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We read the article by Gajardo-Vidal et al.1 with great interest. The
authors collected data from 134 stroke survivors with left lateral
frontal lesions and built a series of multiple regression models to
explain the contributions of Broca’s area and adjacent structures to
long-term speech production. Their findings challenge several trad-
itional views. First, their data provide new evidence that damage to
Broca’s area rarely contributes to long-term speech production defi-
cits. Second, the authors claim that a persistent speech production
deficit after a lesion to the anterior arcuate fasciculus (aAF) is not
caused by the disconnection of Broca’s area. Third, the authors in-
terpret the previously reported phenomenon of Broca’s area lesion
leading to long-term speech production deficits as co-occurring
damage of the underlying aAF. This research not only has import-
ant reference value for the clinical brain mapping and preservation
of language functions but also provides precious lesion-symptom
evidence for neurolinguistic theories and models.

However, Gajardo-Vidal et al.1 also mentioned several limitations
of their study. For example, the stroke lesions are often diffuse2;
thus, they cannot fully distinguish the contribution of Broca’s area
from that of the adjacent white and grey matter. For the same rea-
son, it is difficult to map the disconnected cortex precisely after
damage to a specific fibre bundle.3 Herein, we would like to share
the preliminary results of our fibre tractography and intraoperative
direct cortical electrical stimulation (DES) study. The language
interferences induced by DES can be regarded as a small-scale (�1-
cm resolution) transient lesion to the language area.4–8 In addition,
previous studies have revealed a very low long-term aphasia rate
(2.4% and 1.6%, respectively, for 3- and 6-months post operatively)
after DES language mapping for glioma resection.4 Thus, we believe
our results are highly comparable with this lesion study.

We reviewed all right-handed glioma patients (n = 77) who
underwent left frontal DES language mapping at Huashan Hospital
between September 2017 and November 2018. Next, 18 patients
were included for further analysis, because their tumors or oedema
areas did not affect the regions of interest: Broca’s area (pars oper-
cularis, pars triangularis), the ventral precentral gyrus, the underly-
ing aAF and long segment of the arcuate fasciculus (lAF). DES-
induced speech arrest/anarthria (the stimulation-induced cessation
of ongoing number counting, without twitching of the articulators)
was selected as the gold standard for mapping the speech produc-
tion area.4,8 Subsequently, we reconstructed the cerebral distribu-
tion of the speech arrest sites (Fig. 1B and D) and the cortical
terminations of aAF (Fig. 1E) and lAF (Fig. 1F) based on the intrao-
perative photos (Fig. 1A) and preoperative neuroimaging.9,10

Considering the 1-cm resolution of DES and 1-cm margin of the tis-
sue preservation to the functional area, we quantitatively meas-
ured these results with a 1-cm2 square grid (Fig. 1C and G–I)4 and
then integrated them into group-level distribution maps (Fig. 1J).
Finally, sensitivity and specificity analyses were performed for the
regions of interest in predicting the stimulation-induced speech ar-
rest sites (Fig. 1K).

Primarily, our results showed that the distribution of speech ar-
rest sites is poorly consistent with Broca’s area (j = –0.45) or pars
opercularis (j = –0.19) (Fig. 1K). Among the 18 patients included, no
speech arrest sites were found in the pars triangularis (Fig. 1J).
Most of the speech arrest sites were located in the ventral precen-
tral gyrus, especially the ventral premotor area (Fig. 1J). In addition,
a moderate consistency was found between the ventral precentral
gyrus and speech arrest area (j = 0.50, P5 0.0001) (Fig. 1K). This dis-
tribution pattern is consistent with previous DES studies4–8 and in
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line with the poor contribution of the lesion load in Broca’s area to
predict the long-term speech production outcome,1 as well as the
low incidence of permanent speech production deficits after
removing the Broca’s area.11

Second, Gajardo-Vidal et al.1 highlighted the critical rule of the
aAF in explaining long-term speech production deficit among adja-
cent regions of Broca’s area. However, the authors did not include a
comparison between the aAF and lAF in their study. These two
major fibres of the dorsal phonological stream tend to be under-
neath the frontal cortex and are likely to terminate in Broca’s area
and the ventral precentral gyrus.9,10,12,13 We found that among all
included regions of interest, the end points of the aAF have the
best consistency with the DES-induced speech arrest area (j = 0.72,
P5 0.0001) (Fig. 1K). Furthermore, the sensitivity and specificity of
the aAF end points were significantly higher than those of Broca’s
area or pars opercularis only (P50.0001 for all McNemar’s tests).
Although no statistical difference in sensitivity was found, aAF end

points predicted speech arrest with significantly higher specificity
than lAF (P50.0001) and ventral precentral gyrus (P50.0001). We
also found that the end points of the lAF/aAF complex had a higher
sensitivity than the aAF termination only (P = 0.016) but a lower
specificity (P50.0001) and Yoden index (0.75 for the aAF versus
0.68 for the lAF/aAF complex). To conclude, we revealed that the
termination of the aAF is the best predictor of the speech produc-
tion cortex among the included regions of interest, and this is sup-
ported by various subcortical stimulation mapping and DTI
studies.13–16 Therefore, we believe that the cortical termination of
the aAF may be the real speech production area. Finally, we hope
our findings may supplement the excellent work by Gajardo-Vidal
et al.1

Data availability

Data involved in this study are available upon reasonable request.

Figure 1 Sensitivity and specificity analysis for the regions of interest in predicting the stimulation-induced speech arrest sites. (A) The intra-opera-
tive photo of the cerebral surface with sterile tags labelling the DES-induced responses. The speech arrest sites are marked with the labels 5–7. (B)
The anatomical landmarks (red line: inferior frontal sulcus; purple line: Sylvian fissure; green line: horizontal ramus; blue line: ascending ramus; or-
ange line: precentral sulcus; light blue line: central sulcus; and black dotted line: the horizontal line from the intersection of the inferior frontal sulcus
and the precentral sulcus) for delineating the pars opercularis (O), pars triangularis (T) and the ventral part of the precentral gyrus (V). (C) The distri-
butions of the exposed cortex (delineated with a yellow line) and the regions of interest (1 cm2 white squares and corresponding letters). (D–I) The
distributions of (D) the speech arrest sites (1 cm2 green squares), the frontal terminations of (E) the long segment (lAF, the termination marked in
lighter red) and (F) anterior segment (aAF, the termination marked in lighter blue) of the arcuate fasciculus and (G–I) the corresponding squares con-
taining these regions of interest. (J) At group-level (n = 18), the speech arrest sites (green) occupied 74 squares in total, with 86% of squares in the ven-
tral precentral gyrus (vPCG, grey, 64 of 74 squares) and 14% of squares in the pars opercularis (pOp, orange, 10 of 74 squares). (K) The sensitivities and
specificities of the regions of interest (lAF [ aAF: lAF and aAF complexes; Broca’s area: pars opercularis and pars triangularis) in predicting the DES-
induced speech arrest sites (j = Cohen’s kappa coefficient; ****P5 0.0001; ns = non-significant).
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