold-scheme to be used at the publisher can be
expressed as (f + 1, 2f + 1). Alternatively, we can express the threshold scheme as (|2 + 1,)
where # is the number of replicas in the next-hop virtual node. For example, if there are 5 pub-
lisher-edge brokers at the next hop of a publisher P, then a (3, 5) threshold scheme should be
used by P.

However, the initial key split alone does not guarantee that the secrete shares can be safely
delivered to the subscribers beyond the publisher-edge brokers. We articulate this problem fur-
ther in the following subsection.

Propagation of Secret Shares. Before we present the problem of reliably propagating the
secret shares to the subscribers, we enlist key notations as follows.

o V: A virtual node

« V¢ A virtual node with forwarding brokers

o V,: A virtual node with receiving brokers

» prec(V): A virtual node that precedes V, e.g., V; precedes V,
¢ |V]: The number of brokers in virtual node V

o reconstruct(S): A predicate that returns true if a currently received set of split secret shares S
can be used to reconstruct the secret split at the preceding virtual node V.

 nByz: A non-Byzantine broker

« Byz: A Byzantine broker

« nByz(V): A set of non-Byzantine brokers in V'
o Byz(V): A set of Byzantine brokers in V

o B(V): A set of all brokersin V

The first challenge is to prevent Byzantine brokers from tampering with the secret shares it
received from the previous hop. Such tampering can be trivially prevented with a well-known
security measure such as digital signature for checking the integrity of the message on the sub-
scriber side.

PLOS ONE | DOI:10.1371/journal.pone.0158516 July 1,2016 5/23

@’PLOS ‘ ONE

Secret Forwarding in Publish/Subscribe Overlays

A more challenging task is to ensure that no more than k shares end up at any single broker
down the publication delivery path when (k, n) threshold scheme is enforced. If a broker that
received k shares happens to be Byzantine, then it can drop all the shares, leaving only k-1
shares at the virtual node. In such a case, the original key cannot be reliably reconstructed on
the subscriber side. If multiple Byzantine brokers collude each other to collect at least k shares,
then these Byzantine brokers can reconstruct the secret and abuse it. Therefore, it is important
to make sure that Byzantine brokers at every hop do not collectively receive more than k
shares.

As the very first step, we impose a basic secret share propagation scheme called (k, n) thresh-
old propagation. The implementation of this propagation scheme is provided in Algorithm 1.
This algorithm is designed in such a way that no broker on the next-hop virtual node receives
more than k shares among the n split secret shares.

Algorithm 1: Deterministic (k, n) threshold propagation scheme
/# Input: ninitial shares generatedwith (k, n) secret sharing scheme %/
1 foreach Forwarding broker B € Vsdo
x=total secret shares Brhas;
foreach share i € xdo
foreach Receivingbroker B, € V,.do
t=total received secret shares of B,;
if t< k then
send 1 to B,;
t=t+1;

O ~J o U bW

Algorithm 1 has a serious limitation since a forwarding broker Bycan violate the scheme
and arbitrarily send its share to a receiving broker at the next hop, which breaks the require-
ment that a receiving broker must not receive more than k shares out of # original split shares.
Consider the following example in Fig 3. Publisher P; sends out secret shares to brokers By, B,
and B; at the virtual node V. Now suppose the secret shares have to be relayed to the succeed-
ing virtual node V, that also has three replicas. In an ideal case, each broker in V, should
receive just one share. However, assume that B; of V; and B, of V, happen to be Byzantine bro-
kers, as shown in Fig 3(A). B; of V; may ignore the secret share propagation policy and forward
its shares to B, of V,. Upon the receipt of the two shares, B, of V, may either reconstruct the
secret key or intentionally drop the keys. In order to prevent this case, we may consider
strengthening the secret sharing scheme at V; as follows. The threshold is increased from (2, 3)
to (3, 5), and two more replicas (B, and Bs) are deployed at V; as shown in Fig 3(A). In this
way, B, at V; cannot reconstruct the secret, and other non-Byzantine brokers can safely for-
ward the three shares that are sufficient for reconstructing the original secret. However, we can
trivially come up with a case where this new threshold scheme also fails. As shown in Fig 3(B),
suppose that B instead of B; at V, turns out to be the Byzantine broker. Also, suppose that
another Byzantine broker B; of V; forwards its share to B; of V. These examples show that it
is not possible to prevent the situation where k shares arrive at an arbitrary single broker at any
hop. There are two reasons for this. First, the brokers at the forwarding node cannot detect
with certainty whether a replica in the next hop is Byzantine. Second, Byzantine brokers can
yield an arbitrary behavior such as sending shares to any replicas on the next hop.

As an alternative, we considered splitting the original secret using linear network coding
[25]. With linear network coding, a secret is split into # encoded blocks. We distribute the n
encoded blocks according to the propagation scheme in Algorithm 1. This is seemingly a stron-
ger mechanism for preventing the Byzantine brokers to illegally reconstruct the original secret,
as the Byzantine brokers need the entire n encoded blocks to decode the original secret. If (k, n)
threshold scheme is used on the other hand, then only k+1 shares are needed for the Byzantine

PLOS ONE | DOI:10.1371/journal.pone.0158516 July 1,2016 6/23

@'PLOS ‘ ONE

Secret Forwarding in Publish/Subscribe Overlays

Fig 3. The issues with the propagation of secret shares through multiple hops.

doi:10.1371/journal.pone.0158516.g003

brokers to reconstruct the original secret. If we assume that the majority of the forwarding bro-
kers on a virtual node is non-Byzantine, then it is impossible for a Byzantine broker to receive
all n encoded blocks as long as the non-Byzantine brokers abide by the propagation scheme
described in Algorithm 1. The linear network coding paired with Algorithm 1 may exhibit a
higher fault-tolerance. However, this version of secret propagation can also fail. For example,
as shown in Fig 4(A), suppose a decryption key is encoded into three blocks, ¢, ¢, and c;.
Assume that ¢, and ¢; reach B, of V, as the Byzantine broker B; of V; arbitrarily sends his
blocks of code to B, instead of B; of V,. There is no concern that B, of V, will be able to recon-
struct the original decryption key. However, this broker may arbitrarily forward all the encoded
blocks to B; of V; at the next hop, which leads to a situation where all the necessary encoded
blocks are collected. If B; of V; turns out to be Byzantine, then this broker can reconstruct the
key and use it for any malicious intent.

Note that the aforementioned propagation scheme above splits the original secret only once
at the publisher. We now opt for splitting a secret share further down the path, and we prove
that this is the most viable solution. For example, as shown in Fig 4(B), after B, of V| receives a
secret share s; from publisher Py, it further splits the share into three sub-shares as s, 51, and
s13. Then, By of V; relays those further split secret shares to the next hop V5.

C3

VC CW /
. = \ i Sn S12 S5 Split by B,
V, < B, > (B,) (B,) Szt Sy S22 S8 Splitby B,
\ J/ Sj:

S S. S. .
¢, Vc,Zc, 3 52 % Splitby B,

“(& “ & ®)
(A) (B)

Fig 4. An example of failed delivery of encoded publication messages and an example of guaranteed
reliable propagation of secret shares.

doi:10.1371/journal.pone.0158516.9004

PLOS ONE | DOI:10.1371/journal.pone.0158516 July 1,2016 7/28

el e
@ ' PLOS ‘ ONE Secret Forwarding in Publish/Subscribe Overlays

This propagation scheme called iterative secret propagation is implemented in Algorithm 2.

Algorithm 2: Iterative secret share propagation scheme

/+* Input: ninitial shares generatedwith (k, n) secret sharing scheme */
1 foreach Forwarding broker B € V:do
2 x=total secret shares Brhas;
3 foreach share i€ xdo
4 S (i) =List of secret sharesbysplittingiwith (|V,.|—|Byz(V,) |, |V.|)
threshold scheme;
x=first indexof V,;
foreach i’ € S(i) do
send i’ to x thbroker in V,;
x=x+1;

@0 3 o U»

We prove that under Algorithm 2 Byzantine brokers in a virtual node cannot receive a suffi-
cient number of secret shares to reconstruct the original secret. Before we proceed with the
proof, we set a few additional key assumptions.

Assumption 2 Publishers behave correctly.

In contrary to Assumption 2, publishers can attack publish/subscribe overlay. For example,
Wun et al. presented the possibility of publishers participating in the denial-of-service attack
[26]. However, note that this paper is focused on handling the issues with Byzantine brokers, and
devising the security measures against the malicious publishers is not in the scope of this paper.

Assumption 3 Non-Byzantine brokers abide by the message propagation rules.

Now we prove that Theorem 1 holds if Algorithm 2 is enforced by the brokers,

| Vil

Theorem 1 A broker B in V, cannot receive more than |~-] sets of secret shares from Vysuch

that, for every set S B received, reconstruct(S) holds.
Proof 1 Suppose B in V, received L‘%ﬂj + 1 sets of secret shares from Vg, such that, for every

set S B received, reconstruct(S) holds. This occurs only if L‘VTf‘J + 1 Byzantine brokers in Vyvio-
late the protocol in Algorithm 2 that a broker must distribute its split shares S' in such a way
that reconstruct(S') does not hold (as enforced in Algorithm 2: 8-10). This implies that the
majority of the brokers in Vyare not non-Byzantine. Therefore, it contradicts Assumption 1.

Theorem 1 states that Byzantine brokers cannot reconstruct a secret unless they receive all
split secret shares, which is not possible given our assumptions.

Theorem 2 Non-Byzantine brokers in V, receive secret shares from the non-Byzantine bro-
kers in Vythat precedes V, which are sufficient for reconstructing original secret S generated by a
publisher PUB.

We prove Theorem 2 by mathematical induction as follows.

Proof 2 Basis: There is only one virtual node between PUB and the interested subscribers.

Assume that the number of secret shares the non-Byzantine brokers in V, receive is less than

L%j -+ 1. This implies that the publisher did not generate a sufficient number of secret shares.
Hence, this contradicts Assumption 2.

Inductive Step: Assume that non-Byzantine brokers in i’th consecutive virtual nodes from
PUB receive m secret shares in total that are sufficient for reconstructing the original secret S.
We show that in the subsequent virtual node V;,, non-Byzantine brokers receive a sufficient
number of secret shares to reconstruct S.

Assume that the total number of secret shares the nByz(V,,,) received is less than (Uzﬂj +1)

(L@J + 1) from the Byz(V;). Note that every non-Byzantine broker nByz in V; must generate a

total of | Vi,1| secret shares for every secret nByz received from the B(V; _ |). We assumed that a
correct number of secret shares are received by the non-Byzantine brokers up to i’th virtual node

PLOS ONE | DOI:10.1371/journal.pone.0158516 July 1,2016 8/283

@’PLOS ‘ ONE

Secret Forwarding in Publish/Subscribe Overlays

as the inductive step. Therefore, the assumption that the non-Byzantine brokers in V;,, received

less than (L‘zﬂj + 1)(L%J + 1) implies that at least one non-Byzantine broker in V; generated

less than L@j + 1 for one of the shares it received from B(V; _ ;). This also means that the non-
Byzantine broker violated the rule specified in Algorithm 2, and therefore it contradicts Assump-
tion 3.

Theorem 2 states that non-Byzantine brokers are guaranteed to always forward a set of
secret shares that are sufficient for reconstructing the original secret at the authorized receiver.
Finally, we can derive Theorem 3.

Theorem 3 A non-authorized subscriber (SUB2) that is not entitled to the messages published
by a publisher PUB cannot receive a sufficient number of secret shares from the brokers to recon-
struct the original key S generated by PUB. An authorized subscriber (SUBL) that is entitled to
the messages published by PUB must receive a sufficient number of secret shares to re-construct
the original key generated by PUB.

Proof 3 Basis: There is only one virtual node V between PUB and the two subscribers, SUB1
and SUB2.

Assume that the number of secret shares SUB1 receives is insufficient to re-construct S. This
assumption implies that non-Byzantine brokers in V failed to send sufficient number of secret
shares. Therefore, this assumption contradicts Theorem 2.

Assume that the number of secret shares SUB2 receives is sufficient to re-construct S. This
assumption implies that Byzantine brokers in V were able to collude each other to send a suffi-
cient number of secret shares to SUB2 for re-constructing S. However, the number of secret shares
PUB sent to Byz(V) is less than L%j + 1. Therefore this assumption contradicts Assumption 2
and Assumption 1.

Inductive step: Assume that Theorem 3 holds when there are i consecutive virtual nodes
between PUB and the two subscribers, SUB1 and SUB2. Show that Theorem 3 holds when there
are i + 1 virtual nodes between PUB and the two subscribers, SUB1 and SUB2.

Assume that the number of secret shares SUB1 receives via V;,, is insufficient to reconstruct
S. This assumption implies that non-Byzantine brokers in V., failed to forward a sufficient
number of secret shares to SUBL. This contradicts with Theorem 2.

Assume that the number of secret shares SUB2 receives is sufficient to reconstruct S. This can
occur only when the L@J + 1 brokers in V;,, sent their shares to SUB2. This indicates that the
majority of the brokers in V;,, is Byzantine, which contradicts Assumption 1.

In order to reconstruct the original key, a subscriber should know how many virtual nodes
the secret shares traversed and how many replicas are allocated at each virtual node. The num-
ber of virtual nodes corresponds to the number of reconstructions to apply on the received
secret shares. The number of replicas at every virtual node gives a subscriber the necessary
information about what threshold scheme to apply when executing the reconstruction. Pub-
lishers and brokers tag these pieces of information to the secret shares while the brokers for-
ward them down the end-to-end path towards the subscribers.

Solution Analysis and Adaptations. Assume that a decryption key is sent along with
every publication. Then, the maximum number of split secret shares a subscriber receives at
the end will be at most pr”" where p is the number of disjoint end-to-end paths from the pub-
lishers to the subscribers, r is the average number of replicas at each hop on the end-to-end
path and £ is the path length measured as a hop count. Suppose f is the average number of Byz-
antine brokers at each hop. Then the minimum number of secret shares a subscriber receive at
the end is pr" — p(r — f)". The number of secret shares can increase significantly as the path
length increases. However, with the rise of Cloud-based pub/sub systems [27], pub/sub over-
lays are getting flatter, i.e., the end-to-end path length is at most 3.

PLOS ONE | DOI:10.1371/journal.pone.0158516 July 1,2016 9/283

@’PLOS ‘ ONE

Secret Forwarding in Publish/Subscribe Overlays

However, if the number of secret shares is a non-negligible concern, there are two adapta-
tion techniques to reduce the secret shares. One is to refresh the decryption key for a bulk of
publications instead of generating one for every publication.

Another adaptation technique is to deliver the secret shares out of band through an external
repository. This repository can also be replicated to hold the secret shares separately. This may
incur less traffic increase compared to the in-band delivery of secret shares. However, because
subscribers have to pull the keys from the repository through another communication channel,
opening up the publication content can be delayed further. In contrast, the in-band secret
delivery method incurs no additional latency, since the publication content can be opened up
immediately with the decryption key that is piggybacked on the publication. The in-band deliv-
ery approach also adheres to the nature of pub/sub that the clients are decoupled in time and
space to ensure scalable communication [1].

Propagation of Encrypted Content

So far, we have introduced a decryption key propagation method that is applied to a pub/sub
overlay with replicated brokers. Note that replicas introduce multiple alternative routes
through which the encrypted content can be forwarded. Typically alternative routes offer
opportunities for traffic load-balancing. However, in our context, those routes entail a new
issue with the reliable delivery of publication content itself. Given the next hop virtual node
with n replicas, a forwarding virtual node can prepare n duplicates of the encrypted content in
order to guarantee the reliable delivery. Replicating the content in such a way down the path
towards the interested subscribers can significantly increase network traffic. To avoid this
problem, we can opt for sending only one publication to one of the replicas and re-transmit the
publication in case it gets lost. However, re-transmitting the publication may incur non-negli-
gible delay. In order to reduce the redundant traffic and delay caused by the re-transmission,
we can encode and split the file into multiple blocks and then send them out at the same time
through multiple paths. Only the missing blocks need to be re-transmitted. There can be a situ-
ation where all the #n blocks end up in the hands of Byzantine brokers at a certain virtual node.
This is still safe because the blocks are encrypted and can only be decrypted with the keys that
are transferred securely through the secret share propagation method that we devised in the
previous section. For the case of the Byzantine brokers corrupting the blocks, publishers and
subscribers can use a digital signature mechanism to check the integrity of each block. Over-
head of this approach is measured in the evaluation section of this paper.

The Management of Broker Replicas

In the previous section, we took advantage of the replicas across the broker overlay in order to
secure the publication propagation. In this section, we present a novel framework and proto-
cols for managing these replicas.

Replica Placement Framework

In practice, fully replicating every node in a pub/sub overlay may not be feasible due to cost and
limited budget. Therefore, we devise a framework that directs the placements of replicas strategi-
cally on the most appropriate locations in a pub/sub overlay for the efficient usage of resources.
In our framework, we allow administrators to explicitly specify the criteria for the replica place-
ments. These criteria are mainly broken into two categories. The first criteria specifies the reli-
ability factor (R). The second one specifies the performance factor (P). With the placement of
additional replicas, a pub/sub overlay becomes more fault-tolerant. On the other hand, the addi-
tion of the replicas can degrade performance since secret sharing at the replicas increases the

PLOS ONE | DOI:10.1371/journal.pone.0158516 July 1,2016 10/283

@’PLOS ‘ ONE

Secret Forwarding in Publish/Subscribe Overlays

End-to-end | # of Replica
Path replicas Symbol

P-S, 2 .
P-S, 3 O
P-S; 5 S

Fig 5. An example of replica placement for the end-to-end path from publisher P to subscribers S,, S,
and S;. Bs represent brokers. With the replicas, Bs form a virtual node.

doi:10.1371/journal.pone.0158516.9005

latency and traffic, which potentially leads to congestion. To strike the balance between the two
contradicting problems above (i.e., reliability versus performance), we have devised a 3-phase
allocation method. The input to this method is the set of the end-to-end paths between all pub-
lisher and subscriber pairs. Given # nodes in an overlay, there can be at most n(n — 1) end-to-
end paths. In the first phase, our framework allocates replicas based on the reliability criteria. A
priority is assigned to every end-to-end path. The priority (p) is measured as a product of the fol-
lowing metrics on the end-to-end path: (1) path length measured as the number of hops; (2) fail-
ure frequency ratio over a fixed period of time () and (3) user-defined weight (w). The failure
frequency ratio (y) is the fraction of the number of failures that have occurred on an end-to-end
path over the total number of failures occurred on all end-to-end paths. The weight (w) indicates
the importance of an end-to-end path, and the user (the administrator) can freely assign a
numeric value to it. The replicas are allocated proportionally to p.

In the second phase, the replicas allotted for each end-to-path are now distributed among the
nodes that constitute the end-to-end path. The replicas are distributed proportionally to the fail-
ure frequency ratio within the end-to-end path. This frequency ratio of a node on the end-to-
end path is measured as the fraction of the number of failures by the node over the total number
of failures among all the nodes within the end-to-end path. Fig 5 illustrates a sample placement
of replicas after the completion of the second phase for the end-to-end paths between publisher
P and the subscribers Sy, S, and S;. Assume that the p values for the paths, P - S, P - S, and
P — S; are 2, 3 and 5, respectively, are given. Given 10 available replicas in total, the number of
replicas for each path is determined in the first phase, as shown in the table in Fig 5. In the sec-
ond phase, replicas are assigned to the nodes based on their individual failure frequency ratio.
We observed a couple of interesting things about this phase. First, there can be cases where a vir-
tual node consists of only two replicas. In such cases, secret sharing cannot be enforced because
we cannot assure that a majority of the nodes will be non-Byzantine. Second, all 3 end-to-end
paths intersect at B; and B,. Thus, those two brokers receive a batch of replicas more than once
during the execution of the second phase. A possible variation of the second phase is to assign a
pack of replicas only once to a node. For example, the 2 packs of replicas can be removed from
By and be re-assigned to any under-provisioned nodes.

In the third phase, replicas on each end-to-end path are de-allocated based on how the cur-
rently allocated replicas degrade the performance. The main QoS metric we focus on is the
latency incurred by the secret sharing scheme. The latency can grow proportionally to the
number of replicas. Therefore, the administrators can set the maximum number of replicas
that can be assigned per disjoint end-to-end path. If the number of replicas assigned to an end-
to-end path in the first phase exceeds the maximum number of replicas allowed, then the

PLOS ONE | DOI:10.1371/journal.pone.0158516 July 1,2016 11/23

@‘PLOS | ONE

Secret Forwarding in Publish/Subscribe Overlays

replicas can be incrementally removed. Here, we remove the replicas from the node with the
least failure frequency ratio first. Note that, this is based on a basic performance model that
reflects the correlation between the addition of replicas and the latency metric. Our framework
can be extended to employ more sophisticated analytical performance models such as queueing
network models [28].

Dynamic Replica Deployment Protocol

In this section, we provide a protocol for flexibly re-deploying brokers across the pub/sub bro-
ker overlay at runtime. This re-deployment protocol involves attachment and/or detachment
of brokers. This protocol is designed in such a way to prevent disruptions to the publication
delivery service. Upon the attachment or the detachment of replicas, the threshold scheme for
secret sharing gets updated among the broker replicas on the virtual nodes.

Before we articulate the re-deployment protocol, we describe the extended broker architec-
ture of the reference pub/sub overlay implementation [20, 21]. As shown in Fig 6, each broker
has a single input queue and multiple output queues. Output queues are grouped to be associ-
ated with each virtual node in the next hop. Each output queue is designated to a broker replica
in the next-hop virtual node. A broker receives secret shares from the previous virtual node
through its input queue. When a secret share from the previous hop gets dequeued from the
input queue, the broker runs a topic-based matching in order to determine where the secret
shares and publications should be forwarded to. The topic does not need to be encrypted as
long as it does not reveal private information. However, if the topic has to be encrypted as well,
then homomorphic matching techniques have to be used as introduced in [29], which is the
subject for future work. Upon the detection of the next virtual node to forward the secret, a
broker first splits the received secret share once again.

Virtual Node 1
Broker Replicas

L1
"

Hop X-1

Virtual Node 2

~

Hop X

DNV
Hop X+1 .-.

Broker Replicas Broker Replicas
Virtual Node 3 Virtual Node 4
Fig 6. The architecture of the extended pub/sub broker for secret forwarding.

doi:10.1371/journal.pone.0158516.9006

PLOS ONE | DOI:10.1371/journal.pone.0158516 July 1,2016 12/23

@’PLOS ‘ ONE

Secret Forwarding in Publish/Subscribe Overlays

Algorithm 3: Broker replica detachment

/* For a detachingbroker By: */
1 Sends itsown ID to the all forwardingvirtual nodes for By (N);
2while Not received ACK fromevery VE Nand input queue not empty do
3 Keepprocessingmessages in the input queue;
4 Engqueue output messages into appropriate output queues;
5Flushall output queues;
6 Disconnect fromall forwarding and receivingvirtual nodes for By;

Algorithm 4: Broker replica attachment

/* For an attaching broker B,: */
1 Initialize an input queue;
2 Replicate routing state;
3 Configure output group and output queues;
4 Connects with forwarding virtual nodes for B,;
5Notifies the forwarding virtual nodes the ID of B, and a new threshold scheme;

Algorithm 5: Updates at a broker in the forwarding virtual node for a broker B

/+*When receivedanotificationmessage */
1if Receiveddetachment notification then
2 Change threshold scheme;
3 Flush the output queue mapped to B;
4 Remove the output queue mapped to B;
5 SendACK to the next hop;
6 else
/*When attachnotification received: */
7 Create andmap an output queue to B;
8 Change threshold scheme;

Now we explain the protocol for re-deploying brokers as specified in Algorithm 3, Algo-
rithm 4 and Algorithm 5. Here we provide a couple of definitions that specify a relationship
between virtual nodes. A virtual node V., is a forwarding virtual node for a virtual node V,, if V,
sends publications to V,. On the other hand, a virtual node V, is a receiving virtual node for a
virtual node V, if V receives publications from V.. Acknowledgements exchanged between the
brokers are denoted as ACK.

For the detachment of a broker By, the brokers in the forwarding virtual nodes for B, have to
update the threshold scheme for secret sharing. If B, is detached, the number of brokers in the
virtual node B, belongs to (denoted as V) gets decremented by 1. Suppose the threshold
scheme running at the forwarding virtual nodes for B; was originally (|Z] + 1, r) assuming that
the number of broker replicas is r at V5 . Upon the detachment of B, the brokers in the forward-
ing virtual nodes should newly enforce a (|5*| + 1, r — 1) threshold scheme. The only disrup-
tion is caused when the brokers in the forwarding virtual nodes cease to process incoming
messages when the threshold scheme is updated. However, the update process is executed
instantly, thus the disruption is negligible. This update task is highly critical to the confidential
delivery of secret keys. If the brokers at the forwarding virtual nodes do not pause the processing
of incoming messages, then an incoming message may be split with the old threshold scheme.
This can cause a case where the majority of secret shares can reach a single broker, which may
result in the reconstruction of the secret in case the broker is Byzantine. After the threshold
scheme is updated, the brokers at the forwarding virtual nodes continue to process the incoming
messages as well as flush the output queue mapped to the detaching broker replica.

Likewise, there is a very brief pause at the forwarding virtual nodes for attaching broker B,,.
Similarly, the threshold scheme must change from ([Z] + 1, 7) to ([Z5*] + 1, 7+1). As stated in

PLOS ONE | DOI:10.1371/journal.pone.0158516 July 1,2016 13/28

@’PLOS ‘ ONE

Secret Forwarding in Publish/Subscribe Overlays

Algorithm 4:2, the attaching broker B, has to replicate one of the brokers at the virtual node to
which B, newly belongs (denoted as V;,). We do not employ any popular VM cloning tools
such as REMUS [30] and SNowrLock [31] for promptly replicating the VM where the broker to
replicate might reside. This is because VM cloning replicates the VM state including the secu-
rity-sensitive information such as the secret share. Because of the security hole in the VM clon-
ing techniques, we resort to adapting the on-demand replication technique of constructing the
routing state of the newly attached broker [24]. Subscription and advertisement topics are the
ingredients for constructing the complete routing state at B,. B, can ask any broker in the
neighboring virtual nodes to forward their subscriptions and advertisements. However, there
can be Byzantine brokers at these neighboring virtual nodes. The Byzantine broker may arbi-
trarily drop or corrupt the advertisements and subscriptions, thus sabotaging the replication
effort by B,. Hence, B, has to accept only the subscriptions and the advertisements that are
sent by the non-Byzantine brokers. Note that B, cannot identify which broker at V, is Byzan-
tine. However, we assume that the majority of r brokers are non-Byzantine. Therefore, B,
accepts a subscription or an advertisement only if it is received at least || + 1 times where r is
the number of replicas at V;, . This procedure of checking the validity of subscription and
advertisement topics may contribute to the delay in replicating the complete routing state for
B,. However, we employ the technique that allows the publications to be delivered at the neigh-
boring brokers of B, promptly after matching subscriptions are added at B,,. Thus, publication
delivery resumes very quickly. The non-disruptive nature of our dynamic replica deployment
protocol is based on the technique developed in [24]. It allows the broker placements to be
revised dynamically if necessary, as explained in the previous section.

Performance Evaluation

In this section, the performance of our solution is evaluated. We fully integrated the secret
sharing in PADRES [20] which is one of the reference implementation of pub/sub overlays.
We measured the overhead of our scheme in terms of latency and traffic volume. We empiri-
cally assessed the tradeoff between different variations of our scheme, under the presence of
Byzantine brokers.

We used Facebook traces that were introduced in [32]. These are the logs of interactions
among Facebook users over a 12-month period. There are 3 million anonymous users with
28.3 million relations in total. Note that the data we used in our study was originally collected
by the authors of [32], through Facebook’s Graph API. We contacted the authors to obtain the
dataset which was collected for research purpose, and the mode of collection fully complies
with the Terms and Conditions of Facebook. We assumed that the anonymous Facebook users
in this dataset are connected as subscribers to one of the 400 brokers in a pub/sub overlay.
Given the placement of the Facebook subscribers, we replayed the interactions in the logs with
our new message forwarding scheme enabled.

The Effect of Secret Sharing on Latency and Traffic

Our Java implementation of Shamir’s secret sharing scheme [23] is integrated into the
PADRES pub/sub broker. We ran this broker on a machine with Intel Core2 Duo CPU T5550
at 1.83 GHz and 3GB memory. We first measured the number of secret shares as the path
length between publishers and subscribers increase. The number of secret shares increases
exponentially as the path length and the node fanout increase, as shown in (Fig 7(A) and 7(B)).
As mentioned earlier, to reduce the secret shares, publishers can refresh the decryption key for
a bulk of publications instead of generating one for every publication. For example, as shown

PLOS ONE | DOI:10.1371/journal.pone.0158516 July 1,2016 14/23

el e
@ ' PLOS ‘ ONE Secret Forwarding in Publish/Subscribe Overlays

100000 1e+006
g 10000 2 100000
g 1000 S 10000
O~ O~
2% 100 €5 1000
0= 10 0=
% = 1 *g = 100
g 0.1 g2 10
e} [} 1
2 0.01 2
. 0.001 R < 0.1

of repliclas = 3 —

#of Ireplilca = 3 ——

0.0001 EE— : 0.01 '
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
Path length Node Fanout
(A) (B)
100 ¢ 10000 ¢
2 10 b 2 1000 |
© i © r
o - o -
=1 TF £ 100
o2 [o2 [
GE 01F GE 10 |
32 o001k £x 1]
[*} . [] I
< 0.001 p 7.~ < 0.1 {
{,/Kéy refresh every 200MB —+— ¥ Key refresh every 200MB —+—
00001 X 1 1 1 1 1 1 1 1 J 001 1 1 1 1 1 1 1 1 J
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
Path length Node Fanout
(®) (D)

Fig 7. The effect of secret forwarding on latency and traffic with varying node fanout and path length.

doi:10.1371/journal.pone.0158516.g007

in (Fig 7(C) and 7(D)), the traffic increase can be approximately 10 times less when keys are
refreshed every 1GB as oppose to refreshing the keys every 200MB of data.

We also measured the latency in splitting a secret into 3 to 10 shares. We measured the
latency in reconstructing the secret as well. The secret is either an AES-128 or an AES-256 key.
We set the threshold scheme (k, n) where n = £ + 1. As shown in Fig 8, the time it took to
split the secret was well under 1 ms. The time it took to reconstruct the secret increased propor-
tionally to the number of shares. It took longer to reconstruct than to split the keys. For exam-
ple, at the maximum of 10 shares, it took just 5.2 ms on average. However, the reconstruction
is done only once by the subscriber, and the brokers along the end-to-end path do not involve
in the reconstruction. Our scheme requires the secret splitting at every virtual hop. Thus, the
secret splitting overhead is incurred at the broker replicas at every virtual hop. This causes the
overall end-to-end latency to increase with the number of hops. However, the end-to-end
latency does not grow with the number of replicas at every virtual hop, because the secret split-
ting is done concurrently among the broker replicas.

PLOS ONE | DOI:10.1371/journal.pone.0158516 July 1,2016 15/283

@’PLOS ‘ ONE

Secret Forwarding in Publish/Subscribe Overlays

Latency(ms)
O =~ N W b~ 00O

Number of secrets

—o— Secret splitting (key size = 128)

—i— Secret reconstruction (key size = 128)

- -& - Secret splitting (key size = 256)

—— Secret reconstruction (key size = 256)
Fig 8. Performance overhead of secret splitting and reconstruction.

doi:10.1371/journal.pone.0158516.g008

The Effect of Friends Dispersion

Facebook users may have friends who are dispersed on many geographical locations. That is,
some user may have friends scattered all around the globe, and some user may only have friends
from the local region. We conducted a set of experiments on the effect of scattered friends on
the overhead of our scheme. We generated a fully connected pub/sub broker overlay topology
that does not contain any redundant path. This overlay was assumed to be deployed on a wide
area network. Given the overlay, we randomly assigned Facebook users to brokers according to
a Zipf distribution. The degree of skewness is controlled by the variable a. With a high a value,
Facebook users are clustered close together. On the other hand, with a low « value, Facebook
users are disperse and relatively far from each other. We first generated a 400-node overlay with
the average node fanout of 2. At every node we assigned 3 replicas that follow the (2, 3) thresh-
old scheme. Fig 9(A) shows the cumulative distribution function of the total secret shares that
are delivered during an interaction between a publisher and a subscriber via brokers, over a one-
month period. With & = 0.5, the median secret shares generated was approximately 80,000.
However, the average was 5 million. The pairs of publishers and subscribers that were far apart
contributed significantly to this high average. On average, the publishers and the subscribers
were 10 hops away from each other with o = 0.5. With a higher o value of 2, the average number
of secret shares per interaction dropped sharply to 860 as the publishers and the subscribers
were apart 2.6 hops on average. From this result, we affirmed that the end-to-end path length
between the publishers and the subscribers affects the overhead of our scheme. This can guide
the administrator of pub/sub broker overlays to reduce the number of hops by consolidating the
brokers along the publication delivery paths, so that the number of secret shares is reduced.
Also, the node fanout can be controlled to adjust the structure of the overlay. For example, the
node fanout of the previous overlay were changed to 5, and the number of brokers are kept the
same. Fig 9(B) shows that the number of secret shares per interaction was significantly
decreased compared to the case in Fig 9(A). For the same a value of 0.5, the case in Fig 9(B)
exhibited 939 secret shares generated on average for each interaction. This was a 99% decrease
of secret shares compared to the case where the 400-node overlay had a node fanout of 2.

PLOS ONE | DOI:10.1371/journal.pone.0158516 July 1,2016 16/283

@’PLOS ‘ ONE

Secret Forwarding in Publish/Subscribe Overlays

0l o, 9=001 . 0.

1e-06 %e-051e-040.001 0.01 0.1 1 10 100 1000 8.001 0.01 0.1 1 10 100

The number of secret shares per interaction (x 1 million)
Node fanout = 2

The number of secret shares per interaction (x 1,000)
Node fanout = 5
(B)

Fig 9. The CDF of secret shares generated per interaction that randomly takes place on a 400-node pub/sub broker overlay.

doi:10.1371/journal.pone.0158516.g009

We also measured the proportion of the secret shares in the data received at the subscriber
end. Since we did not know exactly what content was exchanged during the interactions, we
could only assume the content was of a certain size. Suppose the average volume of the content
per interaction was 1MB. There were a total of 1.4 million interactions over the month in the
previous example. Therefore, the total throughput over the month was 1.3 TB/month when
our scheme was not applied. With our scheme enabled on a network of 400 nodes with o = 0.5
and node fanout of 5, the monthly throughput of secret shares would be approximately 144
GB/month. Hence, the secret share traffic would constitute 11% of the total throughput. This
proportion can be a useful indicator of how costly our scheme can be. In order to reduce the
proportion of the secret shares, we can refresh the secret key less frequently than refreshing the
key for every single message. In Fig 10, the key refresh rate was set to - where m is the number
of messages ranging from 1 to 10. With the key refresh rate of 0.1 and all other settings kept

10000 ¢
w -
8 /%/
© |
7 1000
B2 |
Cc
§i—’ 100 F
=T I Out-of-band secret ---»---
5T I In-band secret —+—
Ex 10 F
£ 2 X
= 1k S -
© o
°©
I_ -
0.1 l I . L L 1 1 1)

0.1 020304 0506070809 1
Key refresh rate

Fig 10. The effect of varying secret key refresh rate.

doi:10.1371/journal.pone.0158516.9g010

PLOS ONE | DOI:10.1371/journal.pone.0158516 July 1,2016 17/23

@’PLOS | ONE

Secret Forwarding in Publish/Subscribe Overlays

same as the previous example, the monthly secret share traffic throughput was reduced to 39
GB/month. The traffic was reduced by 79% compared to the case where the key refresh rate
was 1. With a lower refresh rate, the overlay becomes more vulnerable to the compromise of
secret keys. However, the performance overhead could be greatly reduced. This is a simple
approach of dealing with the trade-off between the performance and reliability.

Another adaptation technique is to place an out-of-band repository for the secret shares
used by multiple subscribers. By using this technique, the secret shares could be significantly
reduced compared to the scheme of sending the secret shares in-band, as shown in Fig 10.
However, this adaptation technique has different security and reliability implication as men-
tioned earlier.

The effect of Byzantine brokers

In this section, we show how many re-transmissions can occur under the presence of Byzantine
brokers that are randomly chosen from the nodes on the broker overlay network according to
the Zipf distribution. We varied the degree of clustering of the Byzantine brokers by varying o
which determines the skewness of the Zipf distribution. The higher the « gets, the closer the
Byzantine brokers are clustered together. Similar to the previous test cases, we randomly placed
the Facebook users on the pub/sub broker overlays according to the Zipf distribution con-
trolled by the value c. We assumed that Byzantine brokers drop messages in order to violate the
reliable delivery requirement. We also assume that the failure detection and failover mecha-
nism was not enabled. Given this setting, we replayed the interactions on a 400-node broker
overlay with a node fanout of 5, and the result is shown in Fig 11. The first thing we observed is
that the increase of re-transmission is not proportional to the increase of the number of Byzan-
tine brokers. This is because a broker may sit on the intersection of multiple end-to-end paths
between Facebook users. Therefore, even a small number of Byzantine brokers can affect the
pub/sub interactions significantly. When the Facebook users are far apart from each other,
there is a higher chance of Byzantine brokers intersecting on different end-to-end paths. How-
ever, in a number of cases, re-transmission occurred the most frequently when the Byzantine
brokers were moderately dispersed at & = 1. This was because the brokers closer to the core of
the overlay network were chosen, thus affecting relatively larger numbers of intersections. The

c=1.0, f=15
c=1.0, f=10
c=1.0, f=5
c=0.5, f=15
c=0.5, f=10
¢c=0.5, f=5

X 1 million
" B B B

0.1 1 2
Degree of Byzantine node clustering

Fig 11. The number of re-transmissions under the presence of Byzantine brokers. c indicates how
close Facebook users are clustered together. a indicates how close Byzantine brokers are clustered
together. f is the number of randomly chosen Byzantine brokers in the overlay network.

doi:10.1371/journal.pone.0158516.9011

PLOS ONE | DOI:10.1371/journal.pone.0158516 July 1,2016 18/283

@’PLOS ‘ ONE

Secret Forwarding in Publish/Subscribe Overlays

total number of re-transmissions was higher than the number of total interactions we replayed.
For example, with @ = 1, ¢ = 0.5 and f = 15, the number of required re-transmissions exceeded
2.5 million. This indicates that more than one broker along the end-to-end paths between the
Facebook users failed during an interaction. From this experiment, we can see that a small frac-
tion of the brokers can affect the pub/sub overlay and the running services significantly. In
order to prevent this, a prompt detection of the Byzantine brokers and failover mechanism
should be devised. However, perfectly detecting a Byzantine broker is not practically feasible. A
viable solution is to force the brokers to replicate the received piece of content further down
the path as secret share is split further down the path. However, the content can be much larger
than the secret shares. Thus, the traffic increase caused by this solution can be impractical.
Hence, a new solution that addresses the trade-off between an imperfect failover mechanism
and the rigorous replication scheme is needed. We plan to develop this solution in the future.

Related Work

In this section, we survey how the existing works address the problems with regards to the reli-
ability and confidentiality for pub/sub messaging through the broker overlays. We present nov-
elty of our work by making comparisons to these state-of-the-art works.

Gryphon [33] is a pub/sub system that maintains multiple redundant overlays. If failures
occur on an overlay, publishers and subscribers make transition to a backup overlay. Gryphon
guarantees exactly-once delivery. However, Gryphon requires over-provisioning of resources
for the backup overlays that can be under-utilized most of the time. In contrast, Yoon et al.
devised a technique to replicate a faulty broker on demand [24]. Upon dynamic replication of a
broker, publication delivery can be resumed in various ways to satisfy diverse functional and
non-functional requirements. This work also supports exactly-once delivery and per-publisher
FIFO ordering. However, this work is mainly focused on replicating a single faulty broker. In
[34], Kazemdzadeh et al. devised a pub/sub system where each broker has configurable visibil-
ity of its neighbors. For example, if the visibility is set to 3, a broker can access the state of the
neighbors that are up to 3 hops away. In this system, a broker can adaptively establish a soft
link to bypass multiple faulty brokers that are within its scope of visibility. However, the last
two aforementioned works [24, 34] do not support confidential delivery of publications. There-
fore, they cannot prevent unwanted subscribers from receiving and disclosing the content of
the publication. Our pub/sub system executes secret forwarding technique in order to conduct
confidential delivery as well as reliable delivery. Similar to the work in [24], our pub/sub system
is based on overlay that can elastically grow and shrink as oppose to over-provisioning redun-
dant overlays such as the systems in [33, 34]. Note that our work is more advanced than the
pub/sub system in [24], as our pub/sub system can tolerate more than one faulty brokers.

A few existing pub/sub works protect confidentiality of the contents in the publication
using access control mechanisms. For example, Gryphon provides the access control scheme
for limiting who may publish and subscribe to portions of the information space. EventGuard
[35] supports access control as well. EventGuard assumes a threat model where routing brokers
can eavesdrop and drop or flood messages while publishers and subscribers are reliable. How-
ever, these works do not address the case where multiple Byzantine brokers collude each other
to disclose private contents in publications. Our system prevents such case by enforcing secret
sharing scheme on the brokers. In [36], role-based access control is used to enforce access con-
trol transparently among the brokers and clients. However, this work trusts the brokers to act
correctly, whereas we account for the case where a broker can be Byzantine.

Another line of work for protecting publication confidentiality uses cryptographic tech-
niques for encrypting publications. Since the publication is encrypted, even if malicious brokers

PLOS ONE | DOI:10.1371/journal.pone.0158516 July 1,2016 19/283

@’PLOS ‘ ONE

Secret Forwarding in Publish/Subscribe Overlays

or unintended subscribers receive the publications, they cannot disclose the confidential con-
tent unless they possess a decryption key. However, this method faces a non-trivial dilemma to
resolve. Although this method may prevent data leakage to a certain degree, it makes content-
based routing challenging as examining the actual content is not possible with encrypted con-
tents. In order to solve this dilemma, Nabeel et al. [37] derived a set of attributes from the con-
tent of the publications and ran the matching algorithm over these attributes instead of the
encrypted payload. Also, Nabeel et al. used homomorphic encryption techniques to execute the
matching operations over the encrypted publication content without the need of decryption.
The result of matching using this method is ensured to be consistent with the methods of
matching over the non-encrypted publications. In [38], Choi ef al. focused on reducing the per-
formance overhead of matching homomorphically encrypted publications against subscrip-
tions at the brokers using a scalar product preserving transformation. However, this line of
work requires the publishers and subscribers to contact each other in advance to exchange
decryption keys through out-of-band channels, similar to the work presented in [39]. Unlike
our approach, this breaks the unique nature of pub/sub that the clients are normally decoupled
in time and space [1]. These works do not address the case where the broker with homomor-
phic matching capability suffer crash failure. Our pub/sub system is tolerant to crash failures,
since our system dynamically adds brokers to the virtual nodes on demand. Our system is
orthogonal to these secure content-matching techniques.

In [40], shared secret is proposed to protect the authenticity, integrity and confidentiality of
publication from the untrusted brokers and subscribers. However, this work is based on a cen-
tralized security infrastructure that manages the shared secrets. This centralized approach can
limit the scalability of pub/sub systems. Moreover, the centralized security manager can
become a single point of failure. Our work does not assume any central repository for storing
shared secrets. In our pub/sub system, secrets are forwarded through the pre-deployed distrib-
uted brokers. Therefore, there is no need to introduce additional infrastructure to manage
secrets. Our work also protects secrets even in the case where multiple Byzantine brokers reside
along the publication propagation paths, through iterative secret propagation technique.

So far, we learned that state-of-the-art works have applied conventional security techniques
such as replication, access control and encryption to pub/sub systems. However, to the best of
our knowledge, none of the existing works addresses the case where decryption keys can get
compromised by the Byzantine brokers, which is a serious threat to the secure delivery of pri-
vate publications. Also, oftentimes, these existing works rely heavily on expensive synchroniza-
tion mechanisms and centralized coordinators, while our work exploits distributed brokers.
None of the existing works tackle the case where more than one Byzantine brokers reside along
the publication propagation paths. We apply the iterative secret propagation technique to
delivery secrets securely through the publication delivery paths. While the existing works focus
solely on the security issues, our work provides a framework that helps the administrators to
devise the best custom policy for striking the balance between security/reliability and perfor-
mance/efficiency requirements. Most of the existing works assume over-provisioned redun-
dant broker overlays that cannot flexibly grow and shrink. Our work employs the technique of
replicating and consolidating brokers on demand based on configurable security and perfor-
mance requirements.

Conclusion

On pub/sub broker-based overlays, we applied the secret forwarding method to broker replicas
in order to ensure reliable and confidential delivery of encrypted content and decryption keys.
Our method is tolerant to the presence of Byzantine brokers along the delivery path of

PLOS ONE | DOI:10.1371/journal.pone.0158516 July 1,2016 20/23

@’PLOS ‘ ONE

Secret Forwarding in Publish/Subscribe Overlays

publications as long as more than half of the broker replicas on each virtual node at every end-
to-end path are non-Byzantine. Secret keys are split further at every virtual node down the pub-
lication delivery path. This method is proven to prevent the situation where Byzantine brokers
can collude to reconstruct the secret key for decrypting confidential messages. This method
also prevents publication message drops by the Byzantine brokers. We assessed the perfor-
mance implication of our scheme on a PADRES pub/sub broker overlay and discussed several
adaptations to our scheme. In addition to the secret forwarding technique, we addressed the
efficient usage of resources by devising a framework to place broker replicas strategically on
different parts of the overlay according to reliability and performance requirements that are
configurable. We also implemented a non-disruptive protocol for detaching and attaching bro-
ker replicas to realize any update to the placements of broker replicas.

Author Contributions

Conceived and designed the experiments: YY BHK. Performed the experiments: YY BHK.
Analyzed the data: YY BHK. Contributed reagents/materials/analysis tools: YY BHK. Wrote
the paper: YY BHK. Prepared evaluation workload: YY. Broker architecture visualization:
BHK.

References

1. Eugster PT, Felber PA, Guerraoui R, Kermarrec AM. The Many Faces of Publish/Subscribe. ACM
Comput Surv. 2003 Jun; 35(2):114—131. Available from: http://doi.acm.org/10.1145/857076.857078.
doi: 10.1145/857076.857078

2. Fawecett T, Provost F. Activity Monitoring: Noticing Interesting Changes in Behavior. In: Proceedings of
the Fifth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. KDD’99.
New York, NY, USA: ACM; 1999. p. 53-62. Available from: http://doi.acm.org/10.1145/312129.312195.

3. TockY,Naaman N, Harpaz A, Gershinsky G. Hierarchical Clustering of Message Flows in a Multicast
Data Dissemination System. Parallel and Distributed Computing and Systems (PDCS 05). 2005 Nov;
Available from: http://www.actapress.com/Paperinfo.aspx?PaperlD=223208&reason=500.

4. Koenigl. Event Processing as a Core Capability of Your Content Distribution Fabric. In: Gartner Event
Processing Summit; 2007. Available from: http://www.thomson.com/pdf/financial/TF_Complex_Event_
Processing.

5. Corsaro A. The Data Distribution Service for Real-Time Systems; 2010. Available from: http://www.
drdobbs.com/architecture-and-design/the-data-distribution-service-for-real-/222900238.

6. Publish-Subscribe Internet Routing Paradigm;. Hitp://www.psirp.org.

7. Jokela P, Zahemszky A, Esteve Rothenberg C, Arianfar S, Nikander P. LIPSIN: Line Speed Publish/
Subscribe Inter-networking. SIGCOMM Comput Commun Rev. 2009 Aug; 39(4):195-206. Available
from: http://doi.acm.org/10.1145/1594977.1592592. doi: 10.1145/1594977.1592592

Apache Kafka;. Available from: http://kafka.apache.org/.
9. Apache Storm;. Available from: http://storm.apache.org/.

10. MQTT OASIS Standard; 2014. Available from: http://mqtt.org/2014/11/mqtt-v3-1-1-now-an-oasis-
standard.

11. Shelby Z, Hartke K, Bormann C. The Constrained Application Platform (CoAP); 2014. Internet Engi-
neering Task Force (IETF) RFC 7252.

12. Gao ZK, Yu-Xuan, Fang PC, Jin ND, Xia CY, Hu LD. Multi-frequency complex network from time series
for uncovering oil-water flow structure. Scientific Reports. 2015; 5(8222). Available from: http://www.
sciencedirect.com/science/article/pii/S0894177714002337.

13. Gao ZK, Jin ND. A directed weighted complex network for characterizing chaotic dynamics from time
series. Nonlinear Analysis: Real World Applications. 2012; 13(2):947-952. Available from: http://www.
sciencedirect.com/science/article/pii/S146812181100263X. doi: 10.1016/j.nonrwa.2011.08.029

14. GaoZK, Yang YX, Fang PC, Zou Y, Xia CY, Du M. Multiscale complex network for analyzing experi-
mental multivariate time series. EPL. 2015; 109(3):30005. doi: 10.1209/0295-5075/109/30005

15. XiaCY, Meng XK, Wang Z. Heterogeneous Coupling between Interdependent Lattices Promotes the
Cooperation in the Prisoner’'s Dilemma Game. PLoS ONE. 2015 06; 10(6):1-13. doi: 10.1371/journal.
pone.0129542

PLOS ONE | DOI:10.1371/journal.pone.0158516 July 1,2016 21/23

http://doi.acm.org/10.1145/857076.857078
http://dx.doi.org/10.1145/857076.857078
http://doi.acm.org/10.1145/312129.312195
http://www.actapress.com/PaperInfo.aspx?PaperID=22320&reason=500
http://www.thomson.com/pdf/financial/TF_Complex_Event_Processing
http://www.thomson.com/pdf/financial/TF_Complex_Event_Processing
http://www.drdobbs.com/architecture-and-design/the-data-distribution-service-for-real-t/222900238
http://www.drdobbs.com/architecture-and-design/the-data-distribution-service-for-real-t/222900238
Http://www.psirp.org
http://doi.acm.org/10.1145/1594977.1592592
http://dx.doi.org/10.1145/1594977.1592592
http://kafka.apache.org/
http://storm.apache.org/
http://mqtt.org/2014/11/mqtt-v3-1-1-now-an-oasis-standard
http://mqtt.org/2014/11/mqtt-v3-1-1-now-an-oasis-standard
http://www.sciencedirect.com/science/article/pii/S0894177714002337
http://www.sciencedirect.com/science/article/pii/S0894177714002337
http://www.sciencedirect.com/science/article/pii/S146812181100263X
http://www.sciencedirect.com/science/article/pii/S146812181100263X
http://dx.doi.org/10.1016/j.nonrwa.2011.08.029
http://dx.doi.org/10.1209/0295-5075/109/30005
http://dx.doi.org/10.1371/journal.pone.0129542
http://dx.doi.org/10.1371/journal.pone.0129542

@’PLOS ‘ ONE

Secret Forwarding in Publish/Subscribe Overlays

16.

17.

18.
19.
20.

21,

22,

23.

24,

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

Xia CY, Meloni S, Perc M, Moreno Y. Dynamic instability of cooperation due to diverse activity patterns
in evolutionary social dilemmas. EPL. 2015; 109(5):58002. doi: 10.1209/0295-5075/109/58002

Gao ZK, Fang PC, Ding MS, Jin ND. Multivariate weighted complex network analysis for characterizing
nonlinear dynamic behavior in two-phase flow. Experimental Thermal and Fluid Science. 2015;
60:157-164. Available from: http://www.sciencedirect.com/science/article/pii/S0894177714002337.
doi: 10.1016/j.expthermflusci.2014.09.008

TIBCO Enterprise Service Bus;. Available from: hitp://www.tibco.com/.
IBM Websphere MQ;. Available from: http://www.ibm.com/software/integration/wmg.

Jacobsen HA, Cheung AKY, Li G, Maniymaran B, Muthusamy V, Kazemzadeh RS. The PADRES Pub-
lish/Subscribe System. In: Principles and Applications of Distributed Event-Based Systems; 2010.
p. 164-205.

Carzaniga A, Rosenblum DS, Wolf AL. Design and evaluation of a wide-area event notification service.
ACM Transactions on Computer Systems. 2001 Aug; 19(3):332—-383. Available from: http://doi.acm.
org/10.1145/380749.380767. doi: 10.1145/380749.380767

Muhl G, Jaeger MA, Herrmann K, Weis T, Ulbrich A, Fiege L. Self-stabilizing publish/subscribe sys-
tems: algorithms and evaluation. In: Proceedings of the 11th international Euro-Par conference on Par-
allel Processing. Euro-Par’05. Berlin, Heidelberg: Springer-Verlag; 2005. p. 664—674. Available from:
http://dx.doi.org/10.1007/11549468_73.

Shamir A. How to Share a Secret. Communications of the ACM. 1979; 22(11):612—613. doi: 10.1145/
359168.359176

Yoon Y, Muthusamy V, Jacobsen HA. Foundations for Highly Available Content-Based Publish/Sub-
scribe Overlays. In: Proceedings of the 2011 31st International Conference on Distributed Computing
Systems. ICDCS’11. Washington, DC, USA: IEEE Computer Society; 2011. p. 800-811. Available
from: http://dx.doi.org/10.1109/ICDCS.2011.983.

Li SYR, Yeung RW, Cai N. Linear network coding. Information Theory, IEEE Transactions on. 2003
feb; 49(2):371-381. doi: 10.1109/TIT.2002.807285

Wun A, Cheung A, Jacobsen HA. A taxonomy for denial of service attacks in content-based publish/
subscribe systems. In: Proceedings of the 2007 inaugural international conference on Distributed
event-based systems. DEBS’07. New York, NY, USA: ACM; 2007. p. 116—127. Available from: http://
doi.acm.org/10.1145/1266894.1266917.

Li M, Ye F, Kim M, Chen H, Lei H. A scalable and elastic publish/subscribe service. In: Parallel & Distrib-
uted Processing Symposium (IPDPS), 2011 IEEE International. IEEE; 2011. p. 1254-1265.

Lazowska ED, Zahorjan J, Graham GS, Sevcik KC. Quantitative system performance: computer sys-
tem analysis using queueing network models. Prentice-Hall, Inc.; 1984.

Popa RA, Redfield CMS, Zeldovich N, Balakrishnan H. CryptDB: protecting confidentiality with
encrypted query processing. In: Proceedings of the Twenty-Third ACM Symposium on Operating Sys-
tems Principles. SOSP’11. New York, NY, USA: ACM; 2011. p. 85—100. Available from: http://doi.acm.
org/10.1145/2043556.2043566.

Cully B, Lefebvre G, Meyer D, Feeley M, Hutchinson N, Warfield A. Remus: high availability via asyn-
chronous virtual machine replication. In: Proceedings of the 5th USENIX Symposium on Networked
Systems Design and Implementation. NSDI'08. Berkeley, CA, USA: USENIX Association; 2008.

p. 161-174. Available from: http://dl.acm.org/citation.cfm?id=1387589.1387601.

Lagar-Cavilla HA, Whitney JA, Scannell AM, Patchin P, Rumble SM, de Lara E, et al. SnowFlock: rapid
virtual machine cloning for cloud computing. In: Proceedings of the 4th ACM European conference on
Computer systems. EuroSys’09. New York, NY, USA: ACM; 2009. p. 1—12. Available from: http://doi.
acm.org/10.1145/1519065.1519067.

Wilson C, Boe B, Sala A, Puttaswamy KPN, Zhao BY. User interactions in social networks and their
implications. In: Proceedings of the 4th ACM European conference on Computer systems. EuroSys’09.
New York, NY, USA: ACM; 2009. p. 205-218. Available from: http://doi.acm.org/10.1145/1519065.
1519089.

IBM. IBM Gryphon Project;. Available from: http://www.research.ibm.com/distributedmessaging/
gryphon.html.

Kazemzadeh RS, Jacobsen HA. Reliable and Highly Available Distributed Publish/Subscribe Service.
In: Proceedings of the 2009 28th IEEE International Symposium on Reliable Distributed Systems.
SRDS’09. Washington, DC, USA: IEEE Computer Society; 2009. p. 41-50. Available from: http://dx.
doi.org/10.1109/SRDS.2009.32.

Srivatsa M, Liu L, lyengar A. EventGuard: A System Architecture for Securing Publish-Subscribe Net-
works. ACM Transaction on Computer Systems. 2011; 29(4):10. doi: 10.1145/2063509.2063510

PLOS ONE | DOI:10.1371/journal.pone.0158516 July 1,2016 22/23

http://dx.doi.org/10.1209/0295-5075/109/58002
http://www.sciencedirect.com/science/article/pii/S0894177714002337
http://dx.doi.org/10.1016/j.expthermflusci.2014.09.008
http://www.tibco.com/
http://www.ibm.com/software/integration/wmq
http://doi.acm.org/10.1145/380749.380767
http://doi.acm.org/10.1145/380749.380767
http://dx.doi.org/10.1145/380749.380767
http://dx.doi.org/10.1007/11549468_73
http://dx.doi.org/10.1145/359168.359176
http://dx.doi.org/10.1145/359168.359176
http://dx.doi.org/10.1109/ICDCS.2011.93
http://dx.doi.org/10.1109/TIT.2002.807285
http://doi.acm.org/10.1145/1266894.1266917
http://doi.acm.org/10.1145/1266894.1266917
http://doi.acm.org/10.1145/2043556.2043566
http://doi.acm.org/10.1145/2043556.2043566
http://dl.acm.org/citation.cfm?id=1387589.1387601
http://doi.acm.org/10.1145/1519065.1519067
http://doi.acm.org/10.1145/1519065.1519067
http://doi.acm.org/10.1145/1519065.1519089
http://doi.acm.org/10.1145/1519065.1519089
http://www.research.ibm.com/distributedmessaging/gryphon.html
http://www.research.ibm.com/distributedmessaging/gryphon.html
http://dx.doi.org/10.1109/SRDS.2009.32
http://dx.doi.org/10.1109/SRDS.2009.32
http://dx.doi.org/10.1145/2063509.2063510

@’PLOS ‘ ONE

Secret Forwarding in Publish/Subscribe Overlays

36.

37.

38.

39.

40.

Bacon J, Eyers DM, Singh J, Pietzuch PR. Access Control in Publish/Subscribe Systems. In: Proceed-
ings of the second international conference on Distributed event-based systems. DEBS’08. New York,
NY, USA: ACM; 2008. p. 23—-34. Available from: http://doi.acm.org/10.1145/1385989.1385993.

Nabeel M, Shang N, Bertino E. Efficient privacy preserving content based publish subscribe systems.
In: Proceedings of the 17th ACM symposium on Access Control Models and Technologies. SAC-
MAT’12. New York, NY, USA: ACM; 2012. p. 133—144. Available from: http://doi.acm.org/10.1145/
2295136.2295164.

Choi S, Ghinita G, Bertino E. A Privacy-Enhancing Content-Based Publish/Subscribe System Using
Scalar Product Preserving Transformations. In: Database and Expert Systems Applications, 21st Inter-
national Conference, DEXA 2010; 2010. p. 368—384.

lon M, Russello G, Crispo B. Design and implementation of a confidentiality and access control solution
for publish/subscribe systems. Computer Networks. 2012; 56(7):2014-2037. doi: 10.1016/j.comnet.
2012.02.013

Minami K, Lee AJ, Winslett M, Borisov N. Secure aggregation in a publish-subscribe system. In: Pro-
ceedings of the 7th ACM workshop on Privacy in the electronic society. WPES’08. New York, NY, USA:
ACM; 2008. p. 95-104. Available from: http://doi.acm.org/10.1145/1456403.1456419.

PLOS ONE | DOI:10.1371/journal.pone.0158516 July 1,2016 23/23

http://doi.acm.org/10.1145/1385989.1385993
http://doi.acm.org/10.1145/2295136.2295164
http://doi.acm.org/10.1145/2295136.2295164
http://dx.doi.org/10.1016/j.comnet.2012.02.013
http://dx.doi.org/10.1016/j.comnet.2012.02.013
http://doi.acm.org/10.1145/1456403.1456419

