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Alzheimer’s disease is a chronic neurodegenerative disorder characterized by a progressive
loss of cognitive and behavioral abilities. Extracellular senile plaques and intracellular
neurofibrillary tangles are hallmarks of AD. Researchers aim to analyze the molecular
mechanisms underlying AD pathogenesis; however, the therapeutic options available to
treat this disease are inadequate. In the past few years, several studies have reported
interesting insights about the neuroprotective properties of the polyphenolic compound
resveratrol (3, 5, 4′-trihydroxy-trans-stilbene) when used with in vitro and in vivo models
of AD. The aim of this review is to focus on the neuroprotective and antioxidant effects of
resveratrol on AD and its multiple potential mechanisms of action. In addition, because the
naturally occurring forms of resveratrol have a very limited half-life in plasma, a description
of potential analogs aimed at increasing the bioavailability in plasma is also discussed.
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INTRODUCTION
Resveratrol (3,5,4′-trihydroxy-trans-stilbene) is a naturally occur-
ring polyphenolic compound, which belongs to the phytoalexin
superfamily. This compound was first isolated from the roots of
white hellebore (Veratrum grandiflorum O. LOES) and was named
by Dr. Michio Takaoka in his thesis in 1940. The discovery of
resveratrol by Dr. Takaoka was the prime step leading to estab-
lishing the scientific efficacy of the Chinese “material medica,”
a collection of traditional Asian medicines (Takaoka, 1940). In
1963, resveratrol was isolated from the roots of Polygonum cusp-
idatum, a traditional Chinese and Japanese medicine Ko-jo-kon
(Nonomura et al., 1963). Resveratrol is present in skin and seeds
of more than 70 different plant species, including grapes, berries,
grains, tea, and peanuts (Soleas et al., 1997; Chen et al., 2002). In
the presence of an enzyme resveratrol synthase, the phytochemical
resveratrol is synthesized in response to environmental stress such
as heavy metal ions, injury, fungal infection, or UV irradiation
from coumaroyl CoA and malonyl CoA (Singh et al., 2013). It is
synthesized in the pericarp of grape berries, epidermis of grape
berry leaf, and in the stalks and kernels of the berries (Creasy and
Coffee, 1988). It constitutes one of the primary components in

Abbreviations: AD, Alzheimer’s disease; APP, amyloid precursor protein; BBB,
blood–brain barrier; CHD, coronary heart disease; GST, glutathione S-transferase;
NOS, nitrogen oxide synthase; ROS, reactive oxygen species; SAM, senescence
accelerated mice; SOD, superoxide dismutase; TH, tyrosine hydrolase.

red wine and is claimed to be an essential factor in the French
Paradox, a term frequently used to summarize the apparently
paradoxical epidemiological observation that French people have
a relatively low incidence of CHD despite having a diet relatively
rich in saturated fats (Liu et al., 2007; Sun et al., 2008). The level
of resveratrol in plants reaches its peak approximately 24 h after
stress exposure and subsides after 42–72 h due to the activation of
stilbene oxidase (Soleas et al., 2001; Jeandet et al., 2002). Resvera-
trol belongs to a group of compounds called the stilbene family,
which contain two aromatic rings joined by a methylene bridge.
Stilbene synthase (STS), which belongs to a multigene family of
the type 3 group of the polyketide synthase superfamily, is the
enzyme that controls the production of resveratrol in plant tis-
sues (Bais et al., 2000). Resveratrol exists in two geometric isomers
with trans and cis configuration (Figure 1). Trans-resveratrol is
considered to be a non-toxic potential stereoisomer and is widely
known to possess the reported beneficial health effects (Orallo,
2006).

Indeed, resveratrol is also protective against oxidative stress,
inflammation (Das and Das, 2007), and the development of car-
diovascular diseases (Chen et al., 2002), diabetes (Venturini et al.,
2010), neurodegenerative diseases (Vingtdeux et al., 2008), and
cancer (Kris-Etherton et al., 2002). Resveratrol plays a promi-
nent role in the prevention of neurodegenerative diseases such
as AD, Parkinson’s disease, cerebral ischemia as well as Hunting-
ton’s disease because resveratrol enters the blood stream after the
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FIGURE 1 | Isomers of resveratrol. Chemical structures of trans and
cis-resveratrol.

formation of glucuronide conjugates and can readily pass through
the BBB; Baur and Sinclair, 2006). Resveratrol (10–100 μM) is
reported to exert neuroprotective effects in several studies (Richard
et al., 2011). In this review, we discuss the several beneficial effects
of resveratrol and newly designed resveratrol analogs in AD and
its potential to promote human health.

METABOLISM AND BIOAVAILABILITY OF RESVERATROL
Resveratrol is rapidly absorbed and metabolized on oral admin-
istration to form glucuronide and sulfate conjugates, which
are excreted in urine (Vingtdeux et al., 2008). In humans,
the primary metabolite of resveratrol is trans-resveratrol-3-O-
glucuronide, whereas in mice and rats, trans-resveratrol-3-O glu-
curonide and trans-resveratrol-3-sulfate are the primary metabo-
lites, respectively (Yu et al., 2002). Several studies conducted
on the bioavailability of resveratrol indicate that poor absorp-
tion and rapid metabolism of resveratrol and its metabolites
like glucuronides and sulfates results in low oral bioavailabil-
ity of resveratrol (Wenzel and Somoza, 2005). Studies by Walle
(2011) have shown the oral absorption rate of resveratrol to
be 70–75% with respect to the urinary excretion of the total
metabolites after radiolabelled doses. Plasma concentrations of
resveratrol ranged from 1 to 5 ng/ml on administration of
25 mg resveratrol (Almeida et al., 2009), a concentration com-
monly used in experimental studies and associated with various
beneficial effects on cardiovascular, endothelial, and neurologic
function (Zhang et al., 2009, 2010; Clark et al., 2012; Rege et al.,
2013). Administration of higher doses up to 5 g led to a pro-
portional increase in the plasma resveratrol to about 500 ng/ml
(Boocock et al., 2007). Despite its poor bioavailability and rapid
disposal, resveratrol does indeed accumulate in tissues, includ-
ing brain, even after acute or short-term treatment. Acute
administration of resveratrol by oral gavage using a low dose
of 80 μg/kg results in significant accumulation in brain within
4 h (Bertelli et al., 1999). Short term treatment using a concen-
tration of 40 μg/kg by the same route of administration for a
period of 15 days also increases resveratrol content in the brain
(Bertelli et al., 1999). Resveratrol is known to have several ben-
eficial effects in brain but its poor bioavailability or the matrix
within which it is contained in the dietary media are issues

of major concern for resveratrol delivery (Goldberg et al., 2003;
Mohar and Malik, 2012).

BIOAVAILABILITY OF RESVERATROL AND ITS ANALOGS
The BBB is a highly selective permeable endothelial cell layer
connected by tight junctions, sequestering the CNS tissue from
vasculature. This barrier is permeable to the flow of water, some
gases, nutrients, and lipid soluble molecules through passive
diffusion. In addition, the BBB prevents entry of many neuro-
toxins by P-glycoprotein-mediated active transport. Polyphenols
are accessible and enter the brain only if they cross the BBB
(Vauzour, 2012). Based on in vitro studies, the permeability of
polyphenols through the BBB depends on several factors such
as the lipophilic state of the compound and increased capa-
bility of brain uptake by less polar polyphenols or metabolites
(such as O-methylated derivatives; Youdim et al., 2003). Resvera-
trol being a lipophilic compound can readily cross the BBB via
transmembrane diffusion (Lin et al., 2010). Further, to effec-
tively penetrate the BBB, molecules must be below 500 Da in
molecular weight (Banks, 2009). Resveratrol, with its molecular
weight of 228 Da (Amri et al., 2012) and lipid soluble proper-
ties, should easily cross the BBB. Faria et al. (2010) demonstrated
that similar sized flavonoids found in red wine such as quercetin
and catechin can easily penetrate membranes in RBE-4 cells,
an immortalized cell line of rat cerebral capillary endothelial
cells.

However, resveratrol’s low bioavailability originating from its
poor water solubility and resulting from its short biological half-
life, labile properties, rapid metabolism and clearance limits the
efficacious concentrations of resveratrol to accumulate in plasma
and target tissues (Walle, 2011; Cho et al., 2014). Therefore, sev-
eral drug delivery systems are designed to improve these inherent
biologic limitations of resveratrol, such as increasing its solu-
bility and preventing resveratrol from rapid degradation while
preserving its biological activity. Approaches aimed at controlling
its release from the gastrointestinal tract to enhance its bioavail-
ability are also considered (Sessa et al., 2011; Augustin et al.,
2013). At present, several drug delivery systems for enhancing the
bioavailability and solubility of resveratrol have been developed
such as encapsulation in liposomal formulations, the design of
resveratrol–protein complexes to favor resveratrol binding to pro-
tein, use of cyclodextrin complexes and solid lipid nanoparticles
for enhanced matrix-based delivery, pectinate delivery systems,
and chitosan microspheres (Augustin et al., 2013). In agreement
with this novel delivery systems, recent evidence has shown that
administration of 5 mg/kg of resveratrol in loaded-lipid core
nanocapsules every 12 h intraperitoneally for 14 days is effective
against the neurotoxicity induced by intracerebroventricular injec-
tion of Aβ1–42 in rats (Frozza et al., 2013). Also, the use of more
potent analogs of resveratrol such as SRT501 (Howells et al., 2011)
and resveratrol in combination therapy with piperine, a natural
product obtained from black pepper, have proved to be efficient
methods of enhancing its bioavailability (Johnson et al., 2011).

Recently, Csiszár et al. (2014) reported that encapsulation of
resveratrol into novel fusogenic liposomes is more efficient than
conventional liposomes. This approach enhances the delivery of
polyphenol resveratrol into aged cells leading to the activation
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of cellular Nrf2-mediated antioxidant defense systems (Csiszár
et al., 2014). Furthermore, the use of polyethylene glycol (PEG)
derivatives presents several advantageous features for delivery.
PEG as an oral vehicle material is a non-toxic polymer, has high
water solubility, is both non-teratogenic and non-immunogenic,
and exhibits antigenic properties. Two types of amino acid
PEGylated resveratrol conjugates developed to date demonstrate
increased solubility of resveratrol up to 900 mg mL−1, clearly
highlighting the potential of PEGylated compounds as an effec-
tive system for improving the solubility and bioavailability of
resveratrol (Zhang et al., 2014).

Resveratrol exhibits good absorption rates but low bioavail-
ability. An oral dose of 25 mg results in less than 5 μg/mL
in the serum following absorption through the gastrointestinal
tract, corresponding to approximately a 1000-fold decrease in
bioavailability. A 125-fold lower dose of 0.2 mg, yet in the mil-
ligram amount, injected intravenously results in plasma levels in
the low nanogram range (16.4–30.7 ng/mL) (Walle et al., 2004)
This rapid clearance is due to the reduction in the amount of
free resveratrol from conjugation by sulfation and glucuronida-
tion via P 450 enzymes. Albumin and lipoproteins serve as the
major carriers for resveratrol in plasma (Delmas et al., 2011).
After ingestion of resveratrol, conjugation produces resveratrol-O-
glucuronide and resveratrol-C-glucuronide (Cottart et al., 2010).
More than 90% of free resveratrol is bound to human plasma
lipoproteins and 50% of the plasma trans-resveratrol-3-sulfate,
trans-resveratrol-disulfates and the novel trans-resveratrol-C/O-
diglucuronides are non-covalently bound to proteins as reported
by Burkon and Somoza (2008). Evidence shows that resveratrol
undergoes enterohepatic metabolism in both rats and humans
(Timmers et al., 2012). After uptake by enterocytes, resveratrol is
metabolized to sulfate and glucuronide conjugates, which may be
deconjugated by gut microflora, reabsorbed, or excreted in the
feces. Thus, the enterohepatic circulation decreases the amount of
free compound reaching the target tissues. Hence, a small frac-
tion of the ingested resveratrol reaches the tissues (Timmers et al.,
2012). In a brain ischemic model, results suggest that resvera-
trol enters the blood stream after its formation to glucuronide
conjugates and could thereby cross the BBB (Wang et al., 2002).
To overcome the potential limitations of low bioavailability and
metabolism, a therapeutic approach in developing congeners and
analogs of resveratrol should be undertaken. Modification of
resveratrol’s chemical structure by altering the number and posi-
tion of the hydroxyl groups, intramolecular hydrogen bonding,
double bonds, and stereoisomerism is crucial for improving the
efficacy and enhancing the bioavailability. Stilbene monomers
include methyl and methoxy group subsitutions, and variations in
cis and trans configurations (Cottart et al., 2010). Systemic expo-
sure to pterostilbene, a dimethyl derivative of resveratrol, resulted
in significantly higher plasma levels when compared with resvera-
trol following administration at equimolar doses in male rats over
14 consecutive days. Treatment with pterostilbene also produced
a sevenfold rise in its oral bioavailability than the parent resvera-
trol (Kapetanovic et al., 2011). A recent study by Greer et al. (2014)
aimed at improving the bioavailability of trans resveratrol (tRes) by
modifying its structure to reduce glucuronidation revealed three
new stilbene derivatives. These derivatives of tRes with hydroxyl,

aromatic nitro and carboxyl substituents to create NI-ST-05, DNR-
1, and NI-12a, respectively, were less prone to glucuronidation,
suggesting that tRes analogs improve bioavailability and could be
potentially developed as alternate therapeutics (Greer et al., 2014).
Several other resveratrol analogs such as hexahydroxystilbene
(M8), galic acid, digalloyl resveratrol exert free radical scaveng-
ing properties and anti-carcinogenic effects (Szekeres et al., 2010).
Another naturally occurring resveratrol analog, 3,5,4′-trimethoxy-
trans stilbene, had greater plasma exposure, a longer half-life and
lower clearance rates in rats (Lin and Ho, 2009). Several studies
have indicated resveratrol to be a potent activator of SIRT 1. Sir-
tuins are NAD+-dependent class III histone/protein deacetylase
(HDAC) enzymes. SIRT 1 deacetylates nucleosomal histones at
specific residues by translocating from cytoplasm to nucleus and
contributes to transcriptional silencing of telomeres and life span
expansion (Pallàs et al., 2013). Recent studies demonstrate that
both natural and synthetic sirtuin activating compounds (STACs)
promotes allosteric SIRT 1 activation by binding of STACs to a
conserved N-terminal domain in SIRT1. Recently sirtuins have
gained considerable importance due to its key role in the calorie
restriction (CR) response and as possible therapeutic drug tar-
gets. Amongst all the naturally occurring activators of SIRT 1,
resveratrol is considered to be the most effective SIRT 1 activa-
tor. However, synthetic STACs have been documented to possess
more potency, solubility and bioavailability as compared to natu-
ral STACs. The first synthetic STACs such as SRT1460, SRT1720,
and SRT2183 were derivatives of an imidazothiazole scaffold and
chemically different from the polyphenol resveratrol. Like resvera-
trol, SRT1720 compound was shown to activate SIRT1 by lowering
the Km for the substrate peptide. The third generation STACs
derived from benzimidazole and urea-based scaffolds were more
potent than resveratrol itself (Hubbard and Sinclair, 2014)

RESVERATROL ANALOGS IN THE TREATMENT OF AD
Currently, several studies have reported various polyphenols
exhibiting neuroprotective effects both in vivo and in vitro. Resver-
atrol and its derivatives have gained a prime importance amongst
all these polyphenols due to their neuroprotective properties.

Piceatannol, a monohydroxylated derivative of resveratrol that
differs by an additional hydroxyl group in 3′ of benzene ring,
has shown to exhibit neuroprotective effects against beta-amyloid
induced neural cell death by blocking Aβ-induced accumulation
of ROS (Kim et al., 2007b). Pterostilbene has shown to be a potent
modulator of cognition and cellular oxidative stress associated
with AD (Chang et al., 2012). In addition to monomers, several
dimers and oligomers have been developed. Two new stilbene
dimers, scirpusin A with an additional hydroxyl group, and ε-
viniferin glucoside, with a glucose moiety, demonstrated a robust
inhibition of fibril accumulation, thereby could be used as efficient
fibril inhibitors in the treatment of AD (Rivière et al., 2010).

Lu and colleagues designed a novel series of resveratrol
derivatives serving as multi-target agents in the treatment of
AD. Amongst the synthesized compounds, 5d (E)-2-((4-(3,5-
Dimethoxystyryl) phenylamino) methyl)-4-(dimethylamino) phe-
nol and 10d (E)-5-(4-(5-(Dimethylamino)-2-hydroxybenzylamino)
styryl)-benzene-1,3-diol exerted significant inhibition of Aβ

aggregation, metal-chelating ability, disintegration of highly
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structured Aβ fibrils and Cu(II)-induced Aβ aggregation, antiox-
idant activity and low neurotoxicity. Moreover, compound 5d
could also cross the BBB in vitro and doses up to 2000 mg/kg
were not associated with any signs of toxicity in mice (Lu
et al., 2013). Lu and colleagues previously reported a series
of stilbene derivatives based on the structure of resveratrol in
which compound 7l (E)-5-(4-(isopropylamino)styryl)benzene-1-
3-diol exerted potent β-amyloid aggregation inhibition activity
(Lu et al., 2012). Novel synthetic compounds such as STACs
confer remarkable health benefits in various animal models.
SRT3025 is one such STAC, which penetrates the BBB; mim-
ics the effects of CR on the brain and further reduces neu-
rodegeneration (Hubbard and Sinclair, 2014). In conclusion,
various resveratrol analogs developed with improved bioavail-
ability possess neuroprotective properties and could be fur-
ther used as novel multifunctional drugs in the treatment
of AD.

RESVERATROL CONTENT IN WINE AND PLANTS
Resveratrol occurs as free resveratrol and as 3 β-glucoside, a
derivative of resveratrol both in grapes and wine (Vrhovšek
et al., 1995; Romero-Pérez et al., 1996). Concentrations of
resveratrol in grape species range from 50 to 400 μg/g fresh
weight in the leaves and fresh grape skin contains around
50–100 μg of resveratrol per gram (Jeandet et al., 1991). In
grape juices, the concentration of free resveratrol is low as
compared to cis- and trans-piceid derivatives of resveratrol
(Romero-Pérez et al., 1999). The levels of resveratrol vary
from 3 to 15 μg/L and 690 to 14,500 μg/L in grape juices
(Romero-Pérez et al., 1999).

The concentration of resveratrol in wine varies considerably
and is also largely dependent on the grape cultivar, geographic
conditions and exposure to fungal infections. Typically, the total
concentration of resveratrol in red wine is between 0.2 and
5.8 mg/L while white wine contains approximately 0.68 mg/L. Red
wines have six times higher concentrations of trans-resveratrol
than white wines while white wines contain high levels of cis-
resveratrol. Red wine is extracted without removing the grape
skin, whereas white wine is fermented only after removal of the
skin (Prasad, 2012). Other sources of common foods containing
resveratrol include dark chocolate, various berries, soy, and raw or
boiled peanuts.

ANTIOXIDANT PROPERTIES OF RESVERATROL IN AD
Resveratrol exhibits strong antioxidant properties as shown by in
vitro and in vivo studies (Sönmez et al.,2007; Venturini et al.,2010).
Oxidative stress occurs due to an imbalance between pro-oxidant
and antioxidant activities in the body leading to the excessive pro-
duction of ROS, free radicals and peroxides (Barnham et al., 2004).
Brain tissue is more susceptible to oxidative stress due to its greater
rate of oxygen consumption, high content of peroxidizable fatty
acids, less regenerative capability, and low amounts of antioxi-
dants. Thus, free radicals seem to play a crucial role in the process
of brain aging (Floyd, 1999; Honda et al., 2004; Romano et al.,
2010). AD is an age-related disorder, most often diagnosed in indi-
viduals over 65 years of age and hence aging is strongly implicated
in the pathogenesis of this disease (Jayasena et al., 2013).

Alzheimer’s disease is characterized by neuritic plaques com-
posed of insoluble deposits amyloid β peptide (Vingtdeux et al.,
2008), neurofibrillary tangles and synaptic loss together, which
leads to a gradual decline in cognitive function (Kolarova et al.,
2012). The hallmarks of AD are the presence of neurofibrillary
tangles and Aβ senile plaques in the cortex and the hippocampus,
respectively (Selkoe, 2002). Hyper-phosphorylation and abnormal
deposition of tau protein results in the formation of neurofibrillary
tangles whereas Aβ senile plaques contains deposits of β-amyloid
(Aβ) peptide (Golde et al., 1992). Beta-amyloid is a 39–43 amino
acid peptide fragment derived from the sequential proteolytic
cleavage of the APP by the enzymes beta (β) and gamma (γ) –
secretase (Huang et al., 2011). In 2000, around 25 million people
were diagnosed with AD worldwide, and this number is expected
to increase to 114 million by 2050 (Wimo et al., 2003). Early age
onset AD is a form of AD diagnosed in the age group younger
than 65 years. A small portion of all early age onset AD population
consists of familial AD cases whereas a large portion of late onset
AD patients are sporadic AD cases, a form of AD diagnosed in the
population older than 65 years (Piaceri et al., 2013). In familial AD
patients, mutations are observed in the APP, presenilin 1 (PSEN1),
and presenilin 2 (PSEN2) genes. Though the specific causes of
sporadic AD are unknown, many genetic and environmental fac-
tors contribute to the development of sporadic AD (Selkoe, 2001).
The key factors contributing to the pathogenesis of both familial
and sporadic forms of AD are Aβ peptides (Selkoe, 2001; Selkoe
et al, 2004). Thus, the therapeutic goal in the treatment of AD
serves to target both Aβ production and amyloid fibril aggrega-
tion (Roberson and Mucke, 2006). Oxidative stress caused by an
excessive production of ROS in the brain has been considered as
the underlying cause for the pathogenesis of a number of neu-
rodegenerative disorders. An increase in levels of ROS, reactive
nitrogen species, or some malfunction of the cellular antioxidant
systems can damage protein and membrane poly unsaturated fatty
acids, causing lipid peroxidation and further leads to loss of mem-
brane integrity and increased permeability to Ca2+ in the plasma
membrane (Floyd, 1999; Sun et al., 2008; Rege et al., 2013). More-
over, it causes injury to neural membranes and ultimately memory
impairment (Sun et al., 2010). Several in vivo and in vitro studies
have reported that ROS increases Aβ production and Aβ induces
oxidative stress, which may together accelerate the progression
of AD (Murakami et al., 2005; Tabner et al., 2005). However, plant
derived dietary antioxidants can be regarded as potential useful tar-
gets for the prevention of neuronal damage in neurodegenerative
disorders.

Resveratrol suppresses oxygen free radical formation by inhibit-
ing pro-oxidative genes such as nicotinamide adenine dinucleotide
phosphate oxidase and myeloperoxidase, and inducing various
antioxidant enzymes like SOD, catalase, thioredoxin and glu-
tathione peroxide (GSH-Px; Wang et al., 2012; Carrizzo et al.,
2013), while lowering the activity of enzymes involved in the
development of oxidative stress (Carrizzo et al., 2013; Figure 2).
Thus resveratrol is a direct scavenger of free radicals produc-
tion in tissues. It is interesting that resveratrol has proven to be
effective in suppressing iNOS production, which is involved in
the Aβ-induced lipid peroxidation and heme oxygenase-1 (HO-
1) downregulation, thereby protecting the rats from Aβ-induced
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FIGURE 2 | Schematic overview of biological activity of resveratrol.

Resveratrol, a natural antioxidant, upregulates the activity of SIRT1,
enzymatic antioxidants, PPARγ Co-activator, NO, NRF2, AMPK and
downregulates the activity of COX1, NADPH oxidase, Myeloperoxidase,
iNOS, PAR, Lipid peroxides thereby prevents apoptosis and inflammation
and reduces neurodegeneration.

neurotoxicity (Table 1A; Huang et al., 2011; Figure 2). One of
the major pathological features in AD is cerebral metal ion imbal-
ance. Ions of copper, iron, zinc, and aluminum act as key cofactors
in various neuronal functions, including cellular respiration, cel-
lular redox homeostasis, nerve transmission, oxygen transport
and functioning of the channels. Dysregulation in the metal ion
balance plays a key role in driving neurodegeneration, which is
likely to impact cellular function and ultimately neuronal survival.
Decreased levels of copper lead to ROS generation and neu-
ronal inflammation in association with Aβ deposition. Resveratrol
administration with a high affinity copper chelator may attenu-
ate copper imbalance and ROS production. Similarly, resveratrol
can prevent the accumulation of free iron and iron mediated
ROS generation and can also counteract the iron-induced mito-
chondrial dysfunction by suppressing GSK3β activity. Excessive
accumulation of zinc and aluminum also promotes ROS pro-
duction, increases neuroinflammation eventually leading to AD.
However, resveratrol has not shown to have direct effects on the
levels of zinc but can prevent further development of zinc-related
ill effects. Moreover, resveratrol seems to cause an ameliora-
tive change in aluminum induced neurotoxicity (Granzotto and
Zatta, 2014). Findings of Granzatto et al. suggest that resver-
atrol acts as a neuroprotectant against Aβ as well as against
Aβ-metal complexes. In addition, resveratrol exerts ROS scaveng-
ing properties and reduces toxicity against Aβ-Fe, Aβ-Cu, and
Aβ-Zn, but fails to completely block Aβ-Al and Aβ-Cu toxicity
(Table 1B; Granzotto and Zatta, 2011). A substantial amount of
research has attributed this polyphenol for its anti-antioxidant

and cytoprotective actions in oxidative stress-induced brain
pathologies. Consequently, resveratrol appears to improve glial,
oxidative and inflammatory responses by enhancing the expres-
sion of HO-1 and extracellular GSH content in H2O2-induced C6
cells (Quincozes-Santos et al., 2013). Moreover, resveratrol also
protected PC12 cells against amyloid-induced cytotoxicity, cell
death, and intracellular ROS accumulation and also suppressed
beta-amyloid-induced activation of NF-KB in PC12 cells (Jang
and Surh, 2003). Another key enzyme known as Poly (ADP-ribose)
polymerase-1 (PARP-1) plays a key role in the regulation of Aβ

precursor protein metabolism processing. Studies have reported
that over-activation of PARP-1 due to oxidative stress leads to an
accumulation of the novel signaling molecule poly-ADP-ribose
(PAR), which induces neuronal cell death associated with AD
pathogenesis (Strosznajder et al., 2012; Figure 2). Findings by Lee
et al. indicated resveratrol reduced PARP-1 cleavage and protected
SH-SY5Y neuroblastoma cells from apoptosis (Lee et al., 2007).
Resveratrol being a robust activator of SIRT1 has shown to possess
anti-amyloidogenic activity through the activation of SIRT 1 in
the brains of Tg2576 mice and protects the cells against oxidative
damage (Kelsey et al., 2010; Figure 2) Furthermore, resveratrol
prolongs the synthesis of Aβ in neuronal cultures expressing APP
and reduces Aβ production by stimulating SIRT 1 activity (Tang
and Chua, 2008). Also, resveratrol protects neocortical neurons
cultured from the senescence-accelerated mouse strain SAMP8
against increased susceptibility to oxidative damage via SIRT 1
activation (Table 1C; Cristòfol et al., 2012). Thus, SIRT 1 appears
to be a promising new avenue for therapeutic intervention in age
related AD.

BENEFICIAL EFFECTS OF RESVERATROL ON NEURONAL
INFLAMMATION IN AD
Neuronal inflammation promotes the pathogenesis of several
chronic neurodegenerative diseases, including AD. Various reports
show that the inflammatory responses occurring in central ner-
vous system such as activation of microglia, astrocytes, lym-
phocytes and macrophages triggers numerous pro- and anti-
inflammatory mediators such as ROS, NOS, cytokines, and various
neurotransmitters (Moore and O’Banion, 2002). Activation of
microglia releases highly ROS such as hydroxyl radicals, super-
oxide and per oxy radicals, hydroxyl peroxide, and thereby causes
oxidation of proteins, lipid peroxidation, and DNA fragmenta-
tion. These processes eventually lead to neuronal inflammation
and cell death (Liu and Hong, 2003). Amyloid β peptides, the
major component of amyloid plaques interact with various Toll-
like receptors (TLRs) such as TLR4 and can trigger microglial
activation. Anti-inflammatory action of resveratrol has shown
to prevent lipopolysaccharide (LPS, a TLR4 ligand)-induced
activation of murine RAW 264.7 macrophages and microglial
BV-2 cells. It also prevented proinflammatory effect of Aβ on
macrophages by inhibiting activation of STAT 1 and STAT3 and
NFκB activation by interfering with IKK and IκB phosphoryla-
tion (Capiralla et al., 2012). In addition, oral administration of
resveratrol in a mouse model of cerebral amyloid deposition signif-
icantly reduced microglial activation related to amyloid deposition
(Table 1D; Capiralla et al., 2012). Since NF-κB signaling is
involved in Aβ-induced neuronal cell death, another link between
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AD and neuroprotective action of resveratrol is its potential
to decrease the expression of iNOS, prostaglandin E2 (PGE2),
cathepsin and NO modulated by NF-κβ (Kim et al., 2006). Lu
and colleagues reported that resveratrol attenuates LPS-stimulated
NF-κB activation in murine primary microglia and astrocytes and
LPS-induced inflammatory responses could be modulated by dif-
ferent potencies of resveratrol (Lu et al., 2010). Studies have shown
that astrocytes in brain have both positive and negative effects on
the central nervous system. They serve as a source of nutrients to
neurons and aid in the maintenance of extracellular ion balance as
well as in the clearance and degradation of Aβ (Wyss-Coray et al.,
2003; Lee et al., 2010). Astrocytes also secrete prostaglandins, inter-
leukins, leukotrienes, thromboxanes, and form bunches around
Aβ deposits (Sidoryk-Wegrzynowicz et al., 2011). A study by Simao
et al. showed resveratrol pretreatment (30 mg/kg) significantly
reduced NF-κB and JNK activation, and decreased the global
cerebral ischemia-induced astroglial and microglial activation and
iNOS and COX-2 regulation (Simão et al., 2012). Resveratrol
reduces the concentration of 8-iso-prostaglandin F2α, an indica-
tor of free radical production in LPS-activated rat microglial cells,
and is considered to be involved in the downregulation of neuroin-
flammatory responses (Candelario-Jalil et al., 2007). Resveratrol
treatment decreased lipid peroxidation, thereby causing an upreg-
ulation in the antioxidant status in the senescence-accelerated
mouse model. It also prevented cerebral mitochondrial deletion
and decreased the impairment in learning and memory (Table 1E;
Liu et al., 2012).

ANTI-AMYLOIDOGENIC EFFECTS OF RESVERATROL
Resveratrol exhibits its neuroprotective effects in the inhibition
of β-amyloid production and aggregation and in the destabiliza-
tion of the Aβ fibrils (Ono et al., 2006). Resveratrol also decreases
the accumulation of Aβ in cell cultures and lowers Aβ secretion
from different cell lines. Since it has no effect on the Aβ pro-
ducing enzymes, β and γ secretases, it does not suppress Aβ

production but promotes proteolytic clearance of Aβ through a
mechanism that implicates a proteasome and not NEP (neprilysin)
ECE-1 and ECE-2 (endothelin converting enzyme 1 and 2) or IDE
(insulin degrading enzyme) (Marambaud et al., 2005). Chronic
administration of resveratrol proved to be effective in protect-
ing animal models of AD from Aβ-induced neuronal loss, cell
death, accumulations of lipid peroxide products, inhibition of
hippocampal iNOS production, and the elevation of HO-1 expres-
sion. In accordance with this, resveratrol showed recovery from
Aβ-induced spatial memory impairment in the animal models
of AD (Huang et al., 2011). Further, consumption of red wine
significantly reduces the impairment of spatial memory func-
tion and Aβ neuropathology in Tg2576 mice (Wang et al., 2006).
Another study by Lu et al. suggested that administration of resvera-
trol lowered MPTP-induced deterioration of motor coordination
and neuronal loss caused by excessive production of free radi-
cals (Lu et al., 2008). A marked reduction in neurodegeneration
in the hippocampus was observed on administration of intrac-
erebroventricular injection of resveratrol, which was caused by
a decrease in the acetylation of SIRT1 substances such as per-
oxisome proliferator-activated receptor gamma co-activator and
p53 (Kim et al., 2007a). This eventually prevented learning deficit

in the p25 transgenic mouse model of AD (Table 1F; Kim
et al., 2007a). Moreover, an in vitro model of PC12 cells using
Aβ25−35 provided new compelling evidence on the protective
effect of resveratrol against Aβ induced neurotoxicity. Resvera-
trol protected PC12 cells and inhibited Aβ-induced cell apoptosis
through the upregulation of SIRT 1 expression and downregula-
tion of Rho-associated kinase 1 (ROCK 1). Thus, anti-apoptopic
actions of resveratrol were partially mediated through the SIRT1-
ROCK 1 pathway (Table 1G; Feng et al., 2013). Resveratrol is also
found to exert its neuroprotective actions via the activation of
key metabolic sensor proteins, such as the AMP-activated protein
kinase (AMPK; Figure 2). Resveratrol induced AMPK activation
results in the inhibition of AMPK target mTOR (mammalian
target of rapamycin), initiation of autophagy and promotion of
lysosomal clearance of Aβ (Vingtdeux et al., 2010). Studies indi-
cate that resveratrol lowers Aβ accumulation in the cortex due
to activation of AMPK signaling by enhancing cytosolic Ca2+
levels and CaMKKβ-dependent phosphorylation of AMPK in
primary neuronal cultures (Table 1H; Vingtdeux et al., 2010).
It has also been shown to decrease the formation of plaques
in specific regions of brain thereby slowing down the process
of neurodegeneration (Table 1I; Karuppagounder et al., 2009).
A recent study by Porquet and colleagues reported that dietary
resveratrol supplementation at the dose of 1 g/kg body weight
to SAMP8 mice, an age-related model of AD, activates AMPK
pathways, prosurvival routes such as SIRT1 and reduces amyloid
accumulation, tau hyperphosphorylation and cognitive impair-
ment (Table 1J; Porquet et al., 2013). Resveratrol at dosages
of 10 and 20 mg/kg manifests a neuroprotective action against
colchicine-induced cognitive impairment and oxidative damage
in Wistar rats (Table 1K; Kumar et al., 2007). Furthermore, resver-
atrol treatment has also shown to suppress the levels of NOS
and the expression of COX-2 in beta-amyloid treated C6 glioma
cells (Kim et al., 2006). Another key player in the regulation
of cellular antioxidant mechanism is nuclear factor erythroid
2-related factor 2 (Nrf2). Nrf2 serves as a chief regulator of
cellular resistance to oxidants and genes encoding antioxidant
proteins such as HO-1, NAD (P) H-quinone oxidoreductase,
GST and glutathione synthetase (GSS; Scapagnini et al., 2011).
Under normal unstressed conditions, Nrf2 is anchored by Keap 1
(Kelch-like ECH-associating protein 1) in the cytoplasm, which
causes polyubiquitination and proteasome mediated degrada-
tion. It has also been shown to induce HO1 via Nrf2 and
PI3K/AKT pathways and thereby reduce ROS induced oxida-
tive damage in PC 12 cells (Chen et al., 2005). Resveratrol is
known to promote HO-1 expression through the activation of
Nrf2 in primary neuronal cultures (Table 1L; Zhuang et al., 2003;
Figure 2). Thus, Nrf2 serves as a promising target for resver-
atrol in the prevention/treatment of certain neurodegenerative
diseases.

CONCLUSION
Resveratrol has been recognized as a potential therapeutic agent
for treating wide array of health conditions/diseases such as
inflammation, pain, tissue injury, diabetes, and cancer. How-
ever, emerging evidence focuses strongly on its potential beneficial
effects against several neurodegenerative diseases. In this review,
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we discussed the antioxidant properties as well as neuroprotective
effects of resveratrol in the pathogenesis of AD. For example, in AD,
resveratrol promotes clearance of Aβ peptides, anti-amyloidogenic
cleavage of APP, its ability to reduce oxidative stress and neuronal
cell death. Consequently, it is plausible to recommend resveratrol
as one of the promising tools in the development of drug therapy
for AD. Moreover, it is non-toxic, cost effective, and widely avail-
able. However, the efficacy and utility of resveratrol also depends
upon its solubility and bioavailability. Therefore, future research
on the design and synthesis of novel analogs needs to be conducted
to address these issues.
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