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Abstract Genome-wide association study (GWAS) and genomic prediction/selection (GP/GS) are the two essential
enterprises in genomic research. Due to the great magnitude and complexity of genomic and phenotypic data, analytical
methods and their associated software packages are frequently advanced. GAPIT is a widely-used genomic association and
prediction integrated tool as an R package. The first version was released to the public in 2012 with the implementation of
the general linear model (GLM), mixed linear model (MLM), compressed MLM (CMLM), and genomic best linear
unbiased prediction (gBLUP). The second version was released in 2016 with several new implementations, including
enriched CMLM (ECMLM) and settlement of MLMs under progressively exclusive relationship (SUPER). All the GWAS
methods are based on the single-locus test. For the first time, in the current release of GAPIT, version 3 implemented three
multi-locus test methods, including multiple loci mixed model (MLMM), fixed and random model circulating probability
unification (FarmCPU), and Bayesian-information and linkage-disequilibrium iteratively nested keyway (BLINK). Ad-
ditionally, two GP/GS methods were implemented based on CMLM (named compressed BLUP; ¢cBLUP) and SUPER
(named SUPER BLUP; sBLUP). These new implementations not only boost statistical power for GWAS and prediction
accuracy for GP/GS, but also improve computing speed and increase the capacity to analyze big genomic data. Here, we
document the current upgrade of GAPIT by describing the selection of the recently developed methods, their im-
plementations, and potential impact. All documents, including source code, user manual, demo data, and tutorials, are
freely available at the GAPIT website (http://zzlab.net/GAPIT).
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Introduction focuses on finding genetic loci associated with the markers

(typically single nucleotide polymorphisms; SNPs) and

Computer software is essential for genomic research.
Genome-wide association study (GWAS) and genomic
prediction (GP) are the two essential enterprises for
genomic research. For a particular trait of interest, GWAS
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estimating their effects. GP, known as genomic selection
(GS) in the fields of animal and plant breeding, focuses on
the direct prediction of phenotypes by estimating the total
genetic merit underlying the phenotypes [1]. The estimated
genetic merit is also known as the estimated breeding value
(EBV) for animal and plant breeding. In the long term, the
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assessment of all genetic loci underlying a trait may even-
tually lead to highly accurate EBV predictions. In the short
term, methods have been developed to derive EBV even
without identifying the associated genetic loci. Conse-
quently, some statistical methods are shared between GWAS
and GS, and some methods are specific to each. Accordingly,
the software packages are also characterized into GWAS-
specific, GS-specific, or packages that perform both.

For GWAS, many statistical methods and software
packages have been developed to improve computational
efficiency, statistical power, and control of false positives [2].
The most computationally efficient method is the general
linear model (GLM), which can fit population structure or
principal components as fixed effects to reduce the false
positives caused by population stratification [3,4]. To ac-
count for the relationships among individuals within sub-
populations, kinship among individuals was introduced
through the mixed linear model (MLM) by using genetic
markers covering the entire genome [5]. This strategy
serves to further control false positives. To reduce the
computational burden of MLM, many algorithms have been
developed, including efficient mixed model association
(EMMA) [6], EMMA eXpredited (EMMAX), population
parameter previously determined (P3D) [7,8], factored spec-
trally transformed linear mixed models (FaST-LMM) [9],
and genome-wide rapid association using mixed model and
regression (GRAMMAR) [10]. These methods improve
computing efficiency of MLM, but their statistical power
remains the same as MLM.

Enhancement of MLM has also been introduced to im-
prove statistical power. To reduce the confounding bias
between kinship and testing markers, individuals in the
MLM are replaced with their corresponding groups in the
compressed MLM (CMLM), which also improves com-
puting efficiency [8]. Referring to the clustering method to
fit such relationship between individuals, the enriched
CMLM (ECMLM) was developed to further improve sta-
tistical power [11]. Instead of using all markers to derive
kinship among individuals across traits of interest, selec-
tion of the markers according to traits of interest can im-
prove statistical power. One of such methods is settlement
of MLMs under progressively exclusive relationship
(SUPER) [12]. SUPER contains three steps. The first step is
the same as in other models such as GLM or MLM, i.e., to
have an initial assessment of the marker effects. In the
second step, kinship is optimized using maximum like-
lihood in a mixed model with kinship derived from the
selected markers based on their effects and relationship on
linkage disequilibrium (LD). In the third step, markers are
tested again one at a time as final output, with kinship de-
rived from the selected markers except the ones that are in
LD with the testing markers.

Same as the extension of single-marker tests using GLM

to stepwise regression, e.g., GLMSELECT procedure in the
Statistical Analysis System (SAS) [13,14], single-locus
tests using MLM were also extended to multi-locus tests,
named multiple loci mixed model (MLMM) [15]. The most
significant maker is fitted as a covariate in the stepwise
fashion. Iteration stops when variance associated with the
kinship goes to zero, followed by a backward stepwise re-
gression to eliminate the non-significant covariate markers.
In MLMM, both covariate markers and kinship are fitted in
the same MLM. An iterative method named as fixed and
random model circulating probability unification (Farm-
CPU) [16] also uses stepwise strategy to estimate marker
effect. Different from MLMM, FarmCPU iterates back and
forth with two models. One model is an MLM, which
contains the random effect associated with kinship and
covariates such as population structure, but not the associate
markers. The associated markers are optimized to derive the
kinship using maximum likelihood. The other model is a
GLM, which contains a testing marker and covariates such
as population structure. Since a marker test in GLM does
not involve kinship, FarmCPU is not only faster but also
provides higher statistical power than MLMM. The MLM
in FarmCPU is further replaced with GLM to speed up the
computation in the new method named Bayesian-informa-
tion and LD iteratively nested keyway (BLINK) [17]. The
maximum likelihood method in MLM is replaced by the
Bayesian-information content. BLINK eliminates the re-
striction assuming that causal genes are evenly distributed
across the genome by SUPER and FarmCPU method,
consequently boosting statistical power.

For GP/GS, the earliest effort can be traced to the use of
marker-based kinship in the best linear unbiased prediction
(BLUP) method, currently known as genomic BLUP or
gBLUP [18-20]. The method uses all markers covering the
whole genome to define the kinship among individuals to
estimate their EBVs. A different strategy is to estimate the
effects of all markers and sum them together to predict the
total genetic effects of all individuals [21]. To avoid the
overfitting problem in the fixed-effect model, these markers
are fitted as random effects simultaneously. A variety of
restrictions and assumptions are applied to these random
effects and their prior distributions under the Bayesian
theorem. Different methods are named according to dif-
ferent prior probability, such as Bayes A, B, Cpi, and least
absolute selection and shrinkage operator (LASSO) [21].
The case assuming that effects of all markers have the same
distribution with constant prior variance is equivalent to
ridge regression [19,22].

Development of many software packages is accom-
panied by the development of GWAS and GS methods.
Therefore, these methods and software packages are often
given the same name, such as EMMA [6], EMMAX [7],
FaST-LMM [9], FarmCPU [16], and BLINK [17]. Often, to
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compare different statistical methods, users must learn how
to use various software packages. To reduce the multiple
steep learning curves for users, some packages are
developed with more than one statistical method. These
packages include population-based linkage tool (PLINK)
with GLM and logistic regression [23]; trait analysis by
association, evolution and linkage (TASSEL) [24] with
GLM and MLM,; ridge regression BLUP (rrBLUP) with
ridge regression and gBLUP [22]; as well as Bayesian
generalized linear regression (BGLR) with ridge regression,
gBLUP, and Bayesian methods [25]. Also, some packages
have implemented methods for both GWAS and GS so that
users can use one software package to conduct both ana-
lyses. One example is genome association and prediction
integrated tool (GAPIT). GAPIT was initiated with GLM,
MLM, EMMAXx/P3D, CMLM, and gBLUP in version 1
(GAPIT1) [26] and enriched with ECMLM, FaST-LMM,
and SUPER in version 2 (GAPIT2) [27].

Furthermore, with such a variety of methods available,
researchers feel extremely overwhelmed when trying to
choose the best method to analyze their particular data. This
dilemma is especially true when only a subset of these
methods has been compared under conditions less relevant
to a researcher’s specific study conditions. For example,
simulation studies have demonstrated that FarmCPU is
superior to MLMM for GWAS [16]; however, no
comparisons have been conducted between SUPER and
FarmCPU or between SUPER and MLMM. Similarly, for
GS, gBLUP, SUPER BLUP (sBLUP), and compressed
BLUP (cBLUP) have been compared with Bayesian
LASSO [1]. Thus, software packages with features that
allow researchers to conduct comparisons for model
selection — especially under the conditions relevant to their
studies — are critically needed.

To address these critical needs, we continuously strive to
upgrade GAPIT software by adding state-of-the-art GWAS
and GS methods as they become available. Herein, we re-
port our most recent efforts to upgrade GAPIT to version 3
(GAPIT3) by implementing MLMM, FarmCPU, and
BLINK [15-17] for GWAS, as well as sSBLUP and ¢cBLUP
for GS [1]. We also added features that allow users to in-
teract with both the analytical methods and display outputs
for comparison and interpretation. Users’ prior knowledge
can now be used to enhance method selection and unfold the
discoveries hidden by static outputs.

Method

Architecture of GAPIT3

To implement three multi-locus GWAS methods (MLMM,
FarmCPU, and BLINK) and two new methods of GS
(cBLUP and sBLUP), we redesigned GAPIT with a new

architecture to easily incorporates an external software
package. In the order of execution, GAPIT is compart-
mentalized into five modules: 1) data and parameters (DP);
2) quality control (QC); 3) intermediate components (IC);
4) sufficient statistics (SS); and 5) interpretation and
diagnoses (ID). Any of these modules are optional and can
be skipped. However, GAPIT3 does not allow modules to
be executed in reverse order (Figure 1).

The DP module contains functions to interpret input data,
input parameters, genotype format transformation, missing
genotype imputation, and phenotype simulations. The types
of input data and their labels are the same as previous
versions of GAPIT, including phenotype data (Y); genotype
data in either haplotype map (HapMap) format (G), or nu-
meric data format (GD) with genetic map (GM); covariate
variables (CV), and kinship (K). The input parameters in-
clude those from previous GAPIT versions plus the para-
meters for the new GWAS and GS methods and the
enrichments associated with the other four modules. Two
genetic models, additive and dominant, are available to
transform genotypes in HapMap format into numeric for-
mat. Under the additive model, homozygous genotypes with
recessive allele combinations are coded as 0, homozygous
genotypes with dominant allele combinations are coded as
2, and heterozygous genotypes are coded as 1. Under the
dominant model, both types of homozygous genotypes are
coded as 0 and heterozygous genotypes are coded as 1.
When genotype, heritability, and number of quantitative
trait nucleotides (QTNs) are provided without phenotype
data, GAPIT3 conducts a phenotype simulation from the
genotype data.

By default, GAPIT assumes that users would provide
quality data and thus does not perform data quality control.
When the QC option is turned on, GAPIT conducts QC on
imputing missing genotypes, filtering markers by minor
allele frequency (MAF), sorting individuals in phenotype
and genotype data, as well as matching the phenotype and
genotype data together. GAPIT provides multiple options
for genotype imputation, including major homozygous
genotypes and heterozygous genotypes.

In the IC module, GAPIT provides comprehensive
functions to generate intermediate graphs and reports, in-
cluding phenotype distribution, MAF distribution, hetero-
zygosity distribution, marker density, LD decay, principal
components, and kinship. These reports and graphs help
users to diagnose and identify problems within the input
data for QC. For example, an associated marker should be
further investigated if it has low MAF.

The SS module contains multiple adapters that generate
SS for existing methods in the previous versions of GAPIT
and new external methods. The statistics include the
estimated effect, P values of all markers for GWAS, and
predicted phenotypes of individuals for GS. The methods in
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Figure 1 GAPIT essential modules and adapters to external packages

GAPIT version 3 was designed to have five sequential modules and multiple adapters that connect external software packages. The first module (DP) is
responsible to process input data and parameters from users. The second module (QC) is responsible for quality control, including missing genotype
imputation. The third module (IC) provides intermediate results, including MAF, PCA, kinship, LD analysis, and maker density distribution. The fourth
module (SS) contains multiple adapters that convert input data into sufficient statistics, including maker effects, P values, and predicted phenotypes. The
current adapters include GLM, MLM, CMLM, SUPER, MLMM, FarmCPU, BLINK, gBLUP, ¢cBLUP, and sBLUP. The fifth module (ID) provides the
interpretation and diagnosis on the final results, including P values illustrated as Manhattan plots and QQ plots. GAPIT, genomic association and prediction
integrated tool; DP, data and parameters; QC, quality control; IC, intermediate components; MAF, minor allele frequency; PCA, principal component
analysis; LD, linkage disequilibrium; GLM, general linear model; MLM, mixed linear model; CMLM, compressed MLM; SUPER, settlement of MLM
under progressively exclusive relationship; MLMM, multiple loci mixed model; FarmCPU, fixed and random model circulating probability unification;
BLINK, Bayesian-information and LD iteratively nested keyway; gBLUP, genomic best linear unbiased prediction; cBLUP, compressed BLUP; sBLUP,

SUPER BLUP; QQ, quantile-quantile.

the previous versions include GLM, MLM, CMLM,
ECMLM, SUPER, and gBLUP. The new adapters
developed in GAPIT3 include MLMM, FarmCPU, BLINK,
cBLUP, and sBLUP.

The ID module contains the static reports developed in
previous GAPIT versions and the new interactive reports
generated in GAPIT3. The interactive reports include the
rotational 3D plot of the first three principal components,
display of marker information on Manhattan plots and
quantile-quantile (QQ) plots, and individual information on
the phenotype plots (predicted vs. observed). The marker
information includes maker name, chromosome, position,
MAF, P value, and estimated effect. The individual in-
formation covers the individual name and the values for
predicted and observed phenotypes.

Implementation of MLMM and FarmCPU

Both MLMM and FarmCPU have source code available on
their respective websites. These source codes are directly
integrated into the GAPIT source code, so users are only

required to install GAPIT3, not three packages separately
(GAPIT3, MLMM, and FarmCPU). Integrating MLMM
and FarmCPU source code into GAPIT source code lowers
the risk of breaking the linkage between GAPIT and these
two software packages when they release updates. The
disadvantage in doing so is that MLMM and FarmCPU
source codes remain static in GAPIT. To compensate for
this disadvantage, the GAPIT team periodically checks for
updates of these two packages and updates the GAPIT
source code accordingly.

Implementation of BLINK R and C versions

BLINK R version is released as an executable R package on
GitHub. GAPIT accesses BLINK R as an independent
package. Similarly, BLINK C version is released as an
executable C package on GitHub. To access BLINK C,
GAPIT needs the executable program in the working
directory. To avoid the potential risk of breaking the linkage
between GAPIT and BLINK, the GAPIT team maintains a
close connection with the BLINK team for updates. BLINK
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C conducts analyses on binary files for genotypes. The
binary files not only make BLINK C faster, but also provide
the capacity to process big data with limited memory.
Running BLINK C through GAPIT requires nonbinary files
first, then BLINK C is used to convert them to binary. For
big data, we recommend directly accessing BLINK C to
obtain P values and using the GAPIT ID module to interpret
and diagnose the results.

Implementation of cBLUP and sBLUP

cBLUP and sBLUP were developed from the corresponding
GWAS methods: CMLM and SUPER, respectively. Since
CMLM and SUPER have already been implemented in
GAPIT GAPIT1 and GAPIT2, respectively, implementa-
tion of cBLUP and sBLUP is more straightforward than
other implementations. For ¢cBLUP, the solutions of the
random group effects in CMLM are used as the genomic
EBVs for the corresponding individuals. For sBLUP, the
calculation is even easier than the SUPER GWAS method.
For the SUPER GWAS method, a complementary kinship is
used for a testing SNP that is in LD with some of the as-
sociated SNPs. For sBLUP, all associated markers are used
to derive the kinship and subsequently to predict the EBVs
and phenotype values of individuals. No operation for the
complementary process is necessary.

Implementation of interactive reports

Two types of interactive reports are included in GAPIT3.
First, users can now interact with Manhattan plots, QQ
plots, and scatter plots of predicted vs. observed phenotypes
to extract information about markers and individuals. For
example, by moving the cursor or pointing device over a
data point, users can find names and positions of markers, or
names and phenotypes of individuals. An R package plotly
is used to store this type of information in the format of
HTML files, which can be displayed by web browsers.
Second, users can rotate graphs such as 3D principle com-
ponent analysis (PCA) plots using a pointing device such as
mouse or trackpad. The R packages (rgl and rglwidget) are
jointly used to plot 3D figures.

Percentage of variance explained

In GAPIT3, the percentage of total phenotypic variance
explained (PVE) by significantly associated markers
(P values < Bonferroni threshold) is evaluated. A Bonfer-
roni multiple test threshold is used to determine sig-
nificance. The associated markers are fitted as random
effects in a multiple random variable model. The model also
include other fixed effects that are used in GWAS to select
the associated markers. The multiple random variable

model is analyzed using an R package, Ime4, to estimate the
variance of residuals and the variance of the associated
markers. The percentage explained by the markers are cal-
culated as their corresponding variance divided by the total
variance, which is the sum of residual variance and the
variance of the associated markers.

Results

GAPIT is a widely used software package. GAPIT website
(http://zzlab.net/GAPIT) has received over 34,000 page-
views since 2016. The GAPIT forum (https://groups.goo-
gle.com/g/gapit-forum) on Google contains ~ 2900 posts
that cover ~ 800 topics (regarding the usage, functions,
bugs, and fixes) and had been viewed ~ 74,000 times by the
GAPIT community between 2012 and 2019 (Figures S1 and
S2). Meanwhile, articles on GAPIT1 and GAPIT2 received
1250 and 203 citations, respectively. The GAPIT3 project
started after the publication of GAPIT2 in 2016. Since then,
we have implemented three multi-locus methods for GWAS
and two methods for GS (Figure 2). In addition, we have
enhanced the outputs of GAPIT to improve their quality,
and to help users to more easily diagnose the data quality,
compare analytical methods, and interpret the results.

Implementation of GWAS and GS methods

GAPIT1 was initiated with the single-locus test based on the
GLM, MLM, and CMLM. The computation complexity of
MLM is cubic to the number of individuals. Thus, com-
pression of individuals to groups not only improves statis-
tical power, but also dramatically reduces computing time
(Figure 2A). To improve the computing speed of MLM,
GAPIT2 implemented FaST-LMM, which uses a set of
markers to define kinship without performing the actual
calculations.

All GWAS methods implemented in GAPITI and
GAPIT2 are based on the single-locus testing. In GAPIT3,
we implemented all three of multi-locus test methods
(MLMM, FarmCPU, and BLINK). We simulated 100 traits
and ran four methods (GLM and MLM are single-locus
methods, FarmCPU and BLINK are multi-locus methods).
Power against false discover rate (FDR) and power against
type I error are used to compare the performance differences
between single-locus and multi-locus methods (Figure S3).

For GP/GS, GAPITI and GAPIT2 implement gBLUP
using MLM. This method works well for traits controlled by
many genes, but not as well for traits controlled by a small
number of genes. To overcome this difficulty, the updated
GAPIT3 implements the sSBLUP method, which is superior to
gBLUP for traits controlled by a small number of genes [1].
Both gBLUP and sBLUP have a disadvantage for traits with
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Figure 2 Statistical methods implemented in previous and current versions of GAPIT

The statistical methods are characterized by statistical power and computing efficiency (A) for GWAS and by genetic architecture of targeting traits for GS
with respect to heritability and complexity (B). The GWAS methods include GLM, MLM, CMLM, FaST-LMM, FaST-LMM-Select, ECMLM, SUPER,
MLMM, FarmCPU, and BLINK. The GS methods include the regular gBLUP, cBLUP, and sBLUP. Methods implemented in the initial version of GAPIT,
newly in GAPIT2, and newly in the current GAPIT3 are indicated with letters in black, blue and red, respectively. GWAS, genome-wide association study;
GS, genomic selection; FaST-LMM, factored spectrally transformed linear mixed models; FaST-LMM-Select, FaST-LMM select; ECMLM, enriched CMLM.

low heritability. Therefore, GAPIT3 implements the cBLUP
method [1], which is superior to both gBLUP and sBLUP
for traits with low heritability (Figure 2B).

The new GAPIT3 creates two types of Manhattan plots,
the standard orthogonal type with x- and y-axes (Figure
S4A), and a circular type (Figure S4B) that takes less dis-
play space. The overlap in results between multiple methods
is displayed as either solid or dashed vertical lines that will
extend through the Manhattan plots for all methods (Figure
S4). A solid vertical line indicates that the overlap of sig-
nificant SNP is shared by more than two methods and a
dashed vertical line indicates the overlap only occurs be-
tween two methods. When multiple traits are analyzed with
a single method, the trait results are displayed in the same
style as multiple methods. When both multiple methods and
multiple traits are employed, the method plots are nested
within the trait plots. We summarized the methods para-
meters and steps in the new GAPIT3 (Table 1).

Adaptation of existing GAPIT users

Users already familiar with GAPIT software have
experienced no difficulty in migrating to GAPIT3.
Experiences of using other related software packages also
help to use GAPIT. GAPIT generated identical results for
the same methods implemented in the separated packages
(Figure 3). By default, GAPIT3 conducts GWAS using the

BLINK method, which has the highest statistical power and
computing efficiency among all methods implemented.
Users can change the default to other methods by including
a model statement. For example, to use the FarmCPU
method, users would include the statement “model =
"FarmCPU"” to override the default. The model options
include GLM, MLM, CMLM, ECMLM, FaST-LMM,
FaST-LMM-Select, SUPER, MLMM, FarmCPU, and
BLINK.

GAPIT can also conduct GWAS and GS with multiple
methods in a single analysis, allowing comparisons among
methods for selection. For example, when the five methods
(GLM, MLM, CMLM, FarmCPU, and BLINK) are used on
maize flowering time in the demo data, inflation of P values
and power of the analyses can be compared with Manhattan
plots side-by-side (Figure S4). All plots for the multiple
methods showed an interconnected vertical line that runs
through chromosome 8. The results showed that the GLM
method identified association signals above the Bonferroni
threshold (horizontal solid green line in each plot).
However, the association signals were inflated across the
genome (the red dots on the QQ plots in the Figure S4C).
BLINK method also identified two associated markers, in-
cluding the marker close to a flowering time gene, VGT1 on
chromosome 8. The QQ plot suggests that 99% of the
markers have P values below the expected P values, which
are indicated by the solid red line.
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Assessment of explained variance approach is debatable because the sum of these proportions
can exceed 100% when multiple markers are tested in-
dependently. In GAPIT2, this output is suppressed.
However, we received substantial demands from GAPIT

users for such output because some journals and reviewers

GAPIT1 outputs the proportion of the regression sum of
squares of testing markers to the total sum of squares as the
estimate of variance explained by the markers. This

Table 1 Characteristics of methods in GAPIT3

Method Testing marker No. of steps Model Kinship

GLM Single locus One Fixed NA

MLM Single locus One Mixed All markers

CMLM Single locus One Mixed Individuals clustered into groups

ECMLM Single locus One Mixed Individuals clustered into groups by enrichment
SUPER Single locus Two Mixed All marker except pseudo QTNs

MLMM Multiple loci Iterative Mixed All markers

FarmCPU Multiple loci Iterative Fixed and mixed Pseudo QTNs

BLINK Multiple loci Iterative Fixed NA

gBLUP NA One Mixed All markers for all individuals

cBLUP NA One Mixed Individuals clustered into groups with all markers
sBLUP NA One Mixed Pseudo QTNs

Note: NA, not applicable; GLM, general linear model; MLM, mixed linear model; CMLM, compressed MLM; ECMLM, enrichment CMLM; SUPER, settlement of MLMs
under progressively exclusive relationship; MLMM, multiple loci MLM; FarmCPU, fixed and random model circulating probability unification; BLINK, Bayesian-information
and linkage-disequilibrium iteratively nested keyway; gBLUP, genomic best linear unbiased prediction; cBLUP, compressed BLUP; sBLUP, SUPER BLUP; QTN, quantitative
trait nucleotide.
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Figure 3 Comparison of P values and predicted phenotype values using GAPIT and other software packages

The comparison was conducted on a trait simulated from the genotypes of 3093 SNPs on 281 maize lines (GAPIT demonstration datasets, https://zzlab.net/
GAPIT/GAPIT_Tutorial_Data.zip). The simulated trait had 75% heritability with 20 QTNs. P values obtained are log transformed and compared between
GAPIT (vertical axis) and four software packages (horizontal axis) for GWAS analysis that were run as standalone packages, including FarmCPU,
MLMM, BLINK R version, and BLINK C version. Similarly, predicted phenotype values using GAPIT are compared with those predicted using four
software packages that were run as standalone packages, including rrBLUP, EMMAREML, BGLR, and GCTA. QTN, quantitative trait nucleotide;
rrBLUP, ridge regression BLUP; EMMAREML, efficient mixed model with restricted maximum likelihood; BGLR, Bayesian generalized linear re-
gression; GCTA, genome-wide complex trait analysis.
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require this information. To solve both of these problems,
GAPIT3 conducts additional analyses using all associated
markers as random effects. The proportion of variance of a
marker over the total variance, including the residual
variance, is reported as the proportion of total variance
explained by the markers. This guarantees the sum of pro-
portions of variance explained by the associated markers is
below 100%. The non-associated markers are considered to
contribute nothing to the total variance. The percentage of
PVE by a marker is correlated with its MAF and magnitude
of marker effect. These relationships are demonstrated by
scatter plots and a heatmap (Figure 4). The heat map in-
dicates which markers explain a high proportion of the
variance due to either a high MAF or a large magnitude of
effect, or both.

Enriched report output

When viewing the output graphics, such as Manhattan plots,
QQ plots, and scatter plots of predicted vs. observed phe-
notypes, users are interested in the names and properties of
markers and individuals. Finding this information usually
requires computer programming to extract data from
multiple resources, which includes searching files for P
values, genotypes, estimated effects, and MAFs. With

GAPIT3, in the interactive result, all information can be
found by moving the cursor over the data point of interest
(Figure 5, Figure S5). For example, on the Manhattan and
QQ plots, when the cursor moves over a data point, the
marker information is displayed. The Manhattan plot also
contains a chromosome legend. Chromosomes can be hid-
den or displayed with different mouse clicking patterns.

Computing time

GAPIT3 newly implements three multi-locus test methods
(MLMM, FarmCPU, and BLINK) for GWAS and two
methods (¢cBLUP and sBLUP) for GS. All methods (GWAS
and GS) have linear computing time to number of markers
(Figure 6, Figure S6). However, they have mixed com-
puting complexity to number of individuals. Most of these
methods have computing time complexity that are cubic to
number of individuals, including gBLUP and cBLUP for
GS, and MLMM for GWAS. For execution of gBLUP,
genome-wide complex trait analysis (GCTA) was vigorous
under all conditions to other packages, including BGLR,
efficient mixed model with restricted maximum likelihood
(EMMREML), GAPIT, and rrfBLUP. All of these packages
have linear computing time to number of markers, and
nonlinear time to number of individuals. Their order
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Figure 4 PVE by associated markers

GAPIT 3 provides estimates of the percentage of PVE by associated markers. The proportion is a function of both magnitude of marker effects and MAF.
Larger marker effects and larger MAF contribute to larger proportion of phenotypic variance explained. This relationship is demonstrated on a trait
simulated from the mouse genotypes of 12,564 SNPs on 1440 individuals (available at http://gscan.well.ox.ac.uk). The simulated trait had 75% heritability
with 20 QTNs. A. Markers with large magnitude that explain little phenotypic variances due to low MAF. B. Markers with large MAF that explain little
phenotypic variances due to small effect. C. Markers away from the center where both MAF and marker effect are zeros that explain more variation. PVE,

phenotypic variance explained.
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Figure 5 Interactive extraction of information for markers and individuals

GAPIT3 outputs two interactive HTML files to help user to extract information of markers on Manhattan plots (A) and QQ plots (B). The interactive plots
are demonstrated on a trait simulated from the mouse genotypes with 12,564 SNPs on 1440 individuals (available at http://gscan.well.ox.ac.uk). The
simulated trait had 75% heritability with 20 QTNs. When the cursor is moved over a dot, the marker information is displayed instantly, including name, P
values, chromosome, position, and MAF. Similarly, a HTML file is generated to display the predicted phenotypes against observed phenotypes (C). When
the cursor is moved over a dot, the individual information is displayed instantly, including name, as well as predicted and observed phenotypic values.
When multiple prediction methods are used, individuals are displayed as different colors for different methods, such as gBLUP, cBLUP, and sBLUP.

changes depending on the number of individuals due to
different setting cost. With number of markers duplicated
four times and number of individuals duplicated at multiple
levels (12x, 20x, and 28x), the computing time shows
nonlinear relationship with the number of individuals, ex-
cept the GCTA package (Figure 6A). For small number of
individuals (1124), BGLR was the slowest. When number
of individuals is increased to three-fold (1124 x 3), rBLUP
becomes the slowest (Figure 6B and C). Therefore, GCTA
is recommended for gBLUP, and GAPIT is preferred over
other methods for using cBLUP and sBLUP. There are only
two methods that have linear computing time to number of
individuals: FarmCPU and BLINK (Figure 6D and E).
There is a modest increase in computing time when using
MLMM, FarmCPU, and BLINK packages within GAPIT,
compared to using these packages directly. There are two
versions for BLINK methods: C version and R version.
Previous studies have demonstrated that the C version is
much faster than the R version when they are operated as

standard alone [17]. When they are executed within GAPIT,
this situation is reversed. This is because GAPIT uses the
input and output directly for the R version, whereas the
input and output data have to be transformed between
memory and disk, when GAPIT executes C version.

Discussion

Comprehensive and specific software packages

Developments of sophisticated and computationally effi-
cient methods are essential for genomic research. Software
initiation, upgrade, and maintenance are equally crucial for
turning genomic data into knowledge. These software
packages can be classified into two categories: specific and
comprehensive. Due to the limitation of time and resources,
the specific software packages target the implementation of
specific methods with a direct link between input data and
output, mainly the P values. This type of software package
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Figure 6 Comparison of computing time using multiple packages of GS and GWAS within and outside of GAPIT

The extra computing time involves format transformation of input data and result presentation. Computing time is compared among five packages for GP,
including GAPIT, GCTA, BGLR, rrBLUP, and EMMAREML. gBLUP was selected in GAPIT. With number of markers duplicated four times and number
of individuals duplicated at multiple levels (12%, 20%, and 28x), the computing time shows nonlinear relationship to number of individuals, except the
GCTA package (A). With number of individuals duplicated 4 times and number of markers duplicated at multiple levels (12%, 20%, 28%, and 36x), the
computing time shows linear relationship to number of marker for all package. The numbers of individuals change the rank of the packages. BGLR is the
slowest with fewer individuals (B) and rrBLUP becomes the slowest with more individuals (C). Three GWAS packages (FarmCPU, BLINK C version, and
BLINK R version) were compared by running them within GAPIT and outside of GAPIT as standalone. The comparison was conducted on a synthetic trait
simulated from the maize genotypes (281 individuals and 3093 markers, GAPIT demonstration datasets, https://zzlab.net/GAPIT/GAPIT Tutorial Data.
zip). The trait was simulated with 75% heritability controlled by 20 QTNs. To demonstrate the impact on computing time, the data was duplicated for

markers (D) and individuals (E) at 8, 12, 20, 28, and 36 multiples.

does not provide comprehensive functions for input data
diagnosis or output result interpretation. Consequently,
users must rely on other types of software packages (com-
prehensive) to complete their analyses. The learning curves
for the two types of software packages, specific and com-
prehensive, vary across users and packages. Some users are
eager to learn new software packages, especially the spe-
cific software packages that are more straightforward. In
contrast, some users are comfortable with their existing
knowledge and skills, especially when they have mastered a
particular comprehensive software package. GAPIT3
targets both types of users.

Selection of GWAS and GS methods

Although the current architecture of GAPIT3 makes it easy
to implement an R package, selection of methods is critical
for boosting statistical power and accuracy for GWAS and

GS. We used the gaps of implementations and performance
as the criteria for the selection of these packages. The
method of fitting all markers simultaneously as random
effects as an alternative to gBLUP for GS was introduced in
2001 [21]. The ridge regression and Bayes theory-based
methods (e.g., Bayes A, B, and CPi) can be used not only to
predict EBVs and phenotypes of individuals by summing
the effects of all markers, but also to map genetic markers
associated with phenotypes of interest [28].

For the conventional method of single-locus test, many
advanced methods have been developed, including
incorporation of population structure [3], kinship [29],
compressed kinship [8], and complementary kinship
[12,30]. Many software packages have also been developed for
these specific methods, including EMMA, EMMAXx, FaST-
LMM, genome modelling and model annotation (GeMMA),
and genome-wide association analysis between quantitative or
binary traits and SNPs tool (GenABEL) [31-33].
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Comprehensive software packages, including PLINK,
TASSEL, and GAPIT, have also been developed to imple-
ment many of these methods. The multi-locus tests evolve
over time to use the format of stepwise regression with a
fixed effect model such as the SAS GLMSELECT proce-
dure [14,34], or with a mixed model such as MLMM [15].
With the exception of GLMSELECT by SAS, multi-locus
methods for GWAS have yet to be implemented in a com-
prehensive software package. Consequently, we choose to
implement FarmCPU and BLINK in GAPIT3 to boost
statistical power for GWAS.

For GS, GAPIT1 implemented gBLUP, which is superior
for traits controlled by a large number of genes, but not as
effective for traits controlled by a small number of genes. In
GAPIT3, we implemented a newly developed method,
sBLUP, which is superior to gBLUP for such traits. The
common problem for both gBLUP and sBLUP is their lack
of effectiveness when executing GS for traits with low
heritability. Therefore, we implemented a newly developed
method, cBLUP, which is superior for traits with low
heritability in the updated GAPIT3. By doing so, GAPIT3
performs well across the full spectrum of traits controlled by
either a large or small number of genes and with either high
or low heritability.

Operation of GAPIT

GAPIT is an R package executed through the command-
line interface (CLI), which is efficient for repetitive ana-
lyses such as multiple traits or using multiple models.
However, CLI is not as straightforward as the software
packages equipped with a graphical user interface (GUI),
such as TASSEL and intelligent prediction and association
tool (iPAT) [35]. Instead, GAPIT requires users to input
some keywords in specific formats. We provide ~ 20 tu-
torials on the GAPIT website showing how to efficiently
use the CLI. Users can conduct most of the analyses by
copying/pasting with minimal modifications such as file
names and paths.

Limitations

As an R package, GAPIT faces challenges when dealing
with big data. Most of the analyses using GAPIT require
data to be loaded into memory. However, the FarmCPU can
use an R package (bigmemory) to import big data and carry
out all analyses into the final P values. The GAPIT team is
currently working on this feature. For users with big data, a
viable option is to run GAPIT with the BLINK C version,
which only reads data pertinent to the analyses from a
specific section on the disk/drive. The only requirement is
an executable file of the BLINK C version in the working
directory of R.

Conclusion

GAPIT has served the genomic research community for
eight years since 2012 as a genomic association and pre-
diction tool in the form of an R package. The software is
extensively used worldwide, as indicated by over 1400 ci-
tations of two publications (Bioinformatics in 2012 and The
Plant Genome in 2016), ~ 2900 posts on GAPIT forum,
and ~ 34,000 page views on the GAPIT website. In the new
GAPIT3, we implemented three multi-locus test methods
(MLMM, FarmCPU, and BLINK) for GWAS and two more
variations of BLUP (cBLUP and sBLUP) for GP. GAPIT3
also includes enhancements to the analytical reports as part
of our continuous efforts to build upon the comprehensive
output reports developed in GAPIT1 and GAPIT2. These
enhancements could assist users in the interpretation of input
data and analytical results. Valuable new features include the
users’ ability to instantly and interactively extract informa-
tion for individuals and markers on Manhattan plots, QQ
plots, and scatter plots of predicted vs. observed phenotypes.

Availability

The GAPIT source code, demo script, and demo data are
freely available on the GAPIT website (www.zzlab.net/
GAPIT).

CRediT author statement

Jiabo Wang: Software, Data curation, Writing - original
draft, Visualization, Testing, Validation. Zhiwu Zhang:
Conceptualization, Methodology, Supervision, Writing -
review & editing. Both authors have read and approved the
final manuscript.

Competing interests
The authors have declared no competing interests.
Acknowledgments

The authors thank Linda R. Klein for helpful comments and
editing the manuscript. This project was partially funded by
National Science Foundation, the United States (Grant Nos.
DBI 1661348 and ISO 2029933), the United States De-
partment of Agriculture—National Institute of Food and
Agriculture, the United States (Hatch Project No. 1014919,
Grant Nos. 2018-70005-28792, 2019-67013-29171, and
2020-67021-32460), the Washington Grain Commission,
the United States (Endowment and Grant Nos. 126593 and
134574), Sichuan Science and Technology Program, China


www.zzlab.net/GAPIT
www.zzlab.net/GAPIT

640

Genomics Proteomics Bioinformatics 19 (2021) 629—-640

(Grant Nos. 2021YJ0269 and 2021YJ0266), the Program
of Chinese National Beef Cattle and Yak Industrial
Technology System, China (Grant No. CARS-37), and
Fundamental Research Funds for the Central Universities,

China

(Southwest Minzu University, Grant No.

2020NQN26).

Supplementary material

Supplementary data to this article can be found online at
https://doi.org/10.1016/j.gpb.2021.08.005.

ORCID

0000-0002-1386-0435 (Jiabo Wang)
0000-0002-5784-9684 (Zhiwu Zhang)

References

(1]

[10]

[11]

[12]

[13]

[14]

Wang J, Zhou Z, Zhang Z, Li H, Liu D, Zhang Q, et al. Expanding
the BLUP alphabet for genomic prediction adaptable to the genetic
architectures of complex traits. Heredity (Edinb) 2018;121:648-62.
Xiao Y, Liu H, Wu L, Warburton M, Yan J. Genome-wide asso-
ciation studies in maize: praise and stargaze. Mol Plant
2017;10:359-74.

Pritchard JK, Stephens M, Donnelly P. Inference of population
structure using multilocus genotype data. Genetics 2000;155:945—
59.

Pritchard JK, Stephens M, Rosenberg NA, Donnelly P. Associa-
tion mapping in structured populations. Am J Hum Genet
2000;67:170-81.

Zhu X, Li S, Cooper RS, Elston RC. A unified association analysis
approach for family and unrelated samples correcting for stratifi-
cation. Am J Hum Genet 2008;82:352-65.

Kang HM, Zaitlen NA, Wade CM, Kirby A, Heckerman D,
Daly MJ, et al. Efficient control of population structure in model
organism association mapping. Genetics 2008;178:1709-23.

Kang HM, Sul JH, Service SK, Zaitlen NA, Kong SY, Freimer
NB, et al. Variance component model to account for sample
structure in genome-wide association studies. Nat Genet
2010;42:348-54.

Zhang Z, Ersoz E, Lai CQ, Todhunter RJ, Tiwari HK, Gore MA,
et al. Mixed linear model approach adapted for genome-wide as-
sociation studies. Nat Genet 2010;42:355-60.

Lippert C, Listgarten J, Liu Y, Kadie CM, Davidson RI, Hecker-
man D. FaST linear mixed models for genome-wide association
studies. Nat Methods 2011;8:833-5.

Svishcheva GR, Axenovich TI, Belonogova NM, van Duijn CM,
Aulchenko YS. Rapid variance components—based method for
whole-genome association analysis. Nat Genet 2012;44:1166—70.
Li M, Liu X, Bradbury P, Yu J, Zhang YM, Todhunter RJ, et al.
Enrichment of statistical power for genome-wide association stu-
dies. BMC Biol 2014;12:73.

Wang Q, Tian F, Pan Y, Buckler ES, Zhang Z. A SUPER power-
ful method for genome wide association study. PLoS One 2014;9:
e107684.

Wells CR. SAS for mixed models: introduction and basic appli-
cations. Am Stat 2021;75:1-48.

Buckler ES, Holland JB, Bradbury PJ, Acharya CB, Brown PJ,

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

Browne C, et al. The genetic architecture of maize flowering time.
Science 2009;325:714-8.

Segura V, Vilhjidlmsson BJ, Platt A, Korte A, Seren U, Long Q, et
al. An efficient multi-locus mixed-model approach for genome-
wide association studies in structured populations. Nat Genet
2012;44:825-30.

Liu X, Huang M, Fan B, Buckler ES, Zhang Z. Iterative usage of
fixed and random effect models for powerful and efficient genome-
wide association studies. PLoS Genet 2016;12:¢1005767.

Huang M, Liu X, Zhou Y, Summers RM, Zhang Z. BLINK: a
package for the next level of genome-wide association studies with
both individuals and markers in the millions. Gigascience
2019;8:1-12.

Bernardo R. Prediction of maize single-cross performance using
RFLPs and information from related hybrids. Crop Sci 1994;34:20-5.
Vanraden PM. Efficient methods to compute genomic predictions. J
Dairy Sci 2008;91:4414-23.

Zhang Z, Todhunter RJ, Buckler ES, Van Vleck LD. Technical
note: use of marker-based relationships with multiple-trait deriva-
tive-free restricted maximal likelihood. J Anim Sci 2007;85:881-5.
Meuwissen THE, Hayes BJ, Goddard ME. Prediction of total ge-
netic value using genome-wide dense marker maps. Genetics
2001;157:1819-29.

Endelman JB. Ridge regression and other Kernels for genomic
selection with R package rrfBLUP. Plant Genome 2011;4:250-5.
Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR,
Bender D, et al. PLINK: a tool set for whole-genome association
and population-based linkage analyses. Am J Hum Genet
2007;81:559-75.

Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y,
Buckler ES. TASSEL: software for association mapping of com-
plex traits in diverse samples. Bioinformatics 2007;23:2633-5.
Pérez P, de los Campos G. Genome-wide regression and prediction
with the BGLR statistical package. Genetics 2014;198:483-95.
Lipka AE, Tian F, Wang Q, Peiffer J, Li M, Bradbury PJ, et al.
GAPIT: genome association and prediction integrated tool. Bioin-
formatics 2012;28:2397-9.

Tang Y, Liu X, Wang J, Li M, Wang Q, Tian F, et al. GAPIT
version 2: an enhanced integrated tool for genomic association and
prediction. Plant Genome 2016;9:1-9.

Habier D, Fernando RL, Kizilkaya K, Garrick DJ. Extension of the
bayesian alphabet for genomic selection. BMC Bioinformatics
2011;12:1-2.

Yu J, Pressoir G, Briggs WH, Vroh Bi I, Yamasaki M, Doebley JF,
et al. A unified mixed-model method for association mapping that
accounts for multiple levels of relatedness. Nat Genet
2006;38:203-8.

Listgarten J, Lippert C, Heckerman D. FaST-LMM-Select for ad-
dressing confounding from spatial structure and rare variants. Nat
Genet 2013;45:470-1.

Wang MH, Cordell HJ, Van Steen K. Statistical methods for gen-
ome-wide association studies. Semin Cancer Biol 2019;55:53-60.
Aulchenko YS, Ripke S, Isaacs A, van Duijn CM. GenABEL: an
R library for genome-wide association analysis. Bioinformatics
2007;23:1294-6.

Lee DA, Rentzsch R, Orengo C. GeMMA: functional subfamily
classification within superfamilies of predicted protein structural
domains. Nucleic Acids Res 2009;38:720-37.

Knab AM, Nieman DC, Sha W, Broman-Fulks JJ, Canu WH.
Exercise frequency is related to psychopathology but not neuro-
cognitive function. Med Sci Sports Exerc 2012;44:1395-400.
Chen CJ, Zhang Z. iPat: intelligent prediction and association tool
for genomic research. Bioinformatics 2018;34:1925-7.


https://doi.org/10.1016/j.gpb.2021.08.005
https://doi.org/10.1038/s41437-018-0075-0
https://doi.org/10.1016/j.molp.2016.12.008
https://doi.org/10.1093/genetics/155.2.945
https://doi.org/10.1086/302959
https://doi.org/10.1016/j.ajhg.2007.10.009
https://doi.org/10.1534/genetics.107.080101
https://doi.org/10.1038/ng.548
https://doi.org/10.1038/ng.546
https://doi.org/10.1038/nmeth.1681
https://doi.org/10.1038/ng.2410
https://doi.org/10.1186/s12915-014-0073-5
https://doi.org/10.1371/journal.pone.0107684
https://doi.org/10.1126/science.1174276
https://doi.org/10.1038/ng.2314
https://doi.org/10.1371/journal.pgen.1005767
https://doi.org/10.1093/gigascience/giy154
https://doi.org/10.2135/cropsci1994.0011183X003400010003x
https://doi.org/10.3168/jds.2007-0980
https://doi.org/10.3168/jds.2007-0980
https://doi.org/10.2527/jas.2006-656
https://doi.org/10.1093/genetics/157.4.1819
https://doi.org/10.3835/plantgenome2011.08.0024
https://doi.org/10.1086/519795
https://doi.org/10.1093/bioinformatics/btm308
https://doi.org/10.1534/genetics.114.164442
https://doi.org/10.1093/bioinformatics/bts444
https://doi.org/10.1093/bioinformatics/bts444
https://doi.org/10.3835/plantgenome2015.11.0120
https://doi.org/10.1186/1471-2105-12-186
https://doi.org/10.1038/ng1702
https://doi.org/10.1038/ng.2620
https://doi.org/10.1038/ng.2620
https://doi.org/10.1016/j.semcancer.2018.04.008
https://doi.org/10.1093/bioinformatics/btm108
https://doi.org/10.1093/nar/gkp1049
https://doi.org/10.1249/MSS.0b013e31824795f4
https://doi.org/10.1093/bioinformatics/bty015

	GAPIT Version 3: Boosting Power and Accuracy for Genomic Association and Prediction 
	Method
	Architecture of GAPIT3
	Implementation of MLMM and FarmCPU
	Implementation of BLINK R and C versions
	Implementation of cBLUP and sBLUP
	Implementation of interactive reports
	Percentage of variance explained

	Results
	Implementation of GWAS and GS methods
	Adaptation of existing GAPIT users
	Assessment of explained variance 
	Enriched report output
	Computing time 

	Discussion
	Comprehensive and specific software packages
	Selection of GWAS and GS methods
	Operation of GAPIT
	Limitations

	Conclusion
	Availability
	CRediT author statement
	ORCID




