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Colon cancer is one of the most commonly diagnosed cancers worldwide.
Both environmental and molecular characters can influence its development. DNA
methylation has been heralded as a promising marker for use in cancer prevention,
diagnosis, and treatment. It has been shown to facilitate cancer progression through
multiple mechanisms. Changes in DNA methylation can inhibit or promote the binding
of transcription factors (TFs) and further disturb gene regulation. Detection of DNA
methylation-mediated regulatory events in colon cancer are critical for mining novel
biomarkers. Here, we explore the influence of CpG sites located at promoter regions
of differentially expressed genes and identify methylation–gene relationships using
expression–methylation quantitative trait loci. We find that promoter methylation sites
mainly negatively regulate the corresponding genes. We also identify candidate TFs that
can bind to these sites in a sequence-dependent manner. By integrating transcriptome
and methylome profiles, we construct a TF–CpG–gene regulatory network for colon
cancer, which is used to determine the roles of TFs and methylation in the transcription
process. Finally, based on TF–CpG–gene relationships, we design a framework to
evaluate patient prognosis, which shows that one TF–CpG–gene triplet is significantly
associated with patient survival rate and represents a potential novel biomarker for use
in colon cancer prognosis and treatment.

Keywords: colon cancer, transcription factor, motif, DNA methylation, survival

INTRODUCTION

Colon cancer is one of the leading causes of morbidity and mortality globally (Hobday and
Erlichman, 2002). The pathopoiesis of colon cancer is considered to be a polystage and complex
process (Rupnarain et al., 2004). Abnormal changes in gene expression have an important
role in the development of colon cancer (Sabates-Bellver et al., 2007). The aberrant status of
upstream genetic, epigenetic, and transcriptional regulators can contribute to these gene expression
changes (Vonlanthen et al., 2014). Previous studies have highlighted and characterized the effects
of transcription factors (TFs) in colon cancer (Zhou and Guo, 2018). However, systematic
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identification of DNA methylation disturbed TFs is still required,
and the underlying regulatory mechanisms in colon cancer are
poorly characterized.

DNA methylation, one of the best-known epigenetic
modifications, has been shown to regulate gene expression
in a temporal and spatial specific manner (Schneider et al.,
2010; Selva et al., 2017). Alterations to the methylome can
promote cancer development via pathway modules (Saghafinia
et al., 2018). In colon cancer, hypermethylation of tumor
suppressor genes contributes to carcinogenesis through silencing
of transcription (Ng and Yu, 2015). Abnormal DNA methylation
sites can participate in cross-talk with TFs and affect downstream
transcription regulation. Blattler and Farnham (2013) concluded
that many TFs bind to unmethylated sites in gene promoter
regions. High-throughput technologies have enabled both
transcriptome and epigenomic measurements on a genome-wide
scale, facilitating the mining of aberrant events in cancer. Thus,
detecting activated TFs in colon cancer, combined with DNA
methylation status and TF–gene regulatory relationships, will be
helpful for colon cancer research.

In this study, we detected differentially expressed genes in
colon cancer and focused mainly on determining the upstream
regulators of these genes. Based on the relationships between
CpG sites and genes, and TF-motif-enriched CpG sites, we
constructed a TF–CpG–gene network for colon cancer by
integrating transcriptome and methylome profiles. The identified
network provides guidance for some dysregulated genes in colon
cancer. We also built a comprehensive framework to measure
the prognostic efficiency of these TF–CpG–gene relationships.
Overall, the findings of this study provide novel guidance for
colon cancer research.

MATERIALS AND METHODS

Methylation and Expression Datasets
Processed gene expression profiles and methylation datasets for
colon cancer (TCGA-COAD) were downloaded from the UCSC
Xena archive1. Gene expression values (fragments per kilobase
million) were derived from RNA sequencing data and were log2
transformed. We only retained samples found in both datasets.
In total, there were 306 colon cancer samples and 19 adjacent
mucosa tissue samples.

Identification of Differentially Expressed
Genes
We obtained gene annotation files from the GENCODE database
(v. 22) (Frankish et al., 2019) and retained the protein-coding
genes; we refer these protein-coding genes simply as “genes”
in this study. Next, we retained genes that were expressed in
at least 50% of samples. Differentially expressed genes were
identified based on t-tests and fold change (FC), p-values were
adjusted using the false discovery rate (FDR) method; genes
with t-test FDR < 0.05 and log2|FC| > 1 were regarded as
differentially expressed.

1https://xena.ucsc.edu/

Methylation–Gene Correlation Analysis
DNA methylation levels of colon samples were measured by
450 K Illumina Infinium HD Methylation Assay (Agha et al.,
2019), which can access the methylation status of more than
450,000 CpG sites in the human genome. We first filtered
out probes that had single nucleotide polymorphisms located
in or close to the probe sequence. The remaining probes
were annotated in gene promoter regions (±3 kb from the
transcription start site) (Wang et al., 2018) using bedtools
(Quinlan, 2014). We tested the correlation of each methylation
site–gene pair using Pearson statistics. Significantly correlated
pairs (FDR < 0.05) were referred as expression–methylation
quantitative trait loci (emQTL).

Collection of Functional Genes
We collected 167 clinically actional genes from the TARGET
database2 (Van Allen et al., 2014). We searched the MalaCards
database (Rappaport et al., 2014) for colon cancer-related genes
using the keyword “colon cancer” and obtained 92 protein-
coding genes.

Motif Enrichment Analysis Within
Methylation Sites
We downloaded transcription binding profiles (motifs) from the
MEME suite (Bailey et al., 2015). For each promoter methylation
site, we used FIMO software (Grant et al., 2011) with default
parameters to scan motif occurrence in the 100-bp flanking
region each side of the CpG site and retained motifs that covered
the corresponding CpG sites. For each such motif, we calculated
its odds ratio as well as 95% confidence interval relative to
the background CpG sites, according to a previously published
method (Yao et al., 2015).

Construction of TF–Gene Regulatory
Relationships
Previous studies have demonstrated that DNA methylation
can positively or negatively affect TF-binding events and alter
the corresponding gene expression (Zuo et al., 2017), while
more recent researches revealed that DNA methylation can
be promoted or inhibited by the DNA-binding (TFs) (Blattler
and Farnham, 2013; Shakya et al., 2015; Heberle and Bardet,
2019). Therefore, for probes containing at least one enriched
motif, we tested the correlation between the corresponding TF
expression level and methylation level of this site using Pearson
correlation statistics, retaining TF–methylation site pairs with
FDR < 0.05. We also identified TFs and CpG-related genes that
were significantly correlated (Pearson correlation FDR < 0.05).
Thus, we obtained TF–CpG–gene triplets in which each element
had significant correlations with the others.

Prognostic Analysis
We retrieved colon cancer survival data using the TCGAbiolinks
package (Colaprico et al., 2016). By applying multivariate Cox
proportional regression model, we obtained p-values for the TF,

2https://software.broadinstitute.org/cancer/cga/target
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TABLE 1 | Significant survival-related TF–CpG–gene relationships based on the
multivariate Cox proportional regression model.

TF CpG site Gene Combined p-value

BATF3 cg00244882 ITIH5 0.016

FEV cg17978562 EDIL3 0.004

NEUROD1 cg18618334 CXCL12 0.01

GLIS1 cg22444507 ITIH5 0.01

CpG site, and gene of each triplet, and generated a combined
p-value using Fisher’s combination test (Hwang et al., 2005).
The TF–CpG–gene triplets that were significantly associated
(p < 0.05) with survival rate are shown in Table 1.

To evaluate the efficiency of the obtained triplets in predicting
the survival of patients, 292 patients were randomly divided
into training (n = 146) and testing (n = 146) sets. For each
triplet, we evaluated the association between TF, CpG site, gene
and survival through multivariate Cox regression analysis in the
training set. Next, we performed survival analysis based on the
resulting TF–CpG–gene triplets. According to the TF, CpG, and
gene coefficients from the Cox regression model, we assigned a
risk score to each colon cancer sample as follows:

Risk score =
∑

αTF + βMeth+ γGene

where α is the coefficient of TF, β is the coefficient of CpG, γ

is the coefficient of Gene; and TF, Meth, and Gene represent
the corresponding values of the TF, CpG site, and gene in
the cancer samples.

We further divided the cancer samples into low- and high-
risk groups based on the median risk score across samples and

performed Kaplan–Meier estimation between the two groups;
p-values were calculated by the log-rank test.

Statistical Analysis
Statistical analysis was performed using R 3.6.1 framework.
During the differentially expressed genes identification process,
we applied Student’s t-test. Besides, p-values derived from
differential expression analysis, correlation analysis among TFs,
DNA methylation and genes were adjusted using the FDR
method, FDR < 0.05 was used to filtrate significant results.
Kaplan–Meier survival curves were plotted for different groups
of patients, the difference between the two groups was calculated
by log-rank test.

RESULTS

Dysregulated Genes in Colon Cancer
Genes that display differences in expression distribution between
healthy and disease samples are often related to certain diseases
or traits. We detected significantly dysregulated genes in the
colon cancer dataset using t-tests and FC (FDR < 0.05,
|log2FC| > 1). Among the differentially expressed genes, 623
were upregulated and 816 were downregulated (Figure 1A).
We further explored the expression patterns of clinical action
genes and colon cancer-related genes. Among these dysregulated
genes, 19 were clinical action genes and 25 were related
to colon cancer, according to the TARGET and MalaCards
databases, respectively. Both the clinical action genes and
colon cancer-related genes tended to display a differential
expression pattern (hypergeometric test p < 0.01, Figures 1B,C),
and there was no obvious difference between the up- and

FIGURE 1 | Characteristics of gene expression in colon cancer. (A) Volcano plot of dysregulated genes in colon cancer. (B) Venn diagram displaying the relationships
between dysregulated genes (A set) and clinical action genes (B set); N is the total gene number. (C) Venn diagram displaying the relationships between dysregulated
genes (A set) and colon cancer-related genes (B set); N is the total gene number. (D) The proportion of up- and downregulated genes in each set.

Frontiers in Genetics | www.frontiersin.org 3 July 2020 | Volume 11 | Article 864

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-00864 July 30, 2020 Time: 18:27 # 4

Zhang et al. TF/Gene Axis in Colon Cancer

FIGURE 2 | Relationships between promoter CpG sites and host genes. (A) The proportion of variance of the first three principal components (PCs). (B) Scatter plot
of PC1 and PC2, and PC2 and PC3. (C) Manhattan plot of genome-wide p-values of CpG–gene pairs; dashed line indicates p = 0.01. (D) The first pie plot shows
the proportions of significant and non-significant CpG–gene pairs. The second pie plot shows the positive and negative pairs derived from the significant pairs.

downregulated genes in these functional gene sets (Fisher’s exact
test, p = 0.73, Figure 1D).

Identification of Correlated
Methylation–Gene Pairs as emQTLs
Next, we sought to explore the relationships between methylation
sites and dysregulated genes. For the 1,439 dysregulated genes,
there were 14,066 CpG sites mapping to 1,314 genes. We next
performed principal component analysis (PCA) using these
14,066 CpG sites, and further examined the characteristics of
colon cancer and adjacent mucosa samples based on the first
three principal components (Figure 2A). Colon cancer and
adjacent mucosa samples have distinct methylation character
based on PCA result (Figure 2B). This suggests that DNA
methylations within the dysregulated gene promoters have
different patterns in cancer samples compared with adjacent
mucosa samples. Previous studies have highlighted the role of
DNA methylation in gene regulation during cancer progression
(Baylin and Jones, 2011). We identified methylation–gene
pairs (Figure 2C) using correlation statistics and denoted
the significantly correlated pairs as emQTLs (Fleischer et al.,
2017). Among the 14,185 methylation–gene pairs, nearly
24% (3,402) pairs had significant relationships (Figure 2D).
Furthermore, most (90%) emQTLs showed negative regulation,
which is consistent with previous findings that DNA methylation
can block promoter activity and repress gene expression
(Jain, 2003).

Characterization of DNA
Methylation-Mediated TF-Gene Axis in
Colon Cancer
DNA methylation sites have been shown to play an important
part in regulating TF binding events (Yao et al., 2015). We
explored the occurrence of TF motifs within emQTLs. During
this process, we required CpG sites to be located within the
motif region and identified 721 TF motifs in 754 CpG sites. We
also expect TF motifs would be more likely to bind emQTLs
compared with all CpG sites in gene promoters, so we calculated
odds ratios for these motifs and identified 223 TF motifs (lower
odds ratio >1.1) in 373 CpG sites. The relationship between each
TF and the corresponding CpG site was determined by Pearson
correlation (FDR < 0.05); in this way, we obtained 33 TF–
CpG pairs, comprising 23 TFs and 31 CpG sites. Furthermore,
we obtained the correlation relationships for TF–gene pairs
(Pearson correlation FDR < 0.05) and identified 29 TF–gene
pairs (Figure 3A). In total, we obtained 26 TF–CpG–triplets,
comprising 19 TFs, 24 CpG sites, and 23 genes. Finally, we
constructed a network based on the relationships among the
identified TFs, CpG sites, and genes (Figure 3B). Network results
showed there were two CpG sites (cg06298519, cg25617725)
within the GFRA1 promoter, cg06298519 was associated with
TF E2F7, while cg25617725 was associated with TF NR3C2
and NR3C1, respectively (Figure 3B). The methylation level
of cg06298519 and cg25617725 were negatively correlated the
expression of GFRA1. TF NR3C2 and NR3C1 all showed positive
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FIGURE 3 | Construction of TF–CpG–gene network for colon cancer. (A) Workflow for identifying TF–CpG–gene relationships. (B) The network of correlated
TF–CpG–gene triplets. (C) Correlation orientation among TF–CpG–gene triplets. (D) Scatter plots show the correlation among E2F7, NR3C2, and NR3C1.

correlation with GFRA1, whereas E2F7 was negatively correlated
with GFRA1 (Figure 3C). This indicates NR3C2 and NR3C1
potentially cooperate with each other to regulate GFRA1. Next,
we tested the expression correlation among E2F7, NR3C2, and
NR3C1 (Pearson correlation test). E2F7 was negatively correlated
with NR3C2 and NR3C1, respectively (Figure 3D). Therefore,
although TF E2F7 display opposite regulation effect on GFRA1
when comparing with NR3C2 and NR3C1, it did not have
a competitive role with them in colon cancer. Dysregulated
genes in this network may be caused by cooperation between
DNA methylation sites and TF binding in their promoters; thus,
determining their combined roles in cancer samples will be
beneficial for colon cancer treatment and prognosis.

Dissection of Prognostic Efficiency of
TF–CpG–Gene Triplets in Colon Cancer
Previous research has identified many prognostic markers for
cancer, including DNA methylation sites and coding genes
(Cheng et al., 2009; Hao et al., 2017). However, the majority
of these studies were limited to one type of molecular
level. In order to evaluate the prognosis of patients in a
more comprehensive way, we analyzed the effects of DNA
methylation sites, TFs, and genes from our dissected triplets

on patient survival time. For each triplet, we used a training
set to construct a risk model (methods, α = 4.18, β = 0.61,
γ = −0.80) based on the risk coefficients by applying a
multivariate Cox proportional regression model. In the training
set, the GLIS1_cg22444507_ITIH5 triplet was significantly
associated with survival time (p < 0.05, Figures 4A,B).
Similarly, in the testing set, patients were assigned risk value
using the same model as the training set and can also be
significantly divided into low- and high-risk groups (p < 0.05,
Figures 4C,D). Furthermore, consider the treatment effect on
survival, we tested the efficiency of GLIS1_cg22444507_ITIH5
triplet on a subset of patients that only received chemotherapy
(n = 152). The result showed GLIS1_cg22444507_ITIH5 was
associated with the survival rate for patients that only received
chemotherapy (p < 0.05, Figures 4E,F). These results suggest the
GLIS1_cg22444507_ITIH5 triplet is the potential biomarker for
colon cancer prognosis.

DISCUSSION

In the present study, we identified 1,439 significantly
differentially expressed genes between colon cancer and adjacent
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FIGURE 4 | Survival analysis of colon cancer samples based on the risk model. (A) Ranked risk scores across colon cancer samples of the training set (top).
Distribution of survival status in colon cancer samples of the training set (bottom). (B) Kaplan–Meier curve for two risk groups of the training set. (C) Ranked risk
scores across colon cancer samples of the testing set (top). Distribution of survival status in colon cancer samples of the testing set (bottom). (D) Kaplan–Meier
curve for two risk groups of the testing set. (E) Ranked risk scores across colon cancer samples of the chemotherapy set (top). Distribution of survival status in colon
cancer samples of the chemotherapy set (bottom). (F) Kaplan–Meier curve for two risk groups of chemotherapy set.
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FIGURE 5 | Biological interpretation of the GLIS1_cg22444507_ITIH5 triplet. (A) The biological mechanism of the GLIS1_cg22444507_ITIH5 triplet. (B) Scatter plot
of expression level of GLIS1 and DNA methylation level of cg22444507 across samples. (C) Scatter plot of DNA methylation of cg22444507 and expression level of
ITIH5 across samples. (D) Scatter plot of expression level of GLIS1 and ITIH5 across samples.

mucosa tissue samples. Of these genes, 19 were identified as
clinical action genes and 25 were shown to be associated with
the development of colon cancer. Differentially expressed genes
may have important roles in tumor progression, diagnosis, and
prognosis (Liang and Pardee, 2003). Mining crucial markers
among these genes and investigating their upstream regulators
will be beneficial for cancer treatment. We mapped CpG sites
into gene promoters and identified emQTLs to further elucidate
the regulatory roles of the corresponding CpG sites. We found
that most of the obtained emQTLs had negative relationships,
indicating that promoter methylation sites mainly repress gene
regulation in colon cancer (Curradi et al., 2002).

DNA methylation of regulatory elements can modulate TF
binding to DNA (Heberle and Bardet, 2019). Detection of TF–
methylation binding events can provide information about the
origin of gene dysregulation; thus, we focused on the emQTLs
and further mining of TF binding events. To analyze the
occurrence of TF-related motifs in each selected CpG site, we

examined the enrichment status of each motif. As expected, the
surrounding sequences of the CpG sites had enriched motifs,
demonstrating that these sites could bind TFs. We further
constructed a TF–CpG–gene network for colon cancer using
transcriptome and methylome datasets. These triplets represent
potential biomarkers for colon cancer and may have applications
in novel treatment strategies.

We initially obtained four TF–CpG–gene triplets that were
significantly associated with patient survival time. Based on the
resulting TF–CpG–gene relationships, we designed a framework
to evaluate the prognostic risk score for colon cancer samples.
One TF–CpG–gene triplet, GLIS1_cg22444507_ITIH5, could
successfully divide colon cancer samples into low- and high-
risk groups. Of this triplet, GLIS1 potentially recognize the
corresponding motif and bind the DNA sequence around
cg22444507 (Figure 5A). GLIS1 binding event may lead to the
decreased DNA methylation level of cg22444507 (Figure 5B).
Besides, DNA methylation of cg22444507 could negatively
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regulate the expression of ITIH5 (Figure 5C). Whereas GLIS1
could promote the expression of ITIH5 (Figure 5D). Therefore,
GLIS1 and cg22444507 potentially cooperate with each other and
affect the expression of ITIH5. ITIH5 (inter-α-trypsin inhibitor
heavy chain 5) has been identified as a novel prognostic marker
for breast cancer, mediated by promoter hypermethylation
(Veeck et al., 2008), and is a novel candidate tumor suppressor
gene in colon cancer (Kloten et al., 2014).

However, due to data limitations, we could not validate the
prognostic efficiency of GLIS1_cg22444507_ITIH5 in external
datasets. We collected data from publicly available Gene
Expression Omnibus (GEO) database, used GLIS1_ITIH5 to
test the effect on survival without DNA methylation data and
found GLIS1_ITIH5 cannot significantly divided patients into
low- and high-risk group (p = 0.60 in GSE39582, p = 0.49 in
GSE17536). This indicates the importance of combining TF, DNA
methylation and gene in survival prediction for colon cancer.
With the generation of the associated data, we will verify the role
of GLIS1_cg22444507_ITIH5 in colon cancer. Overall, our study
demonstrated the role of cooperation between TFs and DNA
methylation in gene regulation in colon cancer, and identified
TF–CpG–gene events that may provide guidance for colon cancer
prognosis and treatment. In further work, we will continue to

study the correlation between TF-CpG-gene network and colon
cancer on a deeper level.
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