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Abstract: Aiming at the removal of refractory organic pollutants in aqueous solution, self-assembled
nano-Fe3C embedded in reduced graphene oxide (nano-Fe3C@RGO) aerogel was prepared by
hydrothermal synthesis and high temperature treatment, and characterized by SEM, HRTEM,
pore size distribution, XRD, XPS and FTIR. The results showed that the aerogel was porous, and most
of the Fe3C particles were less than 100 nm in size. They were evenly dispersed and embedded in the
RGO aerogel. Furthermore, the mapping images confirmed that the elements of carbon, nitrogen and
iron were homogeneously distributed. Moreover, the specific surface area of the aerogel was up to
324.770 m2/g and most of the pore sizes were between 5 and 10 nm. The formation of nano-Fe3C was
identified by XRD pattern and HRTEM. Analysis of an XPS spectrum indicates that the nano-Fe3C
was embedded in the graphene layer. The aerogel contained a large number of functional groups,
including –NH2, –NH and –C=O, etc., which greatly strengthened the adsorption of organics. Finally,
the Fenton-like catalytic degradation properties of the self-assembled nano-Fe3C@RGO aerogel were
investigated by testing the removal of methyl orange from the aqueous solution. The results showed
that the value of Ct/C0 decreased to 0.050 after 240 min, suggesting a high degradation rate was
obtained. Meanwhile, the chemical reaction was verified in accordance with the first-order kinetic
model, and the higher temperature was beneficial to the catalytic degradation. At the same time,
methyl orange was degraded into small molecules by the hydroxyl and superoxide radicals generated
during the reactions. Therefore, the self-assembled nano-Fe3C@RGO aerogel, as a novel Fenton-like
catalyst, introduces a new approach in the field of treatment of refractory organic wastewater.

Keywords: self-assembled nano-Fe3C@RGO aerogel; hydrothermal synthesis; high temperature
treatment; Fenton-like; methyl orange

1. Introduction

In recent years, the Fenton process has become a promising wastewater treatment technology
because of its strong oxidative ability and environmentally friendly nature. During the Fenton reaction,
H2O2 is decomposed into hydroxyl radicals (HO·) under the catalysis of Fe2+ and then, the hydroxyl
radicals are prone to react with organic pollutants. The Fenton reaction can decompose organic matter
into small molecules by means of electron transfer. Unfortunately, the traditional Fenton technique
gives rise to a loss of catalytically active ions and produces a lot of sludge. Therefore, Fenton-like
technology is emerging to overcome the shortcomings of traditional Fenton technology [1–8].

The key to Fenton-like technology is the screening of carriers and the preparation of the supported
catalyst. High specific surface area and corrosion resistance are required to catalyze carriers in
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Fenton-like technology. The RGO has a large specific surface area, excellent electron transfer capacity,
and a pi-delocalized structure similar to that of benzene-like aromatic nucleus, which has good
adsorption performance for organic compounds with aromatic nucleus. Therefore, RGO and its
complexes have received extensive attention in the treatment of organic wastewater by Fenton-like
technology [9–11]. However, two-dimensional RGO is easy to overlap, leading to a reduced specific
surface area; thus, its capacity to support the catalyst is decreased. Moreover, Fenton-like catalysts are
mainly iron-based catalysts such as nanometer zero-valent iron [7,12–15], Fe2O3 [4,16–18], Fe3O4 [19–24],
FeOOH [10,25–30], etc. Some of these catalysts are easy to oxidize, while others are easy to aggregate
in the preparation process.

Herein, we proposed a self-assembled nano-Fe3C@RGO aerogel for the removal of refractory
organic pollutants in aqueous solution. The RGO aerogel is a three-dimensional structure with a high
specific surface area and many active sites, thus the RGO aerogel can easily support a large number
of catalysts. Furthermore, compared with other iron-based catalysts, Fe3C has the advantages of not
oxidizing easily, eco-friendliness, and difficult agglomeration [31,32]. Therefore, the self-assembled
nano-Fe3C@RGO aerogel was prepared by hydrothermal synthesis and high-temperature treatment,
and its Fenton-like catalysis properties and mechanisms were investigated in detail.

2. Materials and Methods

2.1. Experimental Materials

The graphene oxide solution was purchased from Chengdu Institute of Organic Chemistry, Chinese
Academy of Sciences (Chengdu, China). Iron nitrate, ammonia, methyl orange and β cyclodextrin were
all used as analytical reagents (AR) produced by China Pharmaceutical Group Co. LTD (Beijing, China)
and 30% hydrogen peroxide (AR) was produced by Hunan Huihong Co. LTD (Changsha, China).

2.2. Preparation of Self-Assembled Nano-Fe3C@RGO Aerogel

Firstly, the graphene oxide solution was diluted to 5 mg/mL using deionized water and sonicated
in an ultrasonic cleaner at 30 ◦C for 30 min. Then, the pH of the solution was adjusted to 10 by adding
ammonia and used consecutively for ultrasonic shaking at 30 ◦C for 1 h. Afterwards, the solution was
ultrasonically stirred for 1 h at 30 ◦C after adding 10 mL of 0.02 mol/L ferric nitrate solution. Following
dropwise addition of 10 mL of 30 mg/mL β cyclodextrin solution as a crosslinking agent, ultrasonic
agitation was employed at 30 ◦C for 2 h. After that, the mixture solution was put into a hydrothermal
reactor to execute a hydrothermal reaction at 150 ◦C for 6 h. Next, the hydrogel was taken out and
washed with deionized water 3 times to remove the unreacted substances on the surface. Then,
a vacuum freeze dryer was used to freeze and dry the hydrogel for 48 h to remove moisture. Finally,
the self-assembled nano-Fe3C@RGO aerogel was prepared at 650 ◦C in a tube furnace, with hydrogen
and nitrogen injected simultaneously for 2 h. Its formation mechanism is described in Figure 1.
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2.3. Characterization

The morphology of the self-assembled nano-Fe3C@RGO aerogel was observed using a scanning
electron microscope (SEM, Zeiss Sigma HD, Oberkochen, Germany). Transmission electron microscopy
(TEM, JEOL JEM-2010, Tokyo, Japan) was employed to investigate the structure and obtain detailed
information about the self-assembled nano-Fe3C@RGO aerogel. The functional groups on the surface
of the aerogel were identified by Fourier transform infrared spectrometer (FTIR, Bruker Vertex 70,
Karlsruhe, Germany). The specific surface area and pore size distribution were analyzed by the
Brunauer–Emmett–Teller method (BET, Quantachrome Quadrasorb SI, Boynton Beach, FL, USA).
The chemical state of iron and the combination state of carbon in the aerogel were determined
using an X-ray photoelectron spectrometer (XPS, Thermo Scientific K-Alpha, Waltham, MA, USA).
The diffraction pattern was confirmed, and the ingredients of the aerogel were obtained from an X-ray
diffractometer (XRD, Bruker D8 Advance, Karlsruhe, Germany). An electron paramagnetic resonance
spectrometer (EPR, Bruker A300, Karlsruhe, Germany) was used to measure active radicals.

2.4. Catalytic Degradation Experimental of Methyl Orange by Self-Assembled Nano-Fe3C@RGO Aerogel

The methyl orange aqueous solution was prepared with a dilution of 12 mg/L. Hydrogen peroxide
was dropped into the methyl orange solution until its concentration reached 160 mmol/L. Thereafter,
5 mg of the self-assembled nano-Fe3C@RGO aerogel was dipped into the solution and kept in a frozen
water bath oscillator with an oscillated speed of 110 r/min for 2 h. During this reaction, a large number
of active radicals were produced. Finally, the absorbance of the liquid supernatant was measured by a
UV–vis spectrophotometer (UV759S, Shanghai INESA Scientific Instrument Co., Ltd., Shanghai, China)
at a wavelength of 475 nm. The removal rate was calculated according to Formula (1).

η =
C0 −Ct

C0
(1)

In the formula, η denotes the removal rate (%), C0 and Ct represent the concentration of the methyl
orange solution before and after degradation, respectively (mg/L).

2.5. Analytical Methods

The generated active radicals were examined on a Bruker A300 EPR with 5,5-dimethyl-1-pyrroline
N-oxide (DMPO) as the spin-trapping agent. The detection of hydroxyl radicals and superoxide
radicals was conducted under the catalytic degradation experimental conditions described above.

3. Results and Discussion

3.1. The Morphology of Self-Assembled Nano-Fe3C@RGO Aerogel

Figure 2a shows the macroscopic morphology of the self-assembled nano-Fe3C@RGO aerogel.
It can be seen that the aerogel is well-formed and its color is gray and black. Figure 2b,c show the
micromorphology of the aerogel. Figure 2b shows that the aerogel has a loose and porous structure
and graphene is stacked layer by layer. Figure 2c reveals that its surface is doped with many evenly
dispersed small particles which are nearly circular and less than 100 nm in diameter. In addition,
most of the small particles are embedded in carbon and combined closely with graphene. Figure 2d
makes it clear that the carbon, nitrogen and iron elements are homogeneously distributed in the
aerogel, suggesting each part of the material has uniform catalytic properties. Figure 2e shows that the
nano-Fe3C belongs to a uniform cladding structure. As seen in Figure 2f, the spacing of the central
lattice fringes is ≈0.24 nm assigned to the (210) plane of the Fe3C phase, and the Fe3C nanoparticles are
encapsulated in the graphitic carbon layers.
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Figure 2. The morphology of self-assembled nano-Fe3C@RGO aerogel: (a) the macroscopic morphology;
(b,c): SEM; (d) mapping; (e,f): HRTEM.

3.2. Pore Size Distribution

Utilizing N2 adsorption–desorption isotherms, the microstructures of the obtained aerogel were
further investigated, as shown in Figure 3. The hysteresis loop can be classified into H3 hysteresis
effects, indicating that most of the pores inside the aerogel are mesoporous, which are wedge-shaped
holes piled up by graphene sheets. According to Figure 3a, the BET specific surface area was calculated
as 324.770 m2/g. As a rule, a higher specific surface area results in more active sites, which can be
loaded with more catalysts. The pore size distribution curves calculated can be seen in Figure 3b.
Most of the pore sizes are concentrated at 5–10 nm, which belong to a mesoporous structure. This pore
size not only guarantees high specific surface area, but also provides a suitable channel for the entry
and exit of organic molecules and H2O2, ensuring the catalytic reaction.
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Figure 3. N2 adsorption-desorption isotherms and the pore size distribution: (a) N2 adsorption–desorption
isotherms and (b) the pore size distribution.

3.3. XRD

A wide-angle XRD spectrum was further collected to characterize the self-assembled nano-Fe3C@RGO
aerogel, as shown in Figure 4. The strong diffraction peaks at 26◦ could be indexed as graphite carbon.
The other peaks at 35◦, 44.5◦, 51◦ and 81◦ (PDF 03-0411) with medium intensity could be indexed as
Fe3C, which demonstrated the combination of Fe3C and RGO in the aerogel.
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Figure 4. XRD of self-assembled nano-Fe3C@RGO aerogel.

3.4. XPS

To further confirm the carbon functional groups and iron valence state in the self-assembled
nano-Fe3C@RGO aerogel, XPS was employed to analyze the aerogel. The C1s spectrum of the aerogel
is shown in Figure 5a. Some functional groups are found and the three fitted peaks in this C1s XPS at
around 284, 284.6 and 289 eV could be ascribed to C=C, C–O and –C=O, respectively. The peaks of
C=C, C–O and –C=O were caused by RGO. The high resolution of the Fe2p spectrum in Figure 5b
can be deconvoluted into a predominant peak at 711.5 eV (Fe2+ 2p3/2) and a satellite peak at around
719.3 eV due to the oxidation of Fe on the surface during preparation. The signal of zerovalent Fe,
which is normally discovered in iron carbides (e.g., Fe3C) ≈ 707–708 eV, was not observed, further
suggesting that the Fe3C nanoparticles are encapsulated by graphitic carbon layers [33], which is
consistent with the HRTEM diagram in Figure 2f.
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Figure 5. XPS of self-assembled nano-Fe3C@RGO aerogel: (a) C1s spectra and (b) Fe2p spectra.

3.5. FTIR

In order to understand the functional groups on the surface of the self-assembled nano-Fe3C@RGO
aerogel, FTIR was characterized as shown in Figure 6. As can be seen from Figure 6, there is a strong
peak at 3410 cm−1, which was mainly caused by the stretching vibration of –NH2 and –NH, possibly
originating from the transformation of ammonia water at high temperature. The peak at 1561 cm−1

is due to the anti-symmetric stretching vibration of –NO2, which results from the transformation of
the nitrate in the iron nitrate. The peak at 1631 cm−1 corresponds to the stretching vibration of C=C
and –C=O of graphene, while the strong absorption peak at 1124 cm−1 is attributed to the stretching
vibration of C–O. These results are consistent with those in Figure 5.
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3.6. Catalytic Degradation Property of Self-Assembled Nano-Fe3C@RGO Aerogel for Methyl Orange

In order to determine the reaction rate, the kinetics of catalytic degradation was investigated as
shown in Figure 7a. At first, it can be seen that the value of Ct/C0 decreased sharply and reduced to 0.075
at 303 K when the reaction time reached 150 min. Then, it decreased slowly to 0.050 when the reaction
time was 240 min. This was mainly due to the high concentration of hydrogen peroxide, which could
produce more hydroxyl radicals that could degrade more methyl orange. Thus, the reaction speed is
faster at the beginning. In addition, the higher the temperature, the lower the equilibrium concentration,
indicating that the reaction is more intense and complete at higher temperatures.

The first- and second-order kinetic equations are commonly used to describe adsorption
degradation. The expressions of first-order dynamics equations are shown in Formula (2), and the
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fitting diagram of first-order dynamics is shown in Figure 7b. The fitting parameters are shown in
Table 1.

ln(Ct/C0) = −k1t (2)

In the formula, Ct and C0 represent the concentration of methyl orange after reaction time t
and the initial solution, respectively (mg/L), and k1 is the degradation rate constant of the first-order
dynamics (min−1).

The second-order dynamics equation is expressed in Formula (3), and the fitting diagram of the
second-order dynamics is drawn in Figure 7c. The fitting parameters are listed in Table 2.

1
Ct
−

1
C0

= k2t (3)

In the formula, Ct and C0 represent the concentration of methyl orange at reaction time t and
the initial solution (mg/L), respectively. k2 is the degradation rate constant of the second-order
dynamics (min−1).

As seen as in Tables 1 and 2, when the temperature is 293, 298 and 303 K, the correlation coefficients
of the first-order kinetic model reach 0.9734, 0.9544 and 0.9634, respectively, which are larger than
those of the second-order kinetic model. Therefore, the first-order kinetic model is more suitable for
describing the catalytic degradation reaction rate and reaction process. According to Table 1, when the
temperature is 293, 298 and 303 K, the degradation rate constants are 0.01428, 0.01858 and 0.0215 min−1,
respectively, indicating that the reaction speed is accelerated with the increase in reaction temperature.
This is because the higher temperature increases the catalytic capacity of Fe3C and accelerates the
molecule movement of hydrogen peroxide and methyl orange, which is more suitable for catalytic
degradation. The activation energy of chemical reactions is often estimated by the Arrhenius formula
(Equation (4)). In order to calculate the activation energy of the catalytic degradation, the Arrhenius plot
was fitted using to the temperature-dependent apparent rate constants shown in Figure 8. The fitting
parameters are shown in Table 3.
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Table 1. First-order dynamic fitting parameters.

T 303 K 298 K 293 K

k1 (min−1) 0.0215 0.01858 0.01428
r 0.9634 0.9544 0.9734

Table 2. Second-order dynamic fitting parameters.

T 303 K 298 K 293 K

k2 (min−1) 0.00925 0.00528 0.00309
r 0.9148 0.8472 0.9190



Nanomaterials 2020, 10, 2348 9 of 11

Table 3. Arrhenius plot fitting parameters.

Ea (kJ·mol−1) lnA r

30.25 8.1865 0.9761

Wu et al. state that when Ea is between 8 and 21 kJ·mol−1, the reaction is a diffusion-controlled
reaction, and when Ea is >29 kJ·mol−1, the reaction is a surface-controlled reaction [34]. Therefore,
the calculated Ea of the catalysis degradation was 30.25 kJ·mol−1 (>29 kJ·mol−1), indicating that a
surface-controlled reaction was occurring.

ln k = ln A−
Ea

RT
(4)

where Ea (kJ·mol−1) is the activation energy; A (min−1) is a preexponential factor; R is equivalent to
8.314 J·(mol·K)−1; T is the temperature (K); k (min−1) is the reaction rate constant.

3.7. Catalytic Degradation Mechanism of Self-Assembled Nano-Fe3C@RGO Aerogel for Methyl Orange

In order to make clear the catalytic degradation mechanism of the self-assembled nano-Fe3C@RGO
aerogel for methyl orange, a radical quenching reaction was utilized to investigate the effect of radicals.
The results are shown in Figure 9a,b, which indicated hydroxyl radicals [35] and superoxide radicals [36]
can be generated in the reaction. According to the radical quenching experiments, the possible catalytic
degradation mechanism of methyl orange by the self-assembled nano-Fe3C@RGO aerogel was proposed,
as shown in Figure 10. First, methyl orange is adsorbed on the surface of graphene by electrostatic
attraction, or π–π stacking. Then, hydrogen peroxide molecules diffuse to the surface of the graphene
and contact Fe3C. Subsequently, hydrogen peroxide activated by Fe3C produces hydroxyl radicals.
Moreover, some hydroxyl radicals are formed by superoxide radicals reacting with water [37]. Finally,
methyl orange is oxidized with hydroxyl radicals on the surface of graphene and is degraded into
small molecules.
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4. Conclusions

A self-assembled nano-Fe3C@RGO aerogel was fabricated with hydrothermal synthesis and
high-temperature treatment. It has a high specific surface area of 324.770 m2/g and abundant surface
functional groups. Carbon, nitrogen, and iron elements were homogeneously distributed in the
aerogel and Fe3C nanoparticles were encapsulated in the graphitic carbon layers. The self-assembled
nano-Fe3C@RGO aerogel obtained excellent catalytic degradation for methyl orange under the
synergistic effect of graphene and Fe3C. The first-order kinetic model can be used to describe the
reaction rate and reaction process of catalytic degradation. Consequently, this aerogel is an ideal
Fenton-like catalyst which can overcome the disadvantages of conventional Fenton reactions and has
been applied to practical wastewater for the effective removal of organic pollutants.
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