

Contents lists available at ScienceDirect

Data in Brief

journal homepage: www.elsevier.com/locate/dib

Data Article

Properties of particle phases for metal-matrix-composite design

C. Baron*, H. Springer

Max-Planck-Institut für Eisenforschung GmbH, Düsseldorf, Germany

ARTICLE INFO

Article history: Received 17 January 2017 Received in revised form 28 February 2017 Accepted 24 April 2017 Available online 29 April 2017

Keywords: Metal-matrix-composites Particles Properties

ABSTRACT

Successful metallurgical design of metal-matrix-composites relies on the knowledge of the intrinsic property profiles of the metal matrix and especially the compounds employed for particles, whiskers or fibres. In this work we compiled the key properties melting point, bulk modulus, shear modulus, Young's modulus, density, hardness, Poisson's ratio and structure/space group from the widespread literature data for the most relevant compound types, i.e. borides, carbo-borides, carbides, oxides, nitrides and intermetallic phases.

© 2017 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Specifications Table

Subject area	Physical metallurgy, Material Science, Engineering
More specific subject area	Metal-matrix-composites
Type of data	Table
How data was acquired	Literature survey
Data format	Raw, processed
Experimental factors	-
Experimental features	-
Data source location	-
Data accessibility	Data are accessible in this article

* Corresponding author.

E-mail address: c.baron@mpie.de (C. Baron).

http://dx.doi.org/10.1016/j.dib.2017.04.038

2352-3409/© 2017 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Value of the data

- The comprehensive data collection allows straightforward comparisons of individual properties, types and groups of compounds.
- Readily obtainable ratios of properties allow judging particles concerning their suitability for specific design goals (such as the material stiffness/density ratio).
- Specific effects of particles on the properties of the bulk composite can be estimated, for example regarding the co-deformation of particles and matrix influenced by their crystallographic coherency, or the amount of particles required for a specific gain in stiffness.

1. Data

Metal-matrix-composites allow overcoming the specific limitations of metallic and ceramic materials by blending their typically mutually exclusive property profiles. Knowledge based design of the composites requires, depending on the desired property profile and application, the choice of suitable metallic matrices and particles characterized by their intrinsic properties. In the following table the intrinsic properties (melting point, bulk modulus (B), shear modulus (G), Young's modulus (E), density, hardness, Poisson's ratio and structure/space group) of different types of phases (borides, carbo-borides, carbides, oxides, nitrides and intermetallics) are compiled from literature sources. The reference for each value or range of values is listed next to it on the right. Unless specified otherwise, values were assumed to have been determined experimentally as specifications are in most cases not given in the listed references. Densities determined by X-ray diffraction (XRD) are enclosed in curved brackets {}. Theoretically determined values are marked with a star *. Furthermore, the main selection criteria brittleness (expressed by the B/G ratio; B/G values below 1.75 are considered to represent 'more brittle' compounds [1]) and specific modulus (i.e. the *E*/density ratio) have been derived. If more than one value is given for *E* and density of a compound, i.e. several values from one reference or diverging values from different references, the E/density ratio is given as a range. In case of several values listed for B and G, the determined B/G ratio was chosen conservatively using the lowest *B* and highest *G* value, respectively (Table 1).

														Legend: *	theore	tical value; {} XRI	D;	
Phase	Melting point / °C	Ref.	B Bulk modulus / GPa	G Shear modulus / GPa	Ref.	B / G	E Young's modulus / GPa	Ref.	Density / g cm ⁻³	Ref.	Specific modulus / GPa cm ³ g ⁻¹	Hardness / GPa	Ref.	Poisson's ratio	Ref.	Space group / structure	Ref.	
Borides																		
AlB ₂	975	[2]	190*	95*	[3]	2.00	244.4*	[3]	{3.19} 2.9 2.955 2.7	[4] [5] [6]	76.6 - 90.5	23.6	[4]	0.29*	[3]	P6/mmm P6/mmm	[3] [2]	C. Barc
BeB ₂	> 1970	[2]	215*		[8]				2.32 - 2.48	[2]		31.2	[9]			P6/mmm	[2]	on, H. Sj
BeB ₆	~ 1700 ~ 2100	[6] [2]							2.35 / {2.33}	[2]		25.3	[9]			P43212	[2]	pringer /
CrB	2300 1515 / 1550 +-50	[6] [4]							6.05	[4]		20.9	[4]			Cmcm	[2]	' Data ir
	~ 2060	[2]							6.04 / {6.11}	[2]		19.2 - 22.9	[10]					ı Brief 1:
	2050	[0]							6.05 / {6.11}			11.8 - 12.7	[6,9]					2 (20
CrB ₂	2280 1960 / 1900 / 1850+-50	[2] [4]	239.2*	139.9*	[3]	1.71	415.4* 211	[3] [4]	[5.6] 5.22 / {5.60}	[4] [6]	34.0 - 79.6	17.7 20.3 - 22.5	[4] [10]	0.26*	[3]	P6/mmm hex (c-32 type)	[2] [4]	017) 692-
	2200+-50 2100	[6] [7]					210.9 235.6	[9] [7]	6.2	[7]	~ 38.0 [7]	20.6	[6]					-708
CrB ₄ Cr ₃ B ₂	1400 - 1600 1960 1960	[9] [4] [7]	265*	261*	[11]	1.02	312*	[12]	6.13 / 6.7 6.1	[4] [7]		48.0*	[11]	0.12*	[11]	orthorhombic	[4]	
ErB ₂ Fe ₂ B	1389 1389 ~ 1390	[13] [2] [4]	137.4* 249.7* 194* 331*	119.7* 60.2* 67* 152.8*	[3] [14] [14] [14]	1.15 4.15 2.90 2.17	278.3* 290 190* 184*	[3] [13] [14] [14]	7.15 ~ 7.0	[13] [2]	41.5 25.7 - 41.4	13.1+-0.5	[9]	0.16*	[3]	P6/mmm I4/mcm	[2] [2]	
FeB ₄	1410	[9]	253*	177*	[11]	1.43	284.4 475.71*	[9] [15]				24.2*	[11]	0.2*	[15]			
GdB ₂			264.73* 131.2*	197.97* 113.5*	[15]	1.16	264.3*	[3]						0.16*	[3]	P6/mmm	[2]	

HfB ₂	3100 / 3060 - 3065 / 3250 +-100	[4]	260.9*	233*	[3]	1.12	538.7*	[3]	11.2	[4]	45.9 - 58.5	28.4+-4.9	[9]	0.16*	[3]	hex (c-32 type)	[4]
	3250 3380	[9] [17]	215 265 - 288*	233 240 - 273*	[16] [16]	0.92 0.97 - 1.2	514 554 - 614*	[16] [16]	11.19 10.5 / {11.2}	[17] [2,6]		28.0* 21.2 - 28.4	[16] [17]	0.12 0.124 - 0.159*	[16] [16]	hex P6/mmm	[17] [2]
	3250 3250+-100 3250	[2] [6] [7]					530	[17]			~ 49.0 [7]	28.4	[6]	0.12	[17]		
LaB ₆	> 2100 2530	[4] [2]					478.6	[9]	{4.72} 4.714 4.76 / {4.72}	[4] [2] [6]	100.5 - 101.5	27.2	[9]			Pm3m	[2]
LuB ₂			178.4*	173.3*	[3]	1.03	392.7*	[3]	{9.656} {9.76}	[9] [6]	40.2 - 40.7			0.13*	[3]	P6/mmm	[2]
MgB ₂			151.5*	116.4*	[3]	1.30	278*	[3]	2.48 - 2.67 / {2.63}	[9]	105.5 - 112.1			0.19*	[3]		
			120		[8]				2.62 / {2.633}	[2]							
MnB ₂	1988	[9]	220.1*	121.6*	[3]	1.81	318.4*	[3]	{5.344} {5.37}	[9] [6]	59.3 - 59.6	16.7+-0.5	[9]	0.31*	[3]	P6/mmm	[2]
MnB ₄	2160	[9]	270*	245*	[11]	1.10						41.5* 35.3+-1	[11] [9]				
MoB ₂	2100 / 2250 +-50 2250	[4]	302.5*	186*	[3]	1.63	463.1*	[3]	{7.78}	[6]	59.4 - 59.5	11.7 / 12.6 / 13.5	[4]	0.24*	[3]	hex. AlB2 structure	[4]
	2550	[9]							{7.8}	[4]						PO/IIIIIII	[2]
MoB ₄	< ~ 1600	[2]	287*	239*	[11]	1.20			4.8 / {4.96}	[2,6]		36.7*	[11]			P6/mmm	[2]
Mo ₂ B	2000 / 2165	[4]							{9.3} / {9.31} / 9.26	[4]		16.3	[4]			CuAl2 struc- ture; c-16 type	[4]
									9.1 / {9.31}	[6]		24.5	[6,9]				
Mo ₂ B ₅	decompose to MoB2 @ 1600 - 1650	[4]					671.8	[9]	7.01 / {7.48}	[2,4,6]	89.8 - 95.8	23.0	[9]			rhombohedral	[4]
	< ~ 1600	[2]														R3m	[2]

Phase	Melting point / °C	Ref.	B Bulk modulus / GPa	G Shear modulus / GPa	Ref.	B / G	E Young's modulus / GPa	Ref.	Density / g cm ⁻³	Ref.	Specific modulus / GPa cm ³ g ⁻¹	Hardness / GPa	Ref.	Poisson's ratio	Ref.	Space group / structure	Ref.
NbB ₂	2900	[4]	286.3*	210.4*	[3]	1.36	507*	[3]	6.4 / 6.5 / 6.6 / 6.97	[4]	70.4 - 105.8	16.7 / 25.4	[4]	0.2*	[3]	hex (c-32 type)	[4]
	~ 3000 3000	[2] [6]					637.5 676.8	[9] [7]	6.6 6.97 / {7.00}	[2] [9]		25.5	[9]			P6/mmm	[2]
	3000	[7]							7.2	[7]	040[7]						
NbB4 NiB	990	[2]	243*	194*	[11]	1.25			7.13 6.5 / {713}	[2] [6]	~ 94.0 [7]	30.4* 15.2	[11] [9]			P4/mbm Cmcm	[2] [2]
NpB ₂ PrB ₆	> 2250	[2]	206.7*	169.8*	[3]	1.22	399.3*	[3]	{4.85} 4.53 / {4.84}	[4] [2]		24.2	[9]	0.19*	[3]	Pm3m	[2]
PuB ₂	1825 < 1200	[9] [2]	207.4*	174.1*	[3]	1.19	408.1*	[3]	{12.674} {11.1} {12.81}	[9] [2] [6]	31.9 - 36.8	-		0.17*	[3]	P6/mmm	[2]
ScB ₂	2250	[2]	243.8*	256.6*	[3]	0.95	431*	[3]	3.65 / {3.667}	[9]	117.4 - 118.1	17.5+-2.7	[9]	0.11*	[3]	DC/mmm	[2]
SmB ₂	2250	[6]	128*	110.8*	[3]	1.16	258*	[3]	{3.67}	[2]				0.16*	[3]	P6/mmm	[2]
TaB ₂	3000 - 3150	[4]	295.8*	191.5*	[3]	1.54	370	[4]	11.7 / {12.6}	[4,6]	20.4 - 40.4	24.9 / 25.6+-1.2 / 16.7	[4]	0.23*	[3]	hex (c-32 type)	[4]
	3037	[9]					472.5*	[3]	12.38 /	[9]		19 - 25	[17]			hex	[17]
	3040	[17]					265.9 257	[9] [17]	12.54	[17]		24.5+-0.4	[9]			P6/mmm	[2]
TbB ₂ TiB			131.3*	115.4*	[3]	1.14	267.8*	[3]	5.09 /	[9]		26.5- 27.5	[9]	0.16*	[3]	P6/mmm fcc	[2] [4]
									{4.565} 5.09 / 5.26	[2]						F43m	[2]

C. Baron, H. Springer / Data in Brief 12 (2017) 692-708

696

TiB ₂	3225 2980 / 2900 +-80	[18] [4]	240 250.3*	255 260.7*	[19] [3]	0.94 0.96	565 530	[19] [13]	4.52 4.5	[18] [19]	81.0 - 129.9	25.0 25 - 35	[19] [18]	0.108 0.11*	[19] [3]	hex P6/mmm hex	[19] [18]	
	2900	[20]	238	240.4	[21]	0.99	366	[4]	4.5	[13]		33.3 / 33.0 / 26.6 / 25.3	[4]	0.109 / 0.11	[22]	hex (c-32 type)	[4]	
	2790	[9]					581*	[3]	4.5 / 4.52 / {4.52}	[4]		25 - 33	[17]			P6/mmm	[2]	
	3225	[17]					594* / 569	[22]	4.5	[20]		33.0+-0.6	[9]			hex	[17]	
	2800 2980	[2] [7]					370 529.6 551	[20] [9] [17]	4.52 4.38 4.5 / {4.52}	[17] [2] [6]				0.11	[17]	hex	[20]	2
							529.6 535.5	[6] [7]	4.5	[7]	119 [7]							014 110
TiB ₄ TmB ₂ UB ₂	2385	[2]	226* 137.5* 205.5*	190* 120.5* 209.5*	[11] [3] [3]	1.19 1.14 0.98	279.7* 469.6	[3] [3]	{12.692}	[9]	36.9 -	32.2* 13.6	[11]	0.16* 0.12*	[3] [3]	P6/mmm	[2]	201110
VB	~ 2250	[2]			[-]			1-1	{12.71} 5.44 /	[4] [4]	37.0	14.8	[9]		[-]	orthorhombic	[2,4]	-
VB ₂	2040 - 2160	[4]	279.5*	240.9*	[3]	1.16	562.2*	[3]	{5.28} {5.44} 4.61 /	[6] [4]	50.7 -	20.4	[4]	0.16*	[3]	/ Cmcm hex (c-32	[4]	
	2400	(2)					2677	[0]	5.28 / {5.10}	[0]	122.0	275 . 01	[0]			type)	[2]	10 (10
	~ 2400	[2]					267.7	[9]	5.06 - 5.28	[9]		27.5+-0.1	[9]			P6/mmm	[2]	
	2400+-50	[6]							4.61 / {5.10}	[2]								i i
	2100	[7]							5.28 / {5.10}	[6]								0
VB4 W2B	2770+-80	[4]	241* 322.5*	237* 164.1*	[11] [3]	1.02 1.97	420.9*	[3]	5.1 16 /	[7] [6]	24.5 -	45.2* 23.5	[11] [6]	0.28*	[3]	tetragonal	[4]	
									{10.72} 17.17 / 16 / 15.98 / {16.72}	[4]	39.3					-		
YB ₂	2100	[2]	173.5*	145.3*	[3]	1.19	340.8*	[3]	{3.370}	[9]	101.1 -			0.17*	[3]	P6/mmm	[2]	
YbB ₂	1500 00		153.7*	130.2*	[3]	1.18	304.6*	[3]	{2.91}	[6]	117.1	25.5	[0]	0.17*	[3]	D	[0]	
YbB ₆	1538 +-33	[4]							5.45 / {5.56}	[4]		25.5	[9]			Pm3m	[2]	000

C. Baron, H. Springer / Data in Brief 12 (2017) 692-708

Table 1 (continued)

Phase	Melting point / °C	Ref.	B Bulk modulus / GPa	G Shear modulus / GPa	Ref.	B / G	E Young's modulus / GPa	Ref.	Density / g cm ⁻³	Ref.	Specific modulus / GPa cm ³ g ⁻¹	Hardness / GPa	Ref.	Poisson's ratio	Ref.	Space group / structure	Ref.
ZrB	> 2000 2922 / 2992 +-50	[9] [4]							5.7 / {6.7}	[2,4,6]		69 - 72 HRA	[4]			cubic / Fm3m	[2,4]
ZrB ₂	3000 2980 / 2990 +-50 / 3040	[18] [4]	220 245	225 243	[16] [16]	0.98 1.01	350 498 - 638	[18] [4]	6.1 {6.09} / {6.102}	[18] [4]	55.6 - 104.8	35 - 36 22 - 26 23+-0.9	[9] [18] [16]	0.13* 0.144	[3] [4]	hex hex (c-32 type)	[18] [4]
	2990	[20]	238.6*	231.4*	[3]	1.03	524.6*	[3]	6.1	[20]		15.3 / 21.6 / 87 - 89 HRA	[4]	0.14	[22]	hex	[17]
	3200	[9]	238* - 276*	239* - 260*	[16]	0.92 - 1.15	343.2	[9]	6.1	[17]		25.3 - 28.0	[17]	0.09 - 0.28	[22]	P6/mmm	[2]
	3245	[17]	207.6	192.2	[4]		554 / 502	[16]	6.17 / {6.09}	[2]		22.1	[6]	0. 109 /	[16]		
	3040	[2]					520* - 555*	[16]	6.1	[7]		22.1+-0.2	[9]	0.137 - 0.144*	[16]		
7rB.	3060	[7]	199*		[11]		350 500 518.5	[20] [17] [7]			~ 85 [7]			0.11	[17]		
Carbo-Bo	rides		155		[11]												
Hf ₂ BC Mo ₂ BC	2800	[2]	207 313 324	150 181 185 - 188	[23] [23] [21]	1.38 1.73 1.72 -	362* 466 - 473	[23] [21]	8.71	[2]	53.5 - 54.3			0.26	[21]	Cmcm	[2]
Nb ₂ BC Ta ₂ BC Ti ₂ BC V ₂ BC W ₂ BC			259 286 208 260 350	163 168 158 178 184	[23] [23] [23] [23] [23]	1.75 1.59 1.70 1.32 1.46 1.90	404* 421* 378* 435* 468*	[23] [23] [23] [23] [23]									

Zr ₂ BC			187	128	[23]	1.46	312*	[23]										
<u>Carbides</u>																		
B ₄ C	2350 2450	[13] [18]	247* 175	200*	[11] [24]	1.24	448 450	[13] [18]	2.52 2.52	[18] [20]	177.8 - 191.1	37 - 47 30	[18] [24]			orthorhombic orthorombic	[18] [20]	
	2450	[20]	(graph)				472*	[11]	2.51 / 2.484 /	[2]		(graph) 31.7*	[11]			R3m	[2]	
	2450 2420	[2] [7]					450	[20]	2.47									
Cr ₃ C ₂	1800 1830 - 1890	[13] [4]					371 370 @	[13] [25]	6.74 6.68 - 6.7	[13] [4]	55.0 - 55.8	17.7	[9]			orthorhombic Pnma	[4] [2]	С. Ва
6-46	1895 ~ 1900 1985 1510	[9] [2] [7]					372.7	[9]										ron, H. Spri
Cr ₇ C ₃	1782	[2]	311.7* / 309*	143.9*	[14]	2.15	371 / 374	[14]	6.9	[2]	53.8 - 54.2	18.5	[9]			P31c	[2]	nger / Do
Fe₃C HfC	3000-3900	[7]	259.2*	119.6*	[14]	2.17	177 317	[26] [13]	7.4 12.2	[4] [13]	23.9 24.8 -	24.8 -	[9]	0.26	[26]		[13]	ıta in B
											23.8	31.4						rief
	3890	[20]					400	[20]	12.3	[20]		26.0	[17]			cubic	[20]	.12
	3900	[17]					352.1	[9]	12.76	[17]		29.0+-3.0	[27]			fcc Fm3m	[17]	(20
Mo ₂ C	2410	[28]					228	[17]	8.9	[13]	24.8 -	14.7+-1.3	[9]			P63/mmc	[2]	17)
	2522	[2]					530 @ 390 °C 533 5	[25]	9.04 / {9.18}	[9]	59.9	1 10 1 113	[0]			100/111110	[-]	692-708
NbC	1900	[13]					338	[13]	7.6	[13]	43.2 -	23.0+-3.0	[27]			B1 fm3m	[29]	00
	3613	[9]					492.93 -	[30]	7.56 /	[9]	72.7					Fm3m	[2]	
	2000	[2]					549.66	[0]	{7.82}	[7]								
	3000	[2]					538.3 540 @	[9]	7.8	[7]								
	5775	1.1					474 °C	[20]										
							350 -	[31]										
							500 546	[7]			70.0 [7]							
Nb ₂ C	3100	[28]					540	[7]	7.86 /	[9]	70.0 [7]					Pnma	[2]	
									{7.85}	1.1								
	3035	[9]							6.7	[7]								969
PKD	2075	[7]		540*	[32]	0.82		[33]	3.51	[33]		70.0	[32]		[33]	cubic	[33]	J

Table 1 (continued)

Phase	Melting point / °C	Ref.	B Bulk modulus / GPa	G Shear modulus / GPa	Ref.	B / G	E Young's modulus / GPa	Ref.	Density / g cm ⁻³	Ref.	Specific modulus / GPa cm ³ g ⁻¹	Hardness / GPa	Ref.	Poisson's ratio	Ref.	Space group / structure	Ref.	
SiC	2200 2300 2820 2750	[18] [20] [17] [7]	463.1* / 442* 368	397.5 200	[15] [34]		$1013 \pm 52.6 \\ 1185.3 \\ 480 \\ 480 \\ 386.4 \\ 427$	[15] [18] [20,34] [9] [35]	3.2 3.21 3.21 3.123 / 3.213	[18] [20] [17] [2]	273.6 - 303.6 117.1 - 158	20 - 35 32.0	[18] [17]	$\begin{array}{r} 0.144 \pm \\ 0.055 \\ 0.0077 \\ 0.17 \\ 0.17 \\ 0.16 \end{array}$	[15] [34] [35] [17]	hex hex polymorphic F43m	[18] [20] [17] [2]	C. Baron, H
TaC	3880 - 3915 3880 3985 3800	[13] [20] [9] [17]					415 495 336 290 285.4 285	[17] [7] [13] [20] [9] [17]	3.3 13.9 14.5 14.5	[7] [13] [20] [17]	150 [7] 19.7 - 24.2	18.2 16.0+-2.0	[17] [27]			Fm3m cubic cubic	[2] [20] [17]	l. Springer / Data in
TiC	3780 3140 3067 3140 3100 3150 3250	[2] [28] [18] [20] [17] [2] [7]	242.2 240	188.5	[36] [37]	1.28	400 462.9 320 451 451.1 450 @ 617 °C	[18] [36] [20] [17] [9] [25]	4.93 4.905* 4.93 4.94 4.2	[18] [36] [20] [17] [7]	64.8 - 110.2	24 - 32 31.4 30.0 32+-2.0	[18] [9] [17] [27]	0.1908 0.17	[36] [25]	fcc cubic cubic Fm3m	[18] [20] [17]	Brief 12 (2017) 692-70
UC	2520	[9]	163.6	82.6	[36]	1.98	460 420 212.1	[31] [7] [36]	12.97 / {13.63}	[9]	100 [7] 15.6 - 17.0	6.9+-1.5	[9]	0.284	[36]			8(
VC	2730	[13]					220.7 434	[9] [13]	5.77	[13]	72.6 - 85.1	9.5+-1.0 27.5 / 20.4 - 24.6 / 20.4 / 92 HRA	[27] [4]	0.32 @ 552 ℃	[25]	cubic fm3m	[29]	
	2810 - 2865	[4]					421.7	[9]	5.36 - 5.81	[4]						B1 fcc	[4]	
	2648	[9]					420 @ 552 °C	[25]	5.1	[7]								

	2046.7+-8	[40]	136.67*	165	[34]	0.83	395.8	[39]	3.97	[40]		18 - 21	[18]		[40]		[40]	;
Al ₂ 0 ₃	2045	[13]	264.5	156.6	[39]	1.69	379 @ 1090 °C	[13]	3.98	[13]	99.2 - 104.1	20.7	[40]	0.27	[41]	hex	[18]	
<u>Oxides</u>																		
							348 408	[17] [7]			60 [7]							
	3525	[7]					348.1	[9]	6.8	[7]								
	3420 3400	[20] [17]					390 550@ 505.°C	[20] [25]	6.6 6.56	[20] [17]						fcc	[20] [17]	
	2420	[20]					337.8 / 479.9	[20]	6.73. 6.70. 6.44}	[20]							[20]	- 00
	3530 / 3550 / 3540 / 3175 3420	[2]					195.1 / 317.8 /	[4]	6.9 / {6 661	[4]		30+-3.0	[27]					12 (2011) 20
	3532+-125 / 3532 /	[4]	214.2	124	[9]	1.31	406.2	[36]	6.606*	[36]		27.0	[17]	0.257	[9]	Fm3m	[2]	
ZrC	3400	[13]	223.1	169.7	[36]	1.31	359	[13]	6.73	[13]	28.3 - 83.8	25.5 / 27.8 - 34.1 / 21 / 20.5 /	[4]	0.197	[36]	B1 fcc	[4]	mor / Data
	2777	[7]					700 @ 347 °C	[25]	15.7	[7]								, op.
	2785	[2]					696.3	[9]	15.5 - 15.7 / {15.77}	[9]								
	2780	[20]					706.7 730	[20]	15.7	[20]						hex	[20]	,
	2867+-50 / 2870 / 2900 / 2777 / 2867 / 2627	[4]					539.8 / 601.2 / 668.2 /	[4]	15.60 / 15.63 / 15.7 / {15.8}	[4]		17 23.5 18.3 18.4 92 HRA	[4]			rm3m	[2]	
	2600	[18]					720	[18]	15.7	[18]	47.1	21.6	[9]	547 °C		hex	[4]	
wc	2150 2800–2860	[7] [13]	577		[38]		669	[13]	15.63	[13]	32.8 -	20 - 24	[18]	0.31 @	[25]	hex	[18]	
V ₂ C	2750 2200 2187	[7] [28] [9]							{5.75} 5.8	[9] [7]								

Phase	Melting point / °C	Ref.	B Bulk modulus / GPa	G Shear modulus / GPa	Ref.	B / G	E Young's modulus / GPa	Ref.	Density / g cm ⁻³	Ref.	Specific modulus / GPa cm ³ g ⁻¹	Hardness / GPa	Ref.	Poisson's ratio	Ref.	Space group / structure	Ref.
	2050	[20]	251.2	163.4 124.55 - 347.36 186.33 (single	[42] [40] [40]	1.54	410	[20,34]	3.94 3.99	[39] [20]		23.0	[20]	0.13 - 0.45 0.254 0.23	[39] [34]	hex. cubic. monoclinic	
B_2O_3	450	[40]		crystar)					1.84	[40]							
BaO	~ 1923	[40]							5.72	[40]							
BeO	2527	[13]	464.29*		[20]	3.29	190 @ 1090 °C	[13]	3.01	[13]	122.8 - 129.6	7.8 / 10 / 12.3 / 14.9	[40]	0.36 - 0.38	[40]	hex	[40]
	2570+-30	[40]		95.91 - 100.03	[40]		372	[39]	3.03	[40]							
	2570	[20]		141	[39]		390	[20]	3.01	[20]							
CaO	2580 2587 2614	[20] [40] [7]	120 218	74.05	[43] [40] [42]	1.62	181	[43]	3.32 3.4	[20] [40]	53.2 - 54.5	6.0 6.0+-0.8	[40] [27]	0.22 0.22	[43] [40]	CUDIC	[40]
CeO ₂	2000 2397	[13] [40]		62.47	[40]		185	[13]	7.13 7.13	[40] [13]	25.9						
Ce ₂ O ₃	2142+-30 2210	[40]	109*	50.8*	[44]	2.15	132		6.9 - 7.0	[40]	18.9 - 19.1						
Co ₂ O ₃	894	[40]							5.18	[40]							
Cr ₂ O ₃ FeO	2300 1368	[40] [40]	240 154 162 7		[45] [46] [47]				5.21 5.7	[40] [40]		29.1 5.4 5.4+-0.5	[40] [40] [27]			hex hex. cub.	[40] [40]
Fe ₂ O ₃	1562	[40]	99.6	94.8	[47]	1.05	261	[48]	6.51	[40]	40.1	10.8 / 5 - 6.8 / 6.8 - 10.9 / 9 / 9.9 / 9 - 10.4 / 3.5 - 3.8	[40]			hex. cub.	[40]
HfO ₂	2810	[7]							9.68	[7]		510					
MgO	2800+-13	[40]	156.4	124.3	[39]	1.26	317 @ 1090 °C	[13]	3.65	[40]	68.2 - 88.4	9.1 - 9.3 / 7.5 / 11.2	[40]	0.36	[40]	cubic	[40]

702

	2800	[7]	156.57* 155	130 130.1 77.48 - 113.76	[34] [42] [40]	1.20 1.19	249.09 294.7	[49] [39]	3.58 3.585 3.506	[13] [49] [39]		11.0+-1.5	[27]					
MσΩa	2840 2832	[20]	162.3		[47]		310	[20,34]	3.58	[7]				0.17	[34]			
MgAl ₂ O ₃	2135	[7]							3.51	[7]								
MnO	1785	[40]							5.18	[40]		5.7 5.7+-0.8	[40] [27]			cubic	[40]	
MnO ₂ NbO NbO ₂	847 1937 1902	[40] [7] [7]	34.4						5.026	[40]		5.7 + 0.0	[27]			tetra. rhom.	[40]	,
Nb ₂ O ₃ Nb ₂ O ₅	1772 1510 1512	[40] [40] [7]					134.1	[50]	5.98	[40]		7.3	[40]			rhom.	[40]	
NiO Sc ₂ O ₃	1957 2405	[40] [40]	27.02	2114	[20]	1 10	70	[12]	7.45 3.864	[40] [40]	27.4	4.4	[40]	0.17	[40]	cubic cubic	[40] [40]	, 11. opri
SIO ₂	1600-1725		37.02	31.14	[39]	1.19	/3	[13]	2.66	[13]	27.4 -			0.17	[40]	tetra - cub	[40]	6
	1720	[40]	36.98*		[13,39]		72.97	[39]	2.32 - 2.651	[40]		7.5 - 12.3	[40]	0.171	[39]			1 044
	1710	[7]							2.203 2.32	[39] [7]								
Sm ₂ O ₃ Ta ₂ O ₅	~ 2320 1877 1785	[40] [40]	127.99*	53.1	[39]	2.41	139 179.1	[39] [50]	8.73	[40]	20.5			0.319	[39]	monoclinic rhom.	[40] [40]	(J1
ThO ₂	3300	[40]	69.34*	98.07 (303 K)	[40]	0.71	137.3	[40]	10	[40]	13.7 - 32.0	9.7 - 10.9	[40]	0.17	[40]	cubic	[40]	2011)
	3220 3390	[20] [7]	178.5	94.2	[39]	1.89	240.4 240 310.4	[39] [20]	9.722 10.05 9.7	[39] [20] [7]	32 [7]			0.275	[39]			002 100
TiO	1737	[40]	270		[37]		510.4	[7]	4.93 - 5.53	[40]	52 [7]	19.6	[40]	0.28		cubic	[40]	
TiO ₂	1855	[40]	210	113.1	[39]	1.86	272	[39]	3.84 - 4 24	[40]	64.2 - 70 8	16.0+-3.5 6.0 - 10.7	[27] [40]			tetra. rhom.	[40]	
	1857	[7]	210.3 215.2	113.5 113.54 (single	[42] [40]	1.85 1.90			4.24	[39]	70.0							
Ti ₂ O ₃	2127	[40]	148.9	69.2	[51]	2.15	179.8	[51]	5.02	[51]	35.8			0.299	[51]	cubic hex	[51] [40]	
U0 ₂	2760	[40]					192.9	[39]	10.5	[40]		7.7 - 8.2	[40]	0.302	[39]	cubic	[40]	2

C. Baron, H. Springer / Data in Brief 12 (2017) 692–708

Table 1 (continued)

Phase	Melting point / °C	Ref.	B Bulk modulus / GPa	G Shear modulus / GPa	Ref.	B / G	E Young's modulus / GPa	Ref.	Density / g cm ⁻³	Ref.	Specific modulus / GPa cm ³ g ⁻¹	Hardness / GPa	Ref.	Poisson's ratio	Ref.	Space group / structure	Ref.
	2800	[20]	162	74.1	[39]	2.19	162.8 - 245.18	[40]	10.37	[39]	17.6 - 18.6						
	2875	[7]					2 10110		10.97	[20]	1010						
VO ₂	1545	[40]							4.4	[4]						monoclinic	[40]
$V_2 O_3$	2376	[40]							4.87	[4]						hex	[40]
WO ₃	1470	[40]							7.16	[4]						tetra.	[40]
	1470	[7]														monoclinic	
Y ₂ 0 ₃	2450	[20]	148.9+-3	69.2+-2	[51]	2.15	179.8	[51]	5.02	[51]	34.1 -	6.8	[40]	0.299	[51]	cubic	[40]
			125 7	66 5	[20]	2.04	+-4.0 171 5	[20]	5.02	[20]	41.0			0.208	[20]		
			1/1 5*	00.5	[30]	2.04	171.5	[20]	4.5	[20]				0.298	[29]		
			141.5		[55]		100	[20]	4.5	[20]							
ZnO	1975	[40]	134	44	[39]	3.05	199+-2		1.0 1	[40]	21.2 -	1.5 - 3.1	[40]	0.351	[39]	tet - mono @	[52]
											35.9					1170 °C	
			143.6	45.5	[42]	3.16	119	[39]								hex	[40]
				45.5	[40]												
ZrO ₂	2690	[40]	137.68*	75	[34]	1.84	190	[34]	5.56	[40]	30.3 -	16.6	[40]	0.27	[34]	monoclinic	[40]
	2700	[7]		77.9	[39]		197	[39]	6.27	[40]	35.4					cubic	[40]
									5.75	[7]							
<u>Nitrides</u>																	
AIN	2300	[20]	159.9 - 207	126.4	[53]	1.64	350	[20]	3.25	[20]	90.5 - 110					hex	[20]
	2375	[7]					350	[9]	3.2	[54]							
							294.2 -	[7]	3.2	[7]							
							323.6 /										
							343.7										
							352	[7]			110 [7]						
BC ₂ N			408	445	[11]	0.92	980	[24]				65.2		0.096	[24]		[24]
BN	2730	[7]						10.11	2.1	[7]		100					10.11
c-BN	2973		400	405	[11]	0.99	909	[24]	3.45 -	[33]	261.2 -	48*	[11]	0.121	[55]	cub (hex)	[24]
			405	400	[55]	1.01	909*	[55]	5.40		20 3 .J		[24]	0.119	[15]	cubic [F 4 3 m]	[33]

376 383.67 [21] 0.98 921 [15] [21] [24] 415 405 1.02 (graph) [54] hex-BN 2.2 CrN [9] 15.4+-0.5 HfN 3385 [17] 341.66 -[30] [9] fcc [17] 13.9 [17] 24.6-25.6 15.7 355.46 3225 [7] 17.0+-2.0 [27] 2300 [9] [9] [9] NbN 483.5 3.26 [7] 60 - 148.3 cubic 2330 [7] 195.6 [7] Si₃N₄ [13] [34] [18] [20] 1900 [13] 290 120 2.42 295 3.18 [13] 66.7 -15.5 0.29 [34] hex [18] [34] [7] 1900 [24] 115 220 [20] 3.2 92.8 hex 3.2-3.3 [54] 1900 [7] 1900 [20] 3.2 [20] 14.3 23.7 [9] [17] TaN 2700 [17] [17] cubic 13.8 / 3075 [7] [9] {14.36} TiN [13] [20] 2930 [13] 295 212.23* [21] 1.39 600 [13] 5.44 46.2 -21.0+-3.0 [27] cubic [21] 115.4 [20] [37] [20] [17] 2950 320* 260 [20] 5.4 fcc 2950 [9] 251.1 [9] 5.43 / [9] {5.44} [17] [17] 2950 445 -[30] 5.39 472.06 2900 [7] 5.2 [7] 6.040 / VN 2050 [9] [6] 15.5+-1.5 [27] 6.102 2200 [7] 6 [7] 2980 7.3 [20] [20] [27] ZrN 50 [7] 18.0+-2.0 cubic [20] [9] 7.29 [17] [17] 2980 fcc 3950 [17] [7] 2950 Intermetallics [56] [2] [56] Be₁₂Ti 1593 [2] 117 128 [56] 0.91 282 2.3 122.6 0.099 [56] D2b tI26 [2] P6/mmm [80Sam] 0.214 [56] CoAl 1635 [56] 162 114 [56] 1.42 278 [56] 5.2 [56] B2cP2 CoSi₂ 1326 [2] 210.1 67.5 [56] 3.11 182.9 [56] 4.94 / [9] 36.9 -5.4 [9] 0.355 [56] Fm3m [2] 37.0 {4.95}

61 (graph)

Phase	Melting point / °C	Ref.	B Bulk modulus / GPa	G Shear modulus / GPa	Ref.	B / G	E Young's modulus / GPa	Ref.	Density / g cm ⁻³		Specific modulus / GPa cm ³ g ⁻¹	Hardness / GPa	Ref.	Legend: *theoretical value; {} XRD;			RD;	6
										Ref.				Poisson's ratio	Ref.	Space group / structure	Ref.	
	1277	[6]																-
CrSi ₂	1475 1500 +-20	[2] [6]	172	153.3	[56]	1.12	354.6	[56]	4.91 4.91 / {4.978}	[2] [9]	71.1 - 72.1	6.9	[9]	0.156	[56]	P6222	[2]	
Fe ₃ Al									{6.648}	[9]								
FeAl							261	[56]	5.585	[9]	46.7					B2cP2	[56]	C. E
MoSi ₂	2050	[56]	209.7	191.1	[56]	1.10	384		5.9 - 6.3 / {6.24}	[6]	60.3 - 71.5	12.95 - 15.2	[6]	0.151	[56]	tet	[18,56]	Baron,
	2030 2030	[20] [6]					380 421.7	[20] [6]	6.2	[20]		6.9	[9]			tet I4/mmm	[20] [2]	H. Sp
Ni₃Al			173	77.3	[56]	2.24	201.9	[56]	{7.293}	[9]				0.305	[56]		[56]	nin.
Ni ₃ Fe			180.6	85.5	[56]	2.11	221.4	[56]						0.296	[56]		[56]	ger
NiAl	1638	[56]	166	70	[56]	2.37	184.1	[56]	5.85	[10]	31.5	0.0 11.0	[0]	0.315	[56]	DC222	[56]	/ D
1 a 51 ₂							338	[13]	9.1	[13]	3/.1 -	9.8 - 11.8	[9]			P6222	[2]	ata
									8.83 / {91}	[2]	30.3							in Bri
Ti₃Sn			97.5	41.9	[56]	2.33	110	[56]	(5.1)					0.312	[56]		[56]	ef 1
TiAl			110	70	[56]	1.57	173	[56]	3.84 / {3.63}	[9]	45.1 - 47.7	1.8	[9]	0.234	[56]	L10 tP4	[56]	2 (20
TiAl ₃	1375	[56]	105.6	93	[56]	1.14	215.7	[56]	3.31 /	[9]	64.0 - 65.2	6.7	[9]	0.16	[56]		[56,57]	17) 69
TiCr ₂	1550	[56]	159	71	[56]	2.24	184	[56]	(0.071)		0012			0.31	[56]	C14. hP12	[56]	12-
TiSi ₂			148.9	116.7	[56]	1.28	277.8	[56]	4.39 / {4.13}	[6]	59.0 - 69.1	6.78	[9]	0.189	[56]	Fddd	[6]	802
							258.9	[6]	4.02 /	[9]								
Ti ₅ Si ₃	2150	[7]							4.2	[7]								
VSi ₂			166 -	142 -	[56]	1.12	331 -	[56]	4.34 /	[9]	71.5 -	8.7 - 9.4	[9]	0.158	[56]		[56]	
			167.2	147.9			342.6		{4.627}		78.9							
V ₅ Si ₃					(= 0)			(= 0)	5.1	[7]			101		1.001		(
WSi ₂	2180	[7]	222.4	203.6	[56]	1.09	467.9	[56]	9.25 / [9.857]	[9]	47.5-50.6	10.5	[9]	0.149	[56]		[56]	
VAL			20.2		1501		150	1501	9.25	[7]	40.2			0.205	1501	C15 -F24	1501	
YAI2 VFe			89.2 97	65.5 49.6	[56]	136	158 127	[56]	{3.933}	[9]	40.2			0.205	[56]	C15 CF24	[56]	
ZrAl ₂	1645	[56]	117	93.8	[56]	1.25	222	[56]		[9]				0.184	[56]	C14. HP12	[56]	
2		F = 1.1			1 C C 1			F = 1		1 C A					1.0.01		1 C C 1	

Acknowledgement

Financial support of subproject S02 'Validation' of the Collaborative Research Center SFB 1232 "Farbige Zustände" by the German Research Foundation (DFG) is gratefully acknowledged.

Transparency document. Supplementary material

Transparency data associated with this article can be found in the online version at http://dx.doi. org/10.1016/j.dib.2017.04.038.

References

- S.F. Pugh, XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals, Lond. Edinb. Dubl. Philos. Mag. 45 (367) (1954) 823–843.
- [2] P. Eckerlin, H. Kandler, Structure Data of Elements and Intermetallic Phases, Springer Berlin Heidelberg, 1971.
- [3] Y.H. Duan, Y. Sun, Z.Z. Guo, M.J. Peng, P.X. Zhu, J.H. He, Elastic constants of AlB2-type compounds from first-principles calculations, Comput. Mater. Sci. 51 (1) (2012) 112–116.
- [4] P.T.B. Shaffer, Plenum Press Handbooks of High-Temperature Materials No. 1 Materials Index, Springer, US, 1963.
- [5] U. Burkhardt, V. Gurin, F. Haarmann, H. Borrmann, W. Schnelle, A. Yaresko, Y. Grin, On the electronic and structural properties of aluminum diboride Al0.9B2, J. Solid State Chem. 177 (2) (2004) 389–394.
- [6] G.V. Samsonov, No.2 Properties Index, Springer, US, 1964.
- [7] N. El Mahallawy, M.A. Taha Hanafi, Reinforcement considerations for high temperature metal matrix composites, Key Eng. Mater. 79-80 (1993) 1–14.
- [8] A.K.M.A. Islam, F.N. Islam, M.S. Iqbal, A.F. Jalbout, L. Adamowicz, Elastic and electronic properties of BeB2 in comparison to superconducting MgB2 and NbB2, Solid State Commun. 139 (6) (2006) 315–320.
- [9] G.V. Samsonov, I.M. Vinitskii, Handbook of Refractory Compounds, Springer, US, 1980.
- [10] S. Okada, T. Atoda, I. Higashi, Y. Takahashi, Preparation of single crystals of a new boride Cr2B3 by the aluminium-flux technique and some of its properties, J. Less Common Met. 113 (2) (1985) 331–339.
- [11] H.Y. Niu, J.Q. Wang, X.Q. Chen, D.Z. Li, Y.Y. Li, P. Lazar, R. Podloucky, A.N. Kolmogorov, Structure, bonding, and possible superhardness of CrB4, Phys. Rev. B 85 (14) (2012) 144116.
- [12] Y. Pan, Y.H. Lin, M. Wen, Q.N. Meng, Correlation between hardness and pressure of CrB4, RSC Adv. 4 (109) (2014) 63891–63896.
- [13] Y. Feng, Strengthening of steels by ceramic phases, Fak. Georessourcen und Materialtechnik (2013) (RWTH Aachen).
- [14] B. Xiao, J.D. Xing, J. Feng, C.T. Zhou, Y.F. Li, W. Su, X.J. Xie, Y.H. Cheng, A comparative study of Cr7C3, Fe3C and Fe2B in cast iron both fromab initiocalculations and experiments, J. Phys. D: Appl. Phys. 42 (11) (2009) 115415.
- [15] M. Zhang, M. Lu, Y. Du, L. Gao, C. Lu, H. Liu, Hardness of FeB4: Density functional theory investigation, J. Chem. Phys. 140 (17) (2014) 174505.
- [16] X.H. Zhang, X.G. Luo, J.C. Han, J.P. Li, W.B. Han, Electronic structure, elasticity and hardness of diborides of zirconium and hafnium: First principles calculations, Comp. Mater. Sci. 44 (2) (2008) 411–421.
- [17] P.B. Narottam, Handbook of Ceramic Composites, Kluwer Academic Publishers, Springer, USA, 2005.
- [18] B. Basu, G.B. Raju, A.K. Suri, Processing and properties of monolithic TiB2 based materials, Int. Mater. Rev. 51 (6) (2006) 352–374.
- [19] R.G. Munro, Material Properties of Titanium Diboride, J. Res Natl. Inst. Stand. 105 (5) (2000) 709–720.
- [20] H. Salmang, H. Scholze, Keramik Teil 2: Keramische Werkstoffe, Springer, Berlin, Heidelberg, New York, 1983.
- [21] J. Emmerlich, D. Music, M. Braun, P. Fayek, F. Munnik, J.M. Schneider, A proposal for an unusually stiff and moderately ductile hard coating material: Mo2BC, J. Phys. D: Appl. Phys. 42 (18) (2009) 185406.
- [22] H.Y. Wang, F.Y. Xue, N.H. Zhao, D.J. Li, First-principles calculation of elastic properties of TiB2 and ZrB2, Adv. Mater. Res. 150-151 (2010) 40–43.
- [23] H. Bolvardi, J. Emmerlich, M. to Baben, D. Music, J. von Appen, R. Dronskowski, J.M. Schneider, Systematic study on the electronic structure and mechanical properties of X2BC (X = Mo, Ti, V, Zr, Nb, Hf, Ta and W), J. Phys. : Condens. Matter 25 (4) (2013) 045501.
- [24] V.L. Solozhenko, S.N. Dub, N.V. Novikov, Mechanical properties of cubic BC2N, a new superhard phase, Diam. Relat. Mater. 10 (12) (2001) 2228–2231.
- [25] I.N. Frantsevich, A.B. Lyashenko, Young's moduli of the carbides of some transition metals, Sov. Powder Metall. Met. Ceram. 5 (7) (1966) 573–574.
- [26] H. Mizubayashi, S.J. Li, H. Yumoto, M. Shimotomai, Young's modulus of single phase cementite, Scr. Mater. 40 (7) (1999) 773–777.
- [27] O.H. Krikorian, Thermal expansivity correlations for refractory materials with the NaCl-type structure, High Temp. High. Press. 20, 169–175.
- [28] E. Hornbogen, G. Eggeler, E. Werner, Werkstoffe: und Eigenschaften von Keramik-, Metall-, Polymer- und Verbundwerkstoffen, Springer Berlin Heidelberg, Berlin, Heidelberg, 2006.
- [29] K.B. Joshi, U. Paliwal, First-principles study of structural and bonding properties of vanadium carbide and niobium carbide, Phys. Scr. 80 (5) (2009) 055601.

- [30] C. Kral, W. Lengauer, D. Rafaja, P. Ettmayer, Critical review on the elastic properties of transition metal carbides, nitrides and carbonitrides, J. Alloy. Compd. 265 (1–2) (1998) 215–233.
- [31] U. Bohnenkamp, R. Sandstrom, Evaluation of the elastic modulus of steels, Steel Res. 71 (3) (2000) 94-99.
- [32] M. Hebbache, First-principles calculations of the bulk modulus of diamond, Solid State Commun. 110 (10) (1999) 559–564.
- [33] G.E. Spriggs, Properties of diamond and cubic boron nitride; Figs. 13.1 13.91, in: P. Beiss, R. Ruthardt, H. Warlimont (Eds.), Materials Powder Metallurgy Data, Refractory, Hard and Intermetallic Materials, Landolt-Börnstein - Group VIII Advanced Materials and Technologies, Springer, Berlin, Heidelberg, 2002.
- [34] H. Salmang, H. Scholze, Keramik Teil 1: Allgemeine Grundlagen und wichtige Eigenschaften, Springer Berlin, Heidelberg, 1982.
- [35] C.W. Nan, D.R. Clarke, The influence of particle size and particle fracture on the elastic/plastic deformation of metal matrix composites, Acta Mater. 44 (9) (1996) 3801–3811.
- [36] R. Chang, L.J. Graham, Low-Temperature Elastic Properties of ZrC and TiC, J. Appl. Phys. 37 (10) (1966) 3778.
- [37] R. Ahuja, O. Eriksson, J.M. Wills, B. Johansson, Structural, elastic, and high-pressure properties of cubic TiC, TiN, and TiO, Phys. Rev. B 53 (6) (1996) 3072–3079.
- [38] V.P. Zhukov, V.A. Gubanov, Energy band structure and thermo-mechanical properties of tungsten and tungsten carbides as studied by the LMTO-ASA method, Solid State Commun. 56 (1) (1985) 51–55.
- [39] R.G. Munro, Elastic Moduli Data for Polycrystalline Ceramics, National Institute of Standards and Technology, Gaithersburg, Maryland (2002) 20899.
- [40] G.V. Samsonov, The Oxide Handbook, 1973.
- [41] C. Industry, Material Properties Charts, 2013.
- [42] O.L. Anderson, J.E. Nafe, The bulk modulus-volume relationship for oxide compounds and related geophysical problems, J. Geophys. Res. 70 (16) (1965) 3951–3963.
- [43] Calcium Oxide (CaO) Young's, shear and bulk modulus, Poisson's ratio, in: O. Madelung, U. Rössler, M. Schulz (Eds.), II-VI and I-VII Compounds; Semimagnetic Compounds, Springer Materials.
- [44] Z.-W. Niu, Y. Cheng, X.-R. Chen, K. Xu, G.-F. Ji, Elastic and electronic properties of Ce2O3 from first principles, J. Alloy. Compd. 551 (0) (2013) 672–676.
- [45] S. Rekhi, L.S. Dubrovinsky, R. Ahuja, S.K. Saxena, B. Johansson, Experimental and theoretical investigations on eskolaite (Cr2O3) at high pressures, J. Alloy. Compd. 302 (1–2) (2000) 16–20.
- [46] H.G. Drickamer, R.W. Lynch, R.L. Clendenen, E.A. Perez-Albueene, X-Ray Diffraction Studies of the Lattice Parameters of Solids under Very High Pressure, in: S. Frederick, T. David (Eds.), Solid State Physics, 1967, pp. 135–228, Academic Press.
- [47] B.R.K. Gupta, R.P. Goyal, Static and thermophysical properties of chalcogenide crystals with NaCl structure, Solid State Commun. 49 (6) (1984) 559–562.
- [48] M. Catti, G. Valerio, R. Dovesi, Theoretical study of electronic, magnetic, and structural properties of α-Fe2O3 (hematite), Phys. Rev. B 51 (12) (1995) 7441–7450.
- [49] M. Magnesiumoxid, (http://www.korth.de/index.php/material-detailansicht/items/22.html)(Accessed 28 February 2017), 2017.
- [50] O.B. Shcherbina, M.N. Palatnikov, V.V. Efremov, Mechanical properties of Nb2O5 and Ta2O5 prepared by different procedures, Inorg. Mater. 48 (4) (2012) 433–438.
- [51] O. Yeheskel, O. Tevet, Elastic moduli of transparent yttria, J. Am. Ceram. Soc. 82 (1) (1999) 136-144.
- [52] J. Eichler, U. Eisele, J. Rödel, Mechanical Properties of Monoclinic Zirconia, J. Am. Ceram. Soc. 87 (7) (2004) 1401–1403.
- [53] Aluminum nitride (AIN) bulk modulus, Young's and shear modulus, in: O. Madelung, U. Rössler, M. Schulz (Eds.), Group IV Elements, IV-IV and III-V Compounds. Part a - Lattice Properties, Springer Materials.
- [54] M.G. Nicholas, D.A. Mortimer, L.M. Jones, R.M. Crispin, Some observations on the wetting and bonding of nitride ceramics, J. Mater. Sci. 25 (6) (1990) 2679–2689.
- [55] T. Taniguchi M.P. D'Evelyn, Elastic properties of translucent polycrystalline cubic boron nitride as characterized by the dynamic resonance method, Diam. Relat. Mater. 8 (8–9) (1999) 1522–1526.
- [56] J.H. Westbrook, R.L. Fleischer, Intermetallic Compounds Volume 1, Principles, 1995.
- [57] T. Hong, T.J. Watson-Yang, A.J. Freeman, T. Oguchi, J. Xu, Crystal structure, phase stability, and electronic structure of Ti-Al intermetallics: TiAl3, Phys. Rev. B: Condens. Matter 41 (18) (1990) 12462–12467.