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Quynh Nhu Nguyen and Pamela Reinagel*

Section of Neurobiology, Division of Biological Sciences, University of California, San Diego, San Diego, CA,
United States

When observers make rapid, difficult perceptual decisions, their response time is highly
variable from trial to trial. In a visual motion discrimination task, it has been reported
that human accuracy declines with increasing response time, whereas rat accuracy
increases with response time. This is of interest because different mathematical theories
of decision-making differ in their predictions regarding the correlation of accuracy with
response time. On the premise that perceptual decision-making mechanisms are likely
to be conserved among mammals, we seek to unify the rodent and primate results
in a common theoretical framework. We show that a bounded drift diffusion model
(DDM) can explain both effects with variable parameters: trial-to-trial variability in the
starting point of the diffusion process produces the pattern typically observed in rats,
whereas variability in the drift rate produces the pattern typically observed in humans.
We further show that the same effects can be produced by deterministic biases, even
in the absence of parameter stochasticity or parameter change within a trial.

Keywords: drift diffusion, comparative decision making, speed accuracy tradeoff, bias, context

INTRODUCTION

One might expect decision-making by humans to be quite different from that of rats. In
decisions with wide-reaching long-term consequences, we expect (or at least wish) humans would
avail themselves of abstract conceptual thought, logical reasoning, and culturally accumulated
knowledge that would be unavailable to a rat. Yet all organisms face a continuous challenge of
selecting among alternative available actions in order to pursue goals. In order to select an action,
sensory information, internal knowledge, and goals are combined to assess and evaluate the likely
outcomes of possible actions relative to survival needs. Often there is not enough time to acquire
the evidence necessary to determine with certainty the optimal course of action, so an action must
be selected despite unresolved or unresolvable uncertainty. Some mechanism is needed to ensure
timely commitment and to optimize outcome on average, and this must adapt flexibly to prevailing
sensory context, shifting goal priorities, the urgency of action, and the severity of consequences
of errors. When it comes to the continuous sensory guidance of moment-by-moment actions,
decisions about sensory evidence are made in a fraction of a second. We speculate that in this case,
mechanisms are largely conserved across mammals.

A now-classic series of studies in humans and non-human primates introduced the use of a
stochastic visual motion task to study decision making (Britten et al., 1992, 1993, 1996; Shadlen
et al., 1996; Shadlen and Newsome, 1996; Gold and Shadlen, 2001, 2007; Shadlen and Newsome,
2001; Roitman and Shadlen, 2002; Mazurek et al., 2003; Huk and Shadlen, 2005; Palmer et al., 2005).
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In each trial a visual stimulus provides information regarding
which of two available actions is associated with reward and
which is associated with non-reward or penalty. Stimulus
strength is modulated by the motion coherence, which is defined
as the fraction of the dots in the display that are “signal” (moving
toward the rewarded response side). The remaining dots are
“noise” (moving in random directions). As stimulus strength
increases, accuracy increases and response time decreases for
both monkeys (Roitman and Shadlen, 2002) and humans (Palmer
et al., 2005). This is parsimoniously explained by drift diffusion
models, which postulate that noisy sensory evidence is integrated
over time until the accumulated evidence reaches a decision
threshold (Stone, 1960; Ashby, 1983; Busemeyer and Townsend,
1993; Gold and Shadlen, 2001, 2007; Usher and McClelland,
2001; Ratcliff and Tuerlinckx, 2002; Palmer et al., 2005; Brown
and Heathcote, 2008; Ratcliff and McKoon, 2008; Ratcliff et al.,
2016). Although this class of model is highly successful, more
data are needed to test model predictions and differentiate among
competing versions of the model and alternative model classes
(Wang, 2002; Ratcliff and McKoon, 2008; Pleskac and Busemeyer,
2010; Purcell et al., 2010; Rao, 2010; Heathcote and Love, 2012;
Tsetsos et al., 2012; Huang and Rao, 2013; Usher et al., 2013;
Scott et al., 2015; Ratcliff et al., 2016; Sun and Landy, 2016;
White et al., 2018).

For example, when monkeys or humans perform this task,
among trials of the same stimulus strength the interleaved
trials with longer response times are more likely to be errors
(Roitman and Shadlen, 2002; Palmer et al., 2005). In its simplest
form the drift diffusion model does not explain this result;
therefore the observation has been an important constraint
for recent theoretical efforts. The result can be explained if
the decision bound is not constant but instead decays as a
function of time (Churchland et al., 2008; Cisek et al., 2009;
Bowman et al., 2012; Drugowitsch et al., 2012). A collapsing
decision bound can be rationalized as an optimal strategy under
some task constraints (Rao, 2010; Hanks et al., 2011; Huang
and Rao, 2013; Tajima et al., 2016) though this argument has
been challenged by others (Hawkins et al., 2015; Boehm et al.,
2016). There are alternative ways to explain the data within
the sequential sampling model framework without positing an
explicit urgency signal or decaying bound (Ditterich, 2006a,b;
Ratcliff and McKoon, 2008; Ratcliff and Starns, 2013).

When rats performed the same random dot motion task,
however, the opposite effect was found: their later decisions
were more likely to be accurate (Reinagel, 2013b; Shevinsky and
Reinagel, 2019). The same has also been reported for image
discriminations in rats (Reinagel, 2013a), for visual orientation
decisions in mice (Sriram et al., 2020), and in humans in
some other tasks (McCormack and Swenson, 1972; Ratcliff
and Rouder, 1998; Long et al., 2015; Stirman et al., 2016).
This result is not readily explained by some of the models
suggested to explain the late errors of primates [reviewed in
Heitz (2014), Ratcliff et al. (2016), and Hanks and Summerfield
(2017)]. Here, we explore a stochastic variant of the drift-
diffusion model (Ratcliff and Tuerlinckx, 2002; Ratcliff and
McKoon, 2008) for its ability to explain these problematic
findings in both species.

RESULTS

In a basic drift diffusion model (DDM), the relative sensory
evidence in favor of a decision (e.g., “motion is rightward” vs.
“motion is leftward”) is accumulated by an internal decision
variable, resulting in a biased random walk, i.e., diffusion with
drift (Figure 1A). The average drift rate is determined by the
sensory signal strength (e.g., the coherence of visual motion).
When the decision variable reaches either decision threshold,
the agent commits to a choice. The time at which the decision
variable crosses a threshold (response time), and the identity of
the decision threshold that is crossed (correct vs. incorrect), vary
from trial to trial. The model parameters are the starting point z,
threshold separation a, drift rate v, and non-decision time t (in
Figures 1A–E, z = 0 a = 2, t = 0, v = 0.7).

An interesting feature of this model is that for any set
of parameters, the errors and correct responses have identical
response time distributions (Figures 1B–E, red vs. green).
Therefore errors are on average the same speed as correct
responses – even if the signal is so strong that errors are very rare.

We note that this does not, but may at first appear to,
contradict two other facts. First, responses to stronger stimuli
tend to be both more accurate and faster, which in this
model is explained by a higher drift rate v. In this sense
response time is negatively correlated with accuracy – but only
when comparing trials of differing stimulus strengths. Second,
conservative subjects tend to take more time to respond and are
more accurate, which in this model is explained by a greater
threshold separation a. In this sense response time is positively
correlated with accuracy – but only when comparing blocks of
trials with different overall degrees of caution. Both of these
facts are consistent with the fact that within a block of fixed
overall caution, comparing among the trials of the same stimulus
strength, response time and accuracy are uncorrelated in the
basic DDM model.

Both humans and rats deviate systematically from the
prediction that correct and error trials have the same mean and
probability distribution, however (Shevinsky and Reinagel, 2019).
In the random dot motion discrimination task, for example,
correct trials of rat subjects tend to have longer response times
compared to errors (e.g., Figures 1F, cf. 1E). We quantify this
effect by comparing the response times of individual correct trials
to nearby (but not adjacent) error trials of the same stimulus
strength (Figure 1I). This temporally local measure is robust to
data non-stationarities that could otherwise produce a result like
that shown in Figure 1F artefactually (Shevinsky and Reinagel,
2019). Humans also violate the basic DDM model prediction,
but in the opposite way. For humans, errors tend to have longer
response times (e.g., Figures 1J, cf. 1E; summarized in 1M). Our
goal is to find a unified framework to account for both these
deviations from predictions.

Drift Diffusion Model With Variable
Parameters
It was previously shown that adding noise to the parameters
of a bounded drift diffusion model can differentially affect
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FIGURE 1 | The basic drift diffusion model is incompatible with data from rats or humans. (A) Simulated evidence accumulation in a basic drift diffusion model, for
six example trials that terminated in correct decisions (green shades, solid symbols) and six that terminated in error decisions (red shades, open symbols). Although
an equal number of traces are shown, in the condition illustrated 80% of the traces terminated by crossing the correct boundary. (B) Response time distributions for
errors (red, dashed) vs. correct trials (green, solid) of 104 trials like those simulated as in (A). (C) Cumulatives of the distributions shown in (B). (D,E) Distributions in
(B,C) normalized to the number of trials. (F) Cumulative probability distribution of response time for errors and correct trials for an example experiment in a rat, a
fixed-coherence experiment with 65% coherence, for which the rat was 82% correct. The null hypothesis that the distributions are the same can be rejected with
P = 2.91e-171 (N = 8851,1913) by two-tailed Kolmogorov–Smirnov (KS) test. (G–I). Analysis of an example rat psychometric experiment. (G) Accuracy increased
with coherence. (H) Mean response time decreased with coherence. (I) On average, the response time of a correct trial is greater than that of a temporally nearby
error trial of the same coherence. (J) Like (F), for an example experiment in a human, a fixed-coherence experiment with 10% coherence for which the subject was
83% correct; P = 4.69e-05 (N = 745,153) by KS test. Errors are later than correct trials, unlike either the DDM model (E) or rats (F). (K–M) Like (G–I), for an
example human psychometric experiment. (M) Error trials are longer than correct trials on average, unlike rats, and also incompatible with DDM. Data from
Shevinsky and Reinagel (2019) and Reinagel and Shevinsky (2020).

the error and correct response time distributions (Ratcliff and
Tuerlinckx, 2002; Ratcliff and McKoon, 2008). The version
we implemented has three additional parameters: variability
in starting point σz , variability in non-decision-time σt , and
variability in drift rate σv (Figure 2A). We are able to find
parameter sets that produce behavior qualitatively similar to
either a rat (Figures 2B–E, cf. 1F–I) or a human (Figures 2F–
I, cf. 1J–M). Notably, this model can replicate the shift in the
response time distribution of correct trials to either later or earlier
than that of error trials (Figures 2B, cf. 1F; and Figure 2F,
cf. 1J), unlike the standard DDM (Figure 1E). The model also
replicates the fact that the amplitude of this effect increases
with stimulus strength (Figure 2E solid blue symbols, cf. Figure
1I; and Figures 2I, cf. 1M). Removing the drift rate variability

and starting point variability from these simulations improved
accuracy (Figures 2C,G open symbols), increased the response
time for ambiguous stimuli (Figures 2D,H), and eliminated the
difference between average correct and error response times
(Figures 2E,I).

We systematically varied the parameters of this model
(Figures 3A–C) to determine all the conditions under which the
mean RT of correct trials can be greater or less than the mean
RT of error trials, using parameter ranges from the literature
(Ratcliff and Tuerlinckx, 2002; Wagenmakers et al., 2007; Ratcliff
and McKoon, 2008). Like the basic DDM, the simulations with
σz = 0, σv = 0 showed no difference between correct and error
RT for any drift rate (black curves are on y = 0 line), in
spite of the addition of non-decision time variability σt . We
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FIGURE 2 | Addition of variability to the parameters of the drift diffusion model. (A) Definition of parameters. The parameter a is the distance between the error and
correct thresholds. The starting point of evidence accumulation is given by z. The average drift rate v depends on the stimulus strength. The observable outcomes
are response time (RT) and decision (correct or error). The non-decision-time t reflects both sensory latency and motor latency, but is drawn at left for graphical
simplicity. Parameters t, z, and v vary from trial to trial according to the variability parameters σt, σz , and σv, respectively. Drift rate variability was simulated by a
normal distribution around the mean parameter. Starting point variability and non-decision time variability were simulated by uniform distributions centered on the
mean parameter. Diagram after (Ratcliff and McKoon, 2008). (B–E) Analysis of trials simulated with parameters that produce qualitatively rat-like behavior: a = 1.84,
t = 0.74, σv = 0.1, σz = 1.5, σt = 0.2, and v = −0.5 c2

+ 2.5c, where c is coherence (motion stimulus strength). (B) Cumulative probability distributions of correct
vs. error trial response times, for c = 0.8. (C) Psychometric curve. (D) Chronometric curve. (E) Difference between mean response times of errors and correct trials.
(F–I) Like panels (B–E) but with parameters that produce qualitatively human-like behavior: a = 2.0, t = 0.5, σv = 1.5, σz = 0.3, σt = 0.03, and v = −80 c2

+ 80c.
(F) Cumulative RT probability distributions for c = 0.03. For all these simulations, the mean starting point z = 0, timestep τ = 0.001, diffusion noise σn= 1, N = 105

trials per coherence. Open symbols show results obtained after setting σz = 0 and σv = 0. Note that in conditions with 100% accuracy the 〈RTc〉 − 〈RTe〉 difference
is undefined.

never observed a positive RT difference in this model unless
the starting point was variable (the dark blue or black curves,
σz = 0, lie entirely on or below the abscissa). Whenever σz >
0 and σv =0, the RT difference was positive (thin lines other
than black). We never observed a negative RT difference in the
absence of drift rate variability (thin lines, σv = 0, lie entirely
on or above the abscissa). Whenever σv > 0 and σz = 0, the
RT difference was negative (dark blue curves). Holding other
parameters constant, the RT difference always increased (more
positive, or less negative) with increasing σz (blue → red) and
decreased with increasing σv (thin→ thick).

When both starting point variability and drift rate variability
are present simultaneously, these opposing effects trade off
against one another quantitatively, such that there are many
parameter combinations consistent with any given sign and
amplitude of effect. This explains why parameter fits to
data are generally degenerate. Taken together, the simulations
show that human-like pattern is associated with dominance
of σv and the rat-like pattern with dominance of σz . The
non-decision time t and its variability σt were explored
in separate simulations and did not impact the effect of
interest (not shown).
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FIGURE 3 | Parameter sweep of the variable-parameter DDM. (A–C) Curves show the difference between correct and error mean response times,
〈RTcorrect〉 − 〈RTerror〉, as a function of drift rate parameter v = [0.0, 0.1, 0.2, 0.3, 0.4, 0.5]. Colors indicate starting point variability σz = [0.0, 0.02, 0.07, 0.10],
in spectral order from low (dark blue) to high (red). Line thickness indicates drift rate variability σv = [0.0, 0.08, 0.12, 0.16]. Black curve is for σv = 0, σz = 0.
(A) Simulations with threshold separation a = 0.08. (B) Simulations with a = 0.11. (C) Simulations with a = 0.16. For all the simulations shown, z = 0, t = 0.3,
σt = 0.2, τ = 0.001, and σn = 0.1. (D) Distribution of threshold separation a from fits of this model to datasets from Reinagel and Shevinsky (2020). (E) Distribution
of a among example psychometric experiments from unique unbiased subjects in those datasets (see section “Materials and Methods”). (F) Distribution of starting
point variability, expressed as a fraction of threshold separation: σz/a. (G) Distribution of σz/a in the unbiased example sets. (H) Distribution of drift rate variability σv.
(I) Distribution of σv in the unbiased example sets. (J) Average difference between correct and error response times 〈RTc − RTe〉 computed locally within coherence,
averaged over coherences ≥ 0.4. Fixed coherence (light), psychometric with < 10% lapse (medium) or with ≥ 10% lapse (dark). Upward bars show the results from
the rat dataset, as analyzed in Shevinsky and Reinagel (2019); N = 51 psychometric, N = 38 fixed-coherence experiments had sufficient trials for this analysis. Lower
bars show results for trial data simulated by the models (N = 58 psychometric and N = 39 fixed). (K) Like (J), but for the rat unbiased example subset; N = 11 data
or models. (L) Like (J) but for human dataset (N = 81 psychometric, N = 9 fixed) and models fit to human dataset (N = 93 psychometric, N = 9 fixed), averaged
over coherences ≥ 0.04. (M) Like (L) but for the human unbiased example subset, N = 45 (data) or N = 51 (model). For descriptive statistics see Supplementary
Materials. Because of the limitations of fitting, we refrain from making statistical claims about comparisons of human-to-rat or data-to-model distributions.

It is difficult or impossible to recover the true parameters of
this model by fitting data (Boehm et al., 2018). Nevertheless,
we fit published human and datasets to identify example
parameters of the model consistent with the observed data.
The parameters obtained from fitting are not guaranteed to
be the optimal solutions of the model nor accurate measures
of noise in the subjects. Bearing these caveats in mind, the
distributions of parameters we obtained (Figures 3D,F,H) were
consistent with the parameter sweeps. Parameters fit to humans
and rats overlapped substantially, but the human distributions
were shifted toward those that favor late errors (higher σv,
higher a and lower σz), and rats’ parameters toward those
that favor early errors (higher σz , lower a and σv). Trials
simulated using the fitted parameters reproduced the sign of the
effect (Figures 3J,L). In a subset of examples defined by low
bias, the difference between parameter distributions of rats and
humans were less pronounced (Figures 3E,G,I). Experiments
with low bias still exhibit the species difference, and models

fit to those examples still reproduced the species difference
(Figures 3K,M).

This analysis does not prove that humans and rats have trial-
by-trial variability in drift rate and starting point, much less
provide an empirical measure of that variability. What it does
show is that if starting point and drift rate vary from trial to trial,
that alone could be sufficient to produce the effects previously
reported in either species. Only subtle differences in the relative
dominance of drift rate vs. starting point variability would be
required to explain the reported species difference.

Variability Need Not Be Random
Random trial-to-trial variability in parameters can cause
differences between correct and error response times. But
“variability” does not have to be noise. Systematic biases in
the starting point or drift rate would also vary from trial to
trial, and therefore would produce similar effects. We tested

Frontiers in Neuroscience | www.frontiersin.org 5 February 2022 | Volume 16 | Article 794681

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-16-794681 February 16, 2022 Time: 18:9 # 6

Nguyen and Reinagel Different Forms of Variability

whether bias alone could produce results resembling those
of Shevinsky and Reinagel (2019).

First, recall that we have defined decision thresholds as
“correct” vs. “error” rather than “left” vs. “right” (Figure 2A).
Therefore it is impossible for the mean starting point z to be
biased, because the agent cannot know a priori which side is
correct. If a subject’s starting point were systematically biased
to one response side, the starting point would be closer to the
correct threshold on half the trials (when the preferred side was
the correct response), but further on the other half of the trials
(when the non-preferred response was required). Thus the mean
starting point would be z = 0, but the distribution of z would be
binary (or at least bimodal), and thus high in variance. This could
mimic a model with high σz , even in the absence of stochastic
parameter variability.

We demonstrate by simulation that adding a fixed response-
side bias to the starting point of an otherwise standard DDM
is sufficient to produce a response bias (Figure 4A). Response
accuracy is higher when the correct response (“target”) is on the

preferred side, and can fall below chance for weak stimuli to the
non-preferred side (Figure 4B). At any given coherence, response
times are faster for targets on the preferred side (Figure 4C). For
targets on the preferred side, reaction times of correct trials are
faster than errors, whereas for targets on the non-preferred side,
correct trials are slower than errors (Figure 4D). This is because
when the target is on the preferred side, the starting point is
closer to the correct threshold, such that correct responses cross
threshold faster than error responses, while the opposite is true
for targets on the non-preferred side. Thus both the left and
right target trials violate the expectation of 〈RTc〉 = 〈RTe〉, but
in opposite directions.

If the left-target and right-target trials are pooled in a single
analysis – even if exactly equal numbers of both kinds are used –
these opposite effects do not cancel out (Figure 4E). On average,
correct trials would have longer RT than error trials, to an
increasing degree as coherence increases (Figure 4E), just as
commonly seen in rodents (e.g., Figure 1I; see Shevinsky and
Reinagel, 2019). The reason for this, in brief, is that the side

FIGURE 4 | Bias is sufficient to produce either a rat-like or human-like effect within the basic DDM. Simulations were performed with σv = 0, σz = 0, σt = 0 (i.e., the
basic model in Figure 1) but with different forms of bias added. Trials were simulated with 50% right response targets (rightward motion), with 5 × 105 trials per
coherence. (A–E) A right side bias was simulated by displacing the starting point z toward the correct boundary on right-target trials, or toward the error boundary
for left-target trials, by the amount indicated by color key at right. Where coherence is signed, negative indicates leftward motion and positive, rightward motion. If a
coherence axis is unsigned, the left and right motion trials are pooled. (A) Percent right responses, as a function of coherence (sensory stimulus strength), which
determines the drift rate v. (B) Average accuracy of the response as a function of coherence. (C) Average response time as a function of coherence. (D) Difference
between correct and error mean response times, 〈RTcorrect〉 − 〈RTerror〉, as a function of coherence. (E) Difference between correct and error mean responses times
when left-motion and right-motion trials are pooled. Compare to rat data (Figure 1I) or high σz model (thin red curves in Figures 3A–C). (F–J) Like (A–E), but here
bias was simulated by increasing the drift rate v on R-target trials, or decreasing it on L-target trials, by the amount indicated in color key at right. Compare panel (J)
to human data (Figure 1M) or high σv model (thick blue curves in Figures 3A–C). (K–O) Like (A–E) but here the starting point z was displaced toward the side that
was rewarded in previous trial (if any). Same color key as (A–E). (P–T) Like (F–J) but here the drift rate v was increased if the target was on the side rewarded in
previous trial, or decreased if the target was on the opposite side. Same color key as (F–J). For a similar analysis separated by behavioral choice instead, see
Supplementary Figure 2 in Supplementary Materials.
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with the starting point nearer the error threshold is responsible
for the vast majority of the errors, and these errors have short
RTs. The imbalance of contributions to correct responses is less
pronounced. Although the side with the starting point nearer the
correct threshold contributes the majority of correct responses,
and those have short RTs, the drift rate ensures that both sides
contribute substantial numbers of correct trials. For a more
detailed account see Supplementary Figure 1 in Supplementary
Materials. Mechanisms aside, the important point is that if a
response bias is present (Figure 4A) and an effect like that in
Figure 4E is obtained from an analysis that pools left- and right-
target trials, starting point bias toward the preferred side should
be considered as a possible cause. Either the analysis shown here
(Figure 4D) or one that separates left-side from right-side choices
(see Supplementary Figure 2D in Supplementary Materials)
can be used to reveal the contribution of starting-point bias
to early errors.

What if response bias arose, not from a shift in the starting
point of evidence accumulation, but rather from an asymmetry
in the drift rate for leftward vs. rightward motion: vR =/ vL?
Again, there would be an excess of responses to the preferred side
(Figure 4F), and preferred target trials would be more accurate
(Figure 4G) and faster (Figure 4H). If left and right targets were
analyzed separately, each on its own would have a fixed drift
rate, and therefore would behave as predicted by the basic DDM:
correct trials and errors would have the same mean reaction
time (Figure 4I).

But if left- and right-target trials were pooled, v would be
biased toward or away from the correct response in different
trials with equal probability, resulting in a binary or bimodal
distribution in v. Thus the standard deviation of v (σv) would be
large, producing effects equivalent to high drift rate variability σv
(Figure 4J), just as commonly seen in primates (e.g., Figure 1M;
see Shevinsky and Reinagel, 2019). The reason for this is that
pooling left- and right-target trials is equivalent to mixing
together trials from high- and low-coherence stimuli: the slower
RTs over-represent the low-coherence (slow, inaccurate) trials
while faster RTs over-represent the high coherence (fast, accurate)
trials, such that errors are on average slower than correct trials
(see Supplementary Figure 1 in Supplementary Materials).
Therefore, if a response bias is present (Figure 4F) and an effect
like that in Figure 4J is observed in a pooled-trial analysis,
drift rate bias is a candidate mechanism. Either the analysis
shown here (Figure 4I) or one that separates left-side from right-
side choices (see Supplementary Figure 2I in Supplementary
Materials) can be used to clarify the contribution of drift rate
bias to late errors.

Finally, note that rats and humans with the same degree of
response-side bias could have opposite effects on 〈RTcorrect〉 −
〈RTerror〉 (Figures 4E vs. J), if the starting point were more biased
in rats and drift rate more biased in humans.

We belabor the effects of response-side bias in order to draw
a broader generalization. The results just shown (Figures 4A–J)
require only that a bias to one side (L or R) exists in each trial.
It does not matter if that bias is fixed or varying from trial to
trial, only that it is uncorrelated with the correct response. If
the starting point or drift rate were biased in individual trials

based on the recent trial history, for example, this would also
bias the decision toward or away from the correct response
with equal probability in each trial. Therefore history-dependent
bias can also mimic either high σz (Figure 4O) or high σv
(Figure 4T). But in this case, there would be no overall left
or right side bias (Figures 4K,P), and even after conditioning
the analysis on the target side, the “early error” (Figure 4N) or
“late error” (Figure 4S) phenotypes would persist. By analogy
to the case of response side bias, one could test for this specific
kind of bias by conditioning the analysis on the location of the
previous trial’s reward.

In principle, therefore, biases due to trial history or other
contextual states could also be sufficient to explain the observed
difference between error and correct response times in both
species, even in the absence of overt side bias, random variability
of parameters, or within-trial parameter change. Again, the
difference between rats and humans does not require that
historical or contextual biases are stronger in either species, only
that when present, they have a stronger effect on drift rate in
humans and a stronger effect on starting point in rats.

In real data, however, the observed effects could be explained
by a combination of response-side bias, history-dependent bias,
contextual modulation, and noise, impacting both starting point
and drift rate in both species. Therefore, conditioning the analysis
on discrete trial types is not a practical way to detect (or rule out)
bias effects in most data sets. Other new modeling approaches
show promise for dissecting such mixed effects, however (Urai
et al., 2019; Ashwood et al., 2020).

DISCUSSION

The impetus for this study was an observed difference between
primate and rodent decision-making: for primates correct
decisions are on average faster than errors, whereas for rodents
correct decisions are on average slower than errors. Both
observations violate the predictions of the standard drift diffusion
model. In one study this species difference was seen even when
the sensory task was matched such that rats were just as accurate
and just as fast as humans in the task, and even among subjects
with low bias or lapse and comparable accuracy and speed
(Shevinsky and Reinagel, 2019).

We do not presume that the difference in response time of
correct vs. error trials is functionally significant for either species;
the difference is small and accounts for a small fraction of the
variance in response time. The reason this effect is interesting is
because it places constraints on the underlying decision-making
algorithms, and in particular, because it is inconsistent with DDM
in its basic form.

Decreasing accuracy with response time has been widely
reported in both humans and non-human primates (Roitman
and Shadlen, 2002; Palmer et al., 2005) and has been explained
by a number of competing models (Ditterich, 2006a,b; Ratcliff
and McKoon, 2008; Rao, 2010; Hanks et al., 2011; Huang
and Rao, 2013; Ratcliff and Starns, 2013; Tajima et al., 2016).
It was only recently appreciated that accuracy increases with
response time in this type of task in rats (Reinagel, 2013a,b;
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Shevinsky and Reinagel, 2019; Sriram et al., 2020), and it remains
unclear which of those models can accommodate this observation
as well. In this study we showed that either parameter noise
(Ratcliff and Tuerlinckx, 2002; Ratcliff and McKoon, 2008)
or systematic parameter biases could explain the observed
interaction between response time and accuracy in either
species. Similar effects might be found in other related decision-
making models.

On the models explored here, greater variability in the starting
point of evidence accumulation would produce the effect seen
in rats, whereas greater variability in the drift rate of evidence
accumulation would produce the effect seen in humans. We do
not know why rodents and primates should differ in this way.
It could be, for example, that drift rate is modulated by top-
down effects arising in cortex, while starting point is modulated
by bottom-up effects arising subcortically, and species differ in
the relative strength of these influences. Or perhaps some kinds
of bias act on starting point while others act on drift rate, and
species differ in which kinds of bias are stronger.

Can Context Account for Variability?
Although stochastic trial-by-trial variability of parameters could
explain the effects of interest (Figure 3), systematic variations can
also do so. We demonstrate this for simple cases of response side
bias or history-dependent bias (Figure 4). Response bias is more
prevalent in rats than in humans, but correct trials have longer
RT than errors even in rats with no bias (Shevinsky and Reinagel,
2019). In any case, these simulations show that response side
bias would only produce the rat-like pattern if that bias impacted
starting point to a greater degree than drift rate.

It is known that decisions in this type of task can be biased
by the previous trial’s stimulus, response, and outcome in mice
(Busse et al., 2011; Hwang et al., 2017; Roy et al., 2021), rats
(Lavan et al., 2011; Roy et al., 2021), non-human primates
(Sugrue et al., 2004), and humans (Goldfarb et al., 2012; Roy et al.,
2021), reviewed in Frund et al. (2014). Such history-dependent
biases can be strong without causing an average side preference or
an observable lapse rate (errors on strong stimuli). Species differ
in the strength of such biases (Roy et al., 2021), but a difference
in strength of bias does not determine whether the effect will be
to make error trials earlier or later (Figures 4N,O vs. S,T). This
requires a difference in the computational site of action of bias.

In support of this idea, recent studies have traced variability to
bias and history-dependent effects in both rodents and primates.
In a go-nogo task, choice bias (conservative vs. liberal) in both
mice and humans could be explained by bias in drift rate (de
Gee et al., 2020). In another study, choice history bias (repeat
vs. alternate) was specifically linked to drift rate variability in
humans (Urai et al., 2019).

Fluctuations in arousal, motivation, satiety or fatigue could
conceivably modulate decision thresholds or drift rates from
trial to trial independently of either response side or trial
history. [Note that in the model of Figures 2 and 3,
fluctuations in the threshold separation parameter a are
referred to the starting-point variability parameter σz (Ratcliff
and Tuerlinckx, 2002; Ratcliff and McKoon, 2008)]. Such
sources of variation may or may not be correlated with

other measurable states, such as alacrity (e.g., latency to trial
initiation, or in rodents the number or frequency of request
licks), arousal (e.g., assessed by pupillometry), fatigue (the
number of trials recently completed), satiety (amount of reward
recently consumed), or frustration/success (fraction of recent
trials penalized/rewarded). As models continue to include more
of these effects, it will be of interest to determine how
much of the observed behavioral variability is reducable to
such deterministic components in each species, and whether
those effects can be attributed differentially to starting point
vs. drift rate effects in either decision-making models or
neural recordings.

Is Parameter Variability a Bug or a
Feature?
To the extent that parameter variability is attributable to
systematic influences rather than noise, a separate question
would be whether this variability is adaptive or dysfunctional,
in either species. It is possible that non-sensory influences
shift the decision-making computation from trial to trial
in a systematic and reproducible fashion that would be
functionally adaptive in the context of natural behavior,
even though we have artificially broken natural spatial
and temporal correlations to render it maladaptive in our
laboratory task.

For example, in nature some locations may be intrinsically
more reward-rich, or very recent reward yields may be
informative about the expected rewards at each location. In
the real world, recently experienced visual motion might
be highly predictive of the direction of subsequent motion
stimuli. Therefore biasing either starting point or drift rate
according to location or recent stimulus or reward history may
be adaptive strategies under ecological constraints, for either
or both species.

Consistent with this suggestion, decision biases of mice have
been modeled as learned, continuously updated decision policies
(Ashwood et al., 2020). Although the policy updates did not
optimize expected reward in that study, the observed updates
might still reflect hard-wired learning rules that would be optimal
on average in natural contexts.

Conclusion
It has been argued that neural computations underlying
sensory decisions could integrate comparative information
about incoming sensory stimuli (e.g., left vs. right motion
signals), internal representations of prior probability (frequency
of left vs. right motion trials) and the expected values
(rewards or costs) associated with correct vs. incorrect
decisions, in a common currency (Gold and Shadlen,
2001, 2007). On the premise that basic mechanisms of
perceptual decision-making are likely to be conserved (Cesario
et al., 2020), fitting a single model to data from multiple
species – especially where they differ in behavior – is a
powerful way to develop and distinguish among alternative
computational models (Urai et al., 2019), and enables direct
comparison of species.
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MATERIALS AND METHODS

The data and code required to replicate all results in this
manuscript are archived in a verified replication capsule
(Reinagel and Nguyen, 2022).

Experimental Data
No experiments were reported in this manuscript. Example
human and rat data were previously published (Shevinsky and
Reinagel, 2019; Reinagel and Shevinsky, 2020). Specifically,
Figure 1F used rat fixed-coherence epoch 256 of that repository;
Figures 1G–I used rat psychometric epoch 146. Figure 1J used
human fixed-coherence epoch 63, and Figures 1K–M used
human psychometric epoch 81 from that data set. Figures 3D–M
used the “AllEpochs” datasets.

To summarize the experiment briefly: the task was random
dot coherent motion discrimination. When subjects initiated
a trial, white dots appeared at random locations on a black
screen and commenced to move. Some fraction of the dots
(“signal”) moved at the same speed toward the rewarded response
side. The others (“noise”) moved at random velocities. Subjects
could respond at any time by a left vs. right keypress (human)
or lick (rat). Correct responses were rewarded with money
or water; error responses were penalized by a brief time-
out. Stimulus strength was varied by the motion coherence
(fraction of dots that were signal dots). Other stimulus
parameters (e.g., dot size, dot density, motion speed, contrast)
were chosen for each species to ensure that accuracy ranged
from chance (50%) to perfect (100%) and response times
ranged from ∼500 to 2,500 ms for typical subjects of the
species.

Computational Methods
The drift diffusion process was simulated according to the
equation X(t) = X(t − 1) ± δ with probability p of increasing
and (1− p) of decreasing. Here t is the time point of the process,
with time step τ in seconds; δ = σ ·

√
τ denotes the step size,

where σ is the standard deviation of the Gaussian white noise
of the diffusion; p = 0.5 ·

(
1+ v ·

√
τ

σ

)
, where v is the drift rate.

The values for τ and σ were fixed at 0.1 msec and 1, respectively.
For any trial, the process starts at a starting position z, sampled
from a uniform distribution of range σz , assumes a constant drift
rate v, sampled from a normal distribution of standard deviation
σv, and continues until X(t) exceeds either threshold boundary.
The non-decision-time t, sampled from a uniform distribution
of range σt , is added to the elapsed time to obtain the final RT
associated with that trial.

We measured the interaction between accuracy and response
time using the temporally local measure 〈RTcorrect – RTerror〉

introduced in Shevinsky and Reinagel (2019). This method
is preferred for real data because it is robust to non-
trending non-stationarities that are commonly present in both

human and rat data, not detected by traditional stationarity
tests, and that could confound estimation of the effect of
interest. The response time of each error trial is compared
to a temporally nearby correct trial of the same coherence,
requiring a minimum distance of >3 trials to avoid sequential
effects, and a maximum distance of 200 trials to avoid
confounds due to long-range non-stationarity. For simulated
data, where stationarity is guaranteed, the temporally local
measure 〈RTcorrect – RTerror〉 and global measure 〈RTcorrect〉 –
〈RTerror〉 are numerically equivalent.

We fit parameters of the model shown in Figure 2A to
published human and rat datasets (Reinagel and Shevinsky, 2020)
using the Hierarchical Drift Diffusion Model (HDDM) package
(Wiecki et al., 2013). We emphasize that fitting the parameters of
this model is problematic (Boehm et al., 2018). Our interpretation
of the parameters (Figures 3D–M) is limited to asserting that
these example parameters can produce human-like or rat-like
effects, to the extent demonstrated. For further details of fitting,
including scripts, raw output files and summary statistics of
parameters, see Supplementary Materials.

DATA AVAILABILITY STATEMENT

Publicly available datasets were analyzed in this study (Reinagel
and Shevinsky, 2020). These data can be found at doi: 10.7910/
DVN/ATMUIF.

AUTHOR CONTRIBUTIONS

QN proposed and implemented the model, produced the
reported results, and edited earlier drafts of the manuscript.
PR provided direction and oversight, generated the figures, and
wrote the final manuscript. Both authors contributed to the
article and approved the submitted version.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fnins.
2022.794681/full#supplementary-material

Supplementary Figure 1 | Intuitions for the pooling effects.

Supplementary Figure 2 | Alternative analysis of simulated bias.

Supplementary Table 1 | Summary of fit parameters.

Supplementary Statistics | Parameters fit to data.

Supplementary Methods | Model fitting.

Scripts Folder | Python scripts to run with HDDM.

Outputs Folder | Output files generated by HDDM.

Frontiers in Neuroscience | www.frontiersin.org 9 February 2022 | Volume 16 | Article 794681

https://doi.org/10.7910/DVN/ATMUIF
https://doi.org/10.7910/DVN/ATMUIF
https://www.frontiersin.org/articles/10.3389/fnins.2022.794681/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fnins.2022.794681/full#supplementary-material
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-16-794681 February 16, 2022 Time: 18:9 # 10

Nguyen and Reinagel Different Forms of Variability

REFERENCES
Ashby, F. G. (1983). A biased random-walk model for 2 choice reaction-times.

J. Math. Psychol. 27, 277–297. doi: 10.1037/a0021656
Ashwood, Z., Roy, N., Bak, J. H., Laboratory, T. I. B., and Pillow, J. W. (2020).

“Inferring learning rules from animal decision-making,” in Advances in Neural
Information Processing Systems, eds H. Larochelle, M. Ranzato, R. Hadsell, M. F.
Balcan, and H. Lin (Red Hook, NY: Curran Associates, Inc), 3442–3453.

Boehm, U., Annis, J., Frank, M. J., Hawkins, G. E., Heathcote, A., Kellen, D.,
et al. (2018). Estimating across-trial variability parameters of the diffusion
decision model: expert advice and recommendations. J. Math. Psychol. 87,
46–75.

Boehm, U., Hawkins, G. E., Brown, S., van Rijn, H., and Wagenmakers,
E.-J. (2016). Of monkeys and men: impatience in perceptual decision-
making. Psychon. Bull. Rev. 23, 738–749. doi: 10.3758/s13423-015-
0958-5

Bowman, N. E., Kording, K. P., and Gottfried, J. A. (2012). Temporal integration
of olfactory perceptual evidence in human orbitofrontal cortex. Neuron 75,
916–927. doi: 10.1016/j.neuron.2012.06.035

Britten, K. H., Newsome, W. T., Shadlen, M. N., Celebrini, S., and Movshon,
J. A. (1996). A relationship between behavioral choice and the visual
responses of neurons in macaque MT. Vis. Neurosci. 13, 87–100. doi: 10.1017/
s095252380000715x

Britten, K. H., Shadlen, M. N., Newsome, W. T., and Movshon, J. A. (1992).
The analysis of visual motion: a comparison of neuronal and psychophysical
performance. J. Neurosci. 12, 4745–4765. doi: 10.1523/JNEUROSCI.12-12-
04745.1992

Britten, K. H., Shadlen, M. N., Newsome, W. T., and Movshon, J. A. (1993).
Responses of neurons in macaque MT to stochastic motion signals. Vis.
Neurosci. 10, 1157–1169. doi: 10.1017/s0952523800010269

Brown, S. D., and Heathcote, A. (2008). The simplest complete model of choice
response time: linear ballistic accumulation. Cogn. Psychol. 57, 153–178. doi:
10.1016/j.cogpsych.2007.12.002

Busemeyer, J. R., and Townsend, J. T. (1993). Decision field theory: a dynamic-
cognitive approach to decision making in an uncertain environment. Psychol.
Rev. 100, 432–459. doi: 10.1037/0033-295x.100.3.432

Busse, L., Ayaz, A., Dhruv, N. T., Katzner, S., Saleem, A. B., Scholvinck, M. L., et al.
(2011). The detection of visual contrast in the behaving mouse. J. Neurosci. 31,
11351–11361. doi: 10.1523/JNEUROSCI.6689-10.2011

Cesario, J., Johnson, D. J., and Eisthen, H. L. (2020). Your brain is not an onion
with a tiny reptile inside. Curr. Dir. Psychol. Sci. 29, 255–260.

Churchland, A. K., Kiani, R., and Shadlen, M. N. (2008). Decision-making with
multiple alternatives. Nat. Neurosci. 11, 693–702.

Cisek, P., Puskas, G. A., and El-Murr, S. (2009). Decisions in changing
conditions: the urgency-gating model. J. Neurosci. 29, 11560–11571. doi: 10.
1523/JNEUROSCI.1844-09.2009

de Gee, J. W., Tsetsos, K., Schwabe, L., Urai, A. E., McCormick, D., McGinley, M. J.,
et al. (2020). Pupil-linked phasic arousal predicts a reduction of choice bias
across species and decision domains. Elife 9:e54014. doi: 10.7554/eLife.54014

Ditterich, J. (2006a). Evidence for time-variant decision making. Eur. J. Neurosci.
24, 3628–3641. doi: 10.1111/j.1460-9568.2006.05221.x

Ditterich, J. (2006b). Stochastic models of decisions about motion direction:
behavior and physiology. Neural Netw. 19, 981–1012. doi: 10.1016/j.neunet.
2006.05.042

Drugowitsch, J., Moreno-Bote, R., Churchland, A. K., Shadlen, M. N., and Pouget,
A. (2012). The cost of accumulating evidence in perceptual decision making.
J. Neurosci. 32, 3612–3628. doi: 10.1523/JNEUROSCI.4010-11.2012

Frund, I., Wichmann, F. A., and Macke, J. H. (2014). Quantifying the effect of
intertrial dependence on perceptual decisions. J. Vis. 14:9. doi: 10.1167/14.7.9

Gold, J. I., and Shadlen, M. N. (2001). Neural computations that underlie decisions
about sensory stimuli. Trends Cogn. Sci. 5, 10–16. doi: 10.1016/s1364-6613(00)
01567-9

Gold, J. I., and Shadlen, M. N. (2007). The neural basis of decision making. Annu.
Rev. Neurosci. 30, 535–574.

Goldfarb, S., Wong-Lin, K., Schwemmer, M., Leonard, N. E., and Holmes, P.
(2012). Can post-error dynamics explain sequential reaction time patterns?
Front. Psychol. 3:213. doi: 10.3389/fpsyg.2012.00213

Hanks, T. D., Mazurek, M. E., Kiani, R., Hopp, E., and Shadlen, M. N. (2011).
Elapsed decision time affects the weighting of prior probability in a perceptual
decision task. J. Neurosci. 31, 6339–6352. doi: 10.1523/JNEUROSCI.5613-10.
2011

Hanks, T. D., and Summerfield, C. (2017). Perceptual decision making in rodents,
monkeys, and humans. Neuron 93, 15–31. doi: 10.1016/j.neuron.2016.12.003

Hawkins, G. E., Forstmann, B. U., Wagenmakers, E. J., Ratcliff, R., and Brown,
S. D. (2015). Revisiting the evidence for collapsing boundaries and urgency
signals in perceptual decision-making. J. Neurosci. 35, 2476–2484. doi: 10.1523/
JNEUROSCI.2410-14.2015

Heathcote, A., and Love, J. (2012). Linear deterministic accumulator models of
simple choice. Front. Psychol. 3:292. doi: 10.3389/fpsyg.2012.00292

Heitz, R. P. (2014). The speed-accuracy tradeoff: methodology, and behavior. Front.
Neurosci. 8:150. doi: 10.3389/fnins.2014.00150

Huang, Y., and Rao, R. P. (2013). Reward optimization in the primate brain: a
probabilistic model of decision making under uncertainty. PLoS One 8:e53344.
doi: 10.1371/journal.pone.0053344

Huk, A. C., and Shadlen, M. N. (2005). Neural activity in macaque parietal cortex
reflects temporal integration of visual motion signals during perceptual decision
making. J. Neurosci. 25, 10420–10436. doi: 10.1523/JNEUROSCI.4684-04.2005

Hwang, E. J., Dahlen, J. E., Mukundan, M., and Komiyama, T. (2017). History-
based action selection bias in posterior parietal cortex. Nat. Commun. 8:1242.
doi: 10.1038/s41467-017-01356-z

Lavan, D., McDonald, J. S., Westbrook, R. F., and Arabzadeh, E. (2011).
Behavioural correlate of choice confidence in a discrete trial paradigm. PLoS
One 6:e26863. doi: 10.1371/journal.pone.0026863

Long, M. H., Jiang, W. Q., Liu, D. C., and Yao, H. S. (2015). Contrast-dependent
orientation discrimination in the mouse. Sci. Rep. 5:15830. doi: 10.1038/
srep15830

Mazurek, M. E., Roitman, J. D., Ditterich, J., and Shadlen, M. N. (2003). A role for
neural integrators in perceptual decision making. Cereb. Cortex 13, 1257–1269.
doi: 10.1093/cercor/bhg097

McCormack, P. D., and Swenson, A. L. (1972). Recognition memory for common
and rare words. J. Exp. Psychol. 95, 72–77. doi: 10.1037/h0033296

Palmer, J., Huk, A. C., and Shadlen, M. N. (2005). The effect of stimulus strength
on the speed and accuracy of a perceptual decision. J. Vis. 5, 376–404. doi:
10.1167/5.5.1

Pleskac, T. J., and Busemeyer, J. R. (2010). Two-stage dynamic signal detection:
a theory of choice, decision time, and confidence. Psychol. Rev. 117, 864–901.
doi: 10.1037/a0019737

Purcell, B. A., Heitz, R. P., Cohen, J. Y., Schall, J. D., Logan, G. D., and Palmeri, T. J.
(2010). Neurally constrained modeling of perceptual decision making. Psychol.
Rev. 117, 1113–1143. doi: 10.1037/a0020311

Rao, R. P. N. (2010). Decision making under uncertainty: a neural model based on
partially observable markov decision processes. Front. Comput. Neurosci. 4:146.
doi: 10.3389/fncom.2010.00146

Ratcliff, R., and McKoon, G. (2008). The diffusion decision model: theory and data
for two-choice decision tasks. Neural Comput. 20, 873–922. doi: 10.1162/neco.
2008.12-06-420

Ratcliff, R., and Rouder, J. N. (1998). Modeling response times for two-choice
decisions. Psychol. Sci. 9, 347–356.

Ratcliff, R., Smith, P. L., Brown, S. D., and McKoon, G. (2016). Diffusion decision
model: current issues and history. Trends Cogn. Sci. 20, 260–281. doi: 10.1016/
j.tics.2016.01.007

Ratcliff, R., and Starns, J. J. (2013). Modeling confidence judgments, response
times, and multiple choices in decision making: recognition memory and
motion discrimination. Psychol. Rev. 120, 697–719. doi: 10.1037/a0033152

Ratcliff, R., and Tuerlinckx, F. (2002). Estimating parameters of the diffusion
model: approaches to dealing with contaminant reaction times and parameter
variability. Psychon. Bull. Rev. 9, 438–481. doi: 10.3758/bf03196302

Reinagel, P. (2013a). Speed and accuracy of visual image discrimination by rats.
Front. Neural Circuits 7:200. doi: 10.3389/fncir.2013.00200

Reinagel, P. (2013b). Speed and accuracy of visual motion discrimination by rats.
PLoS One 8:e68505. doi: 10.1371/journal.pone.0068505

Reinagel, P., and Nguyen, Q. (2022). Differential effects of variability could explain
distinct human and rat deviations from DDM [Source Code]. doi: 10.24433/
CO.9600522.v2

Frontiers in Neuroscience | www.frontiersin.org 10 February 2022 | Volume 16 | Article 794681

https://doi.org/10.1037/a0021656
https://doi.org/10.3758/s13423-015-0958-5
https://doi.org/10.3758/s13423-015-0958-5
https://doi.org/10.1016/j.neuron.2012.06.035
https://doi.org/10.1017/s095252380000715x
https://doi.org/10.1017/s095252380000715x
https://doi.org/10.1523/JNEUROSCI.12-12-04745.1992
https://doi.org/10.1523/JNEUROSCI.12-12-04745.1992
https://doi.org/10.1017/s0952523800010269
https://doi.org/10.1016/j.cogpsych.2007.12.002
https://doi.org/10.1016/j.cogpsych.2007.12.002
https://doi.org/10.1037/0033-295x.100.3.432
https://doi.org/10.1523/JNEUROSCI.6689-10.2011
https://doi.org/10.1523/JNEUROSCI.1844-09.2009
https://doi.org/10.1523/JNEUROSCI.1844-09.2009
https://doi.org/10.7554/eLife.54014
https://doi.org/10.1111/j.1460-9568.2006.05221.x
https://doi.org/10.1016/j.neunet.2006.05.042
https://doi.org/10.1016/j.neunet.2006.05.042
https://doi.org/10.1523/JNEUROSCI.4010-11.2012
https://doi.org/10.1167/14.7.9
https://doi.org/10.1016/s1364-6613(00)01567-9
https://doi.org/10.1016/s1364-6613(00)01567-9
https://doi.org/10.3389/fpsyg.2012.00213
https://doi.org/10.1523/JNEUROSCI.5613-10.2011
https://doi.org/10.1523/JNEUROSCI.5613-10.2011
https://doi.org/10.1016/j.neuron.2016.12.003
https://doi.org/10.1523/JNEUROSCI.2410-14.2015
https://doi.org/10.1523/JNEUROSCI.2410-14.2015
https://doi.org/10.3389/fpsyg.2012.00292
https://doi.org/10.3389/fnins.2014.00150
https://doi.org/10.1371/journal.pone.0053344
https://doi.org/10.1523/JNEUROSCI.4684-04.2005
https://doi.org/10.1038/s41467-017-01356-z
https://doi.org/10.1371/journal.pone.0026863
https://doi.org/10.1038/srep15830
https://doi.org/10.1038/srep15830
https://doi.org/10.1093/cercor/bhg097
https://doi.org/10.1037/h0033296
https://doi.org/10.1167/5.5.1
https://doi.org/10.1167/5.5.1
https://doi.org/10.1037/a0019737
https://doi.org/10.1037/a0020311
https://doi.org/10.3389/fncom.2010.00146
https://doi.org/10.1162/neco.2008.12-06-420
https://doi.org/10.1162/neco.2008.12-06-420
https://doi.org/10.1016/j.tics.2016.01.007
https://doi.org/10.1016/j.tics.2016.01.007
https://doi.org/10.1037/a0033152
https://doi.org/10.3758/bf03196302
https://doi.org/10.3389/fncir.2013.00200
https://doi.org/10.1371/journal.pone.0068505
https://doi.org/10.24433/CO.9600522.v2
https://doi.org/10.24433/CO.9600522.v2
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-16-794681 February 16, 2022 Time: 18:9 # 11

Nguyen and Reinagel Different Forms of Variability

Reinagel, P., and Shevinsky, C. A. (2020). Human and rat motion discrimination
reaction time task data. Harvard Dataverse. doi: 10.7910/DVN/ATMUIF

Roitman, J. D., and Shadlen, M. N. (2002). Response of neurons in the
lateral intraparietal area during a combined visual discrimination reaction
time task. J. Neurosci. 22, 9475–9489. doi: 10.1523/jneurosci.22-21-09475.
2002

Roy, N. A., Bak, J. H., International Brain, L., Akrami, A., Brody, C. D., and
Pillow, J. W. (2021). Extracting the dynamics of behavior in sensory decision-
making experiments. Neuron 109, 597–610 e596. doi: 10.1016/j.neuron.2020.
12.004

Scott, B. B., Constantinople, C. M., Erlich, J. C., Tank, D. W., and Brody, C. D.
(2015). Sources of noise during accumulation of evidence in unrestrained
and voluntarily head-restrained rats. Elife 4:e11308. doi: 10.7554/eLife.
11308

Shadlen, M. N., Britten, K. H., Newsome, W. T., and Movshon, J. A. (1996). A
computational analysis of the relationship between neuronal and behavioral
responses to visual motion. J. Neurosci. 16, 1486–1510. doi: 10.1523/
JNEUROSCI.16-04-01486.1996

Shadlen, M. N., and Newsome, W. T. (1996). Motion perception: seeing and
deciding. Proc. Natl. Acad. Sci. U.S.A. 93, 628–633. doi: 10.1073/pnas.93.2.628

Shadlen, M. N., and Newsome, W. T. (2001). Neural basis of a perceptual decision
in the parietal cortex (area LIP) of the rhesus monkey. J. Neurophysiol. 86,
1916–1936. doi: 10.1152/jn.2001.86.4.1916

Shevinsky, C. A., and Reinagel, P. (2019). The interaction between elapsed time and
decision accuracy differs between humans and rats. Front. Neurosci. 13:1211.
doi: 10.3389/fnins.2019.01211

Sriram, B., Li, L., Cruz-Martin, A., and Ghosh, A. (2020). A sparse probabilistic
code underlies the limits of behavioral discrimination. Cereb. Cortex 30, 1040–
1055. doi: 10.1093/cercor/bhz147

Stirman, J. N., Townsend, L. B., and Smith, S. L. (2016). A touchscreen based global
motion perception task for mice. Vis. Res. 127, 74–83. doi: 10.1016/j.visres.2016.
07.006

Stone, M. (1960). Models for choice-reaction time. Psychometrika 25, 251–260.
doi: 10.1007/bf02289729

Sugrue, L. P., Corrado, G. S., and Newsome, W. T. (2004). Matching behavior
and the representation of value in the parietal cortex. Science 304, 1782–1787.
doi: 10.1126/science.1094765

Sun, P., and Landy, M. S. (2016). A two-stage process model of sensory
discrimination: an alternative to drift-diffusion. J. Neurosci. 36, 11259–11274.
doi: 10.1523/JNEUROSCI.1367-16.2016

Tajima, S., Drugowitsch, J., and Pouget, A. (2016). Optimal policy for value-
based decision-making. Nat. Commun. 7:12400. doi: 10.1038/ncomms1
2400

Tsetsos, K., Gao, J., McClelland, J. L., and Usher, M. (2012). Using time-varying
evidence to test models of decision dynamics: bounded diffusion vs. the leaky
competing accumulator model. Front. Neurosci. 6:79. doi: 10.3389/fnins.2012.
00079

Urai, A. E., de Gee, J. W., Tsetsos, K., and Donner, T. H. (2019). Choice history
biases subsequent evidence accumulation. Elife 8:e46331. doi: 10.7554/eLife.
46331

Usher, M., and McClelland, J. L. (2001). The time course of perceptual choice: the
leaky, competing accumulator model. Psychol. Rev. 108, 550–592. doi: 10.1037/
0033-295x.108.3.550

Usher, M., Tsetsos, K., Yu, E. C., and Lagnado, D. A. (2013). Dynamics of decision-
making: from evidence accumulation to preference and belief. Front. Psychol.
4:758. doi: 10.3389/fpsyg.2013.00758

Wagenmakers, E. J., van der Maas, H. L., and Grasman, R. P. (2007). An EZ-
diffusion model for response time and accuracy. Psychon. Bull. Rev. 14, 3–22.
doi: 10.3758/bf03194023

Wang, X.-J. (2002). Probabilistic decision making by slow reverberation
in cortical circuits. Neuron 36, 955–968. doi: 10.1016/s0896-6273(02)01
092-9

White, C. N., Servant, M., and Logan, G. D. (2018). Testing the validity of conflict
drift-diffusion models for use in estimating cognitive processes: a parameter-
recovery study. Psychon. Bull. Rev. 25, 286–301. doi: 10.3758/s13423-017-
1271-2

Wiecki, T. V., Sofer, I., and Frank, M. J. (2013). HDDM: hierarchical Bayesian
estimation of the drift-diffusion model in python. Front. Neuroinform. 7:14.
doi: 10.3389/fninf.2013.00014

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Nguyen and Reinagel. This is an open-access article distributed
under the terms of the Creative Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is permitted, provided the original
author(s) and the copyright owner(s) are credited and that the original publication
in this journal is cited, in accordance with accepted academic practice. No use,
distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Neuroscience | www.frontiersin.org 11 February 2022 | Volume 16 | Article 794681

https://doi.org/10.7910/DVN/ATMUIF
https://doi.org/10.1523/jneurosci.22-21-09475.2002
https://doi.org/10.1523/jneurosci.22-21-09475.2002
https://doi.org/10.1016/j.neuron.2020.12.004
https://doi.org/10.1016/j.neuron.2020.12.004
https://doi.org/10.7554/eLife.11308
https://doi.org/10.7554/eLife.11308
https://doi.org/10.1523/JNEUROSCI.16-04-01486.1996
https://doi.org/10.1523/JNEUROSCI.16-04-01486.1996
https://doi.org/10.1073/pnas.93.2.628
https://doi.org/10.1152/jn.2001.86.4.1916
https://doi.org/10.3389/fnins.2019.01211
https://doi.org/10.1093/cercor/bhz147
https://doi.org/10.1016/j.visres.2016.07.006
https://doi.org/10.1016/j.visres.2016.07.006
https://doi.org/10.1007/bf02289729
https://doi.org/10.1126/science.1094765
https://doi.org/10.1523/JNEUROSCI.1367-16.2016
https://doi.org/10.1038/ncomms12400
https://doi.org/10.1038/ncomms12400
https://doi.org/10.3389/fnins.2012.00079
https://doi.org/10.3389/fnins.2012.00079
https://doi.org/10.7554/eLife.46331
https://doi.org/10.7554/eLife.46331
https://doi.org/10.1037/0033-295x.108.3.550
https://doi.org/10.1037/0033-295x.108.3.550
https://doi.org/10.3389/fpsyg.2013.00758
https://doi.org/10.3758/bf03194023
https://doi.org/10.1016/s0896-6273(02)01092-9
https://doi.org/10.1016/s0896-6273(02)01092-9
https://doi.org/10.3758/s13423-017-1271-2
https://doi.org/10.3758/s13423-017-1271-2
https://doi.org/10.3389/fninf.2013.00014
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

	Different Forms of Variability Could Explain a Difference Between Human and Rat Decision Making
	Introduction
	Results
	Drift Diffusion Model With Variable Parameters
	Variability Need Not Be Random

	Discussion
	Can Context Account for Variability?
	Is Parameter Variability a Bug or a Feature?
	Conclusion

	Materials and Methods
	Experimental Data
	Computational Methods

	Data Availability Statement
	Author Contributions
	Supplementary Material
	References


