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Simple Summary: This up-to-date and in-depth review describes fibroblast-derived cells and their
role within the tumor microenvironment for tumor progression. Moreover, targets for future antitu-
mor therapies are summarized and potential aspects for future translational research are outlined.
Furthermore, this review discusses the challenges and possible obstacles related to certain treat-
ment targets.

Abstract: Cells within the tumor stroma are essential for tumor progression. In particular, cancer-
associated fibroblasts (CAF) and CAF precursor cells (resident fibroblasts and mesenchymal stromal
cells) are responsible for the formation of the extracellular matrix in tumor tissue. Consequently,
CAFs directly and indirectly mediate inflammation, metastasis, immunomodulation, angiogenesis,
and the development of tumor chemoresistance, which is orchestrated by complex intercellular
cytokine-mediated crosstalk. CAFs represent a strategic target in antitumor therapy but their hetero-
geneity hinders effective treatment regimes. In-depth understanding of CAF subpopulations and
knowledge of specific functions in tumor progression will ultimately result in more specific and
effective cancer treatments. This review provides a detailed description of CAFs and CAF precursor
cells and summarizes possible treatment strategies as well as molecular targets of these cells in
antitumor therapies.

Keywords: cancer-associated fibroblasts; mesenchymal stromal cells; fibroblast; cancer; tumor; tumor
microenvironment; crosstalk

1. Introduction

Tumors are “fibrotic wounds that do not heal” [1]. The fibrosis-like tissue of desmo-
plastic tumors is stiffer than the surrounding healthy tissue and is primarily detected by
physical palpation and radiologic imaging; nonetheless, the molecular significance of this
stiffness for tumor progression has remained unclear for generations [2].

Tumors consist of a tumor bed (parenchyma), which describes the compartment of
tumor cells and cancer stem cells, and a tumor microenvironment (TME). At first glance, the
TME appears as a chaotic and disorganized structure. From a histological perspective, the
TME consists of: (a) immune cells such as tumor-associated macrophages (TAM), natural
killer (NK) cells, neutrophils, mast cells, dendritic cells (DC), CD4+ and CD8+ T cells, and
B cells; (b) vascular cells including microvascular cells, endothelial cells (EC), and pericytes;
(c) extracellular matrix molecules including collagen, glycoproteins, and proteoglycans; and
(d) nonmalignant cells of mesenchymal origin such as fibroblasts, mesenchymal stromal
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cells (MSC), and cancer-associated fibroblasts (CAF) [3] (Figure 1a). The stroma is part
of the TME and consists of a complex intercellular interstitium (matrix), expressed by
the aforementioned cells of different function and origin that are located in-between. In
recent years, there has been rapidly emerging evidence that the interaction between the
matrix, tumor-associated cells, and tumor cells is essential for rapid tumor growth, limited
responsiveness to therapeutics, and metastasis-initiating cells [1,4,5].

Figure 1. (a) Model of tumor cells and cells of the tumor microenvironment (TME). The TME contains multiple cell
types of diverse origins (endothelial, immune, fibroblastic) but the location of specific subtypes is characteristic of certain
cancer-associated fibroblast (CAF) subtypes (myofibroblastic CAFs (myCAFs), adjacent to tumor, and “inflammatory” CAFs
(iCAFs), in the TME periphery). (b) Complex crosstalk between different cells (tumor cells and TME cells) yields several
specific targets for the inhibition of tumor growth by specific molecules. However, several intercellular interactions of
TME cells have not yet been studied in sufficient detail to establish an adequate target strategy (e.g., immune cells and
vascular cells). (c) The extracellular matrix is depicted in this subfigure. The matrix accounts for a large part of the TME and
represents a potential therapeutic target.

In the past, cancer stem cells (CSC) were the primary focus in oncologic research and
multiple molecular targets were identified. Subsequent clinical trials, however, failed to
stop tumor progression, provoked chemo-resistance, and accelerated tumor growth. In this
context, inhibiting focal adhesion kinase (FAK) by defactinib, or STAT-3 by napabucasin, or,
more prominently, treatment with the anti-DLL-3 antibody-drug conjugate rovalpituzumab
tesirine (Rova-T) did not reach the expected clinical activity and efficacy [6–8]. It has to
be postulated that the failed clinical therapeutic success of CSC targeting strategies is
due to the CSC niche [9]. The latter describes an anatomically distinct region within
the tumor microenvironment that maintains the principal properties of CSCs, preserves
their phenotypic plasticity, protects them from the immune system, and facilitates their
metastatic potential [9]. Several studies identified this niche as a promising target for
anticancer therapy; however, these aspects are beyond the purpose of this review and were
reviewed elsewhere [10–13].

Research continued to investigate cells within the stroma of desmoplastic tumors as
possible treatment targets. Major findings were that cell activities within the TME are
similar to those in chronically inflamed tissues and that intercellular crosstalk between
stromal cells and CSCs is essential for tumor progression. In nontumor tissue, wound
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repair is initiated by infiltration of inflammatory cells that secrete growth factors, chemo-
and cytokines, as well as matrix metalloproteinases (MMPs) [14,15]. Bone marrow-derived
fibroblasts are recruited for remodeling of fibrin clots and deposition of extracellular matrix
(ECM) proteins [16]. Through deposition of these ECM proteins, a three-dimensional
network is established that enables fibroblasts to differentiate into myofibroblasts through
mechanical tension [17].

In the case of tumors, fibrotic tissue is characterized by chronic inflammation and
an increased density of myofibroblasts that build an extremely dense and rigid ECM
network [18]. Cytokines expressed by stromal cells enable crosstalk between different cell
types in tumor tissue, further enhancing tumor promotion and restructuring the stroma for
malignant transition [19–21]. Restructuring of the stroma is closely associated with matrix
protein deposition that is different from that of healthy stromal tissue and includes secretion
of tenascin, periostin, SPARC, and collagens [22–25]. The altered biochemical properties
and irregular anatomy of the ECM result in tissue stiffening, extremely elevated cytoskeletal
tension, and fibrosis, which present an ideal niche for malignant transformation, tumor
progression, and immune-evasion [26–28]. Matrix stiffening is promoted by the TGFβ-
stimulated production of collagen and the collagen crosslinking enzyme lysyl oxidase
(LOX) [29]. Once the tumor stroma presents hallmarks such as an increased ECM density;
presence of CAFs; abnormal, disorganized, or leaky vascularization; and infiltration by
innate and adaptive immune cells with pro- and antitumor activity, the underlying tumor
is of increased aggressiveness and metastatic potential [30]. In this context, the stroma has
been identified as important and unneglectable co-target in anticancer therapy [31–33].

Recent studies and the emerging focus on cancer biology have sought to develop a
more profound and mechanistic understanding of the role of the TME in the progression
of malignant tumors, and large-scale genomic analysis, single cell RNA-sequencing, and
metabolomic data have identified a variety of stromal cell subtypes within the TME [3].

This review describes the role of fibroblast-derived cells and their role within the TME
for tumor progression. Moreover, targets for future antitumor therapies are summarized
and potential aspects for future translational research are outlined. Furthermore, this
review discusses challenges and possible obstacles of certain treatment targets.

2. Tumor Stromal Cells of Mesenchymal Origin
2.1. Resident Fibroblasts and Myofibroblasts

Fibroblasts are resident cells responsible for the synthesis, deposition, and structure of
the ECM. Typically, fibroblasts are characterized by the presence of fibroblast activation
protein (FAP). Deposition of ECM proteins such as collagen type I, type IV, proteoglycan,
and fibronectin stimulates mechanoreciprocity, which is a term that defines the actomyosin
cytoskeletal response to mechanical stress of the ECM. Transdifferentiation, which describes
the de novo expression of α smooth muscle actin (αSMA) and the differentiation of fibrob-
lasts into myofibroblasts, is also promoted by ECM deposition [34]. Upon the binding of
transforming growth factor (TGF)-β1, fibroblasts increase expression of fibronectin, which
subsequently results in increased mechanical tension through the binding of fibronexus
adhesions, leading to the assembly of focal adhesions and αSMA recruitment to actomyosin
fibers [34–36]. In contrast to short contractions of smooth muscle cells, αSMA-positive
myofibroblasts are able to contract and thus stiffen the ECM permanently [37], which
is mediated by the calcium-calmodulin-MLC kinase and Rho-ROCK-myosin light chain
phosphatase [38]. Stiffened ECM enforces TGF-β1 release and thus further amplifies the
activation of fibroblasts through a feedforward circuit, which is interrupted in healthy
tissue by the activation of YAP/TAZ and MRTF [39–41]. These transmembrane proteins
transduce mechanical stress to gene transcription and would ultimately lead to apopto-
sis or de-differentiation of myofibroblasts to quiescent fibroblasts [42]. In tumor tissue,
the latter functions are disabled by the conversion of fibroblasts into CAFs through tu-
mor cell-secreted platelet-derived growth factor (PDGF), fibroblast growth factor (FGF),
sonic hedgehog (SHH), and IL-1β [43–45]. Another mechanism of fibroblast conversion to
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CAFs is induced by tissue inhibitor of metalloproteinase-1 (TIMP-1) and the subsequent
activation of the IL-6/STAT3 pathway [46].

In vivo, vaccine-induced depletion of FAP-positive cells resulted in reduced tumor
growth and less metastatic dissemination [47]. In this context, the predominant T helper
cell (TH) phenotype changed from TH2 to TH1 concomitantly expressing more IL-2 and
IL-7 instead of IL-6 or IL-4 [48]. Thus, more CD8+ T cells invaded the tumor tissue and
displayed their cytolytic capacities.

2.2. Mesenchymal Stromal Cells (MSCs)
2.2.1. Characterization and Recruitment

MSCs are multipotent cells that contribute to the regeneration of osseous, cartilagi-
nous, fatty muscle tissue in case of chronic inflammation and participate in the immune
response [49]. MSCs have been commonly defined by the presence of certain markers such
as CD73, CD90, CD105, and the absence of CD45, CD34, CD14 or CD11b, CD79α or CD19,
and HLA-DR [50], but emerging evidence suggests that these parameters are insufficient to
define and subgroup the various phenotypes of this cell type [51,52].

In contrast to fibroblasts, MSCs are recruited and mobilized from the blood to the
site of tissue injury by chemotaxis through growth factors such as TGF-β, PDGF, IGF,
and FGF [53,54]; chemokines like CXCL-12 [55]; CCL25 signaling [56]; IL-6 [57]; and
complement component 1 subcomponent q (C1q), C3a, and C5a [58,59]. There is evidence
that MSCs (and other bone marrow-derived CD45+ myeloid cells) are attracted to tumor
sites by similar signaling patterns in animal models [60,61]. Although it is likely that
this phenomenon occurs in man as well, scientific data are still lacking. In wounded
tissue, MSCs promote tissue repair by differentiating into activated fibroblasts, resident-
like tissue stromal cells, or by directly mediating the activity of inflammatory cells at the
site of the tissue lesion. For the latter, MSCs express and secrete vascular endothelial
growth factor (VEGF), PDGF, and subsequently activate endothelial cells and prolong the
survival of fibroblasts. Furthermore, MSCs promote immunomodulation by secreting IL-6,
IL-8, and TGF-β [62,63]. Secretion of macrophage colony-stimulating factor (M-CSF) by
MSCs increases the metabolization of cell debris by macrophages [64]. The regenerative
function of MSCs can be hijacked by malignant tumors, and a large proportion of MSCs
will subsequently differentiate into CAFs [65]. Once MSCs have differentiated into CAFs,
they have the ability to maintain CSCs through the secretion of Notch ligand Jagged-1 [66].

In tumors, MSCs are responsible for immune-suppressive cues that inhibit T cell
responses by secreting prostaglandin E2 (PGE2), TGF-β, and NO as well as expressing
immunomodulatory enzymes such as IDO [67]. PGE2-release from MSCs is triggered
via IL-1 signaling from carcinoma cells and subsequently induces expression of IL-6 and
IL-8 [68].

2.2.2. Tumor Promotion

In tumor tissue, MSCs seem to enhance cancer metastasis and tumor angiogenesis by
secreting VEGF and β-fibroblast growth factor (FGF) [69] (Figure 1b).

It has been shown that breast cancer cells stimulate the MSCs to secrete CCL-5, which
enhances motility, invasion, and metastasis of cancer cells through its paracrine func-
tion [70]. Most likely, CCL-5 expression stimulates PD-L1 expression in tumor cells [71].

MSC cytokine loops including IL-6 and CXCL-7 regulate CSCs and accelerate tu-
mor growth [72]. MSCs are involved in development of chemoresistance of tumors. For
instance, the number of MSCs significantly increased in a PDAC mouse model when ex-
posed to gemcitabine, which was correlated to activation of the STAT-3-CXCL-10-CXCR-3
paracrine signaling axis and consequently promoted CSC survival [73]. However, inhibi-
tion of CXCL-10 by AMG487 resulted in a reduction of CSCs and enhanced gemcitabine
efficacy [74].

In vitro exposure of HNSCC cells to paclitaxel resulted in the development of chemore-
sistance and consequently in increased survival of tumor cells when co-cultured with
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BMSC [75]. MSCs are also capable of inducing thermotolerance in tumor cells via the
CXCL12 pathway, which may limit the effectiveness of HIPEC therapy [76].

Following a cisplatin treatment, MSCs increased expression of specific polyunsatu-
rated fatty acids which promoted regrowth and multiplication of cancer cells [77].

However, there is evidence that the role of MSCs in tumor progression is ambiguous.
In fact, MSCs hinder tumor progression by downregulating Akt activation respective sig-
naling as has been observed in the context of Kaposi’s sarcoma and HCC [78,79]. Hepatoma
cell proliferation was suppressed by the downregulation of nuclear factor-κB (NF-κB) ex-
pression through culturing within conditioned media of MSCs [80]. There is some evidence
that MSCs have the potential to act as tumor suppressors via the Notch1 [52] and Wnt
signaling pathway [53] or secreting exosomes or microvesicles [81]. In this context, tumor
HepG2 cells incorporated MSC-released microvesicles and, subsequently, proliferative
activity was significantly reduced, and apoptosis was induced. In analogy, adipose-derived
mesenchymal stromal cell (ADMSC)-derived exosomes reduced tumor volume in a HCC
rat model [82], and MHCC97-H human HCC cells had reduced invasive and metastatic
potential after exposure and co-culturing with MSCs, which was contributed to stromal
differentiation [83]. A recently identified antitumor effect of BMSCs is the downregulation
of the PI3K/AKT signaling pathway [84].

These features expose MSCs as potential carriers for tumor-targeted therapies, e.g., by
releasing extracellular vesicles at the tumor site [85,86]. Determining the precise role of sig-
naling molecules such as autocrine motility factor (AMF), integrin-αvβ3, and microvesicle
release triggers remains a task for further research [87,88].

2.3. Cancer-Associated Fibroblasts (CAFs)
2.3.1. Definition and Interaction within ECM

Differentiated fibroblasts of the TME are collectively called CAFs and their density
correlates with tumor aggression, metastasis potential, and patient survival in multiple
tumor entities [89,90]. CAFs can be localized outside the TME in the case of metastasis.
Although CAFs are heterogeneous, most are αSMA-positive [91]. They are proliferative,
show high metabolic activity, and are depleted of FAP. They can be distinguished from
myofibroblasts by their inability to undergo apoptosis or to de-differentiate into resting
fibroblasts [30].

CAFs are recruited to the tumor side by similar cytokine-signaling mechanisms that
recruit fibroblasts to wounds, and initially, CAFs may physically hinder tumor cells from
invading surrounding tissue [92] as they may account for a large percentage of the total
tumor volume [93]. However, as the tumor evolves, CAFs continue to deposit ECM
proteins, secrete growth factors, and contract and remodel the ECM. As a consequence,
CAFs re-organize and crosslink collagen to induce stiff and oriented collagen fibers along
which tumor cells can migrate [30,94]. It is important to note that CAFs and not fibroblasts
or myofibroblasts promote tumor progression by directing tumor cells away from the
primary tumor, thus enabling metastasis [95,96]. Conversely, it seems that tumor cells
are also capable of transforming fibroblasts into CAFs outside of the TME. For instance,
metastasis of HCC-cells into lung tissue was promoted by HCC-released miR-1247-3p
which transformed lung fibroblasts into CAFs with the capability of creating a niche for
tumor cells [97].

2.3.2. Interaction with Other Cell Types

CAFs are capable of promoting (chemo-)treatment resistance through a multitude of
mechanisms that warrant further in-depth research; however, tumor promotion should
not be associated with pro-stemness functions of CAFs alone [98]. CAFs promote tumor
progression at an early stage of cancer development by the activation of NF-κB signaling
through the release of IL-1 by immune cells [44]. CAFs are subsequently able to mod-
erate immunologic response by influencing immune cell recruitment and activation at
the tumor site and shifting the immune response in a pro-tumorigenic direction. For
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example, IL-4 and IL-6 secretion of CAFs accounts for the infiltration of tumor-associated
macrophages (TAMs) and other immunosuppressive myeloid cells that promote immune-
suppression [99]. Furthermore, IL-6 partially regulates the maintenance of the CSC pheno-
type through the STAT-3-NF-κB pathway [100,101]. CAF-release of IL-8 regulates a subtype
of epithelial-like CSCs that maintain high aldehyde dehydrogenase (ALDH) activity and are
highly proliferative and, thus, support the stemness properties of cancer cells (e.g., breast
and PDAC) [102,103]. CAF-mediated release of IL-10 by tumor-associated macrophages
(TAMs) decreases cytotoxic T cell activity within tumors and induces regulatory T cell
responses [104,105]. Furthermore, MHC-I expression in tumor cells is downregulated
and costimulatory molecule expression is suppressed [106]. This finally results in an
immunosuppressive microenvironment around the tumor.

CAFs induce and recruit regulatory T cells (Tregs) to repress antitumor immune re-
sponses and support tumor progression by the induction of CD4+ helper T (TH) lympho-
cytes to strengthen pro-tumorigenic TH2 and TH17 phenotypes [107,108]. Polarization of
TH2 cells in tumors is promoted by thymic stromal lymphopoietin (TSLP) and is associated
with a worse prognosis in patients [109].

In this context, MSCs were engineered to release IL-7 and IL-12 in order to promote
TH1 polarization. Upon release of IFN-γ and TNFα by CAR T cells, MSCs polarized
TH2 cells into a TH17/TH1 phenotype, subsequently releasing IL-2 and IL-15 and further
activating CAR T cells [110].

CAFs are also able to suppress CD8+ cytotoxic T cells and NK cells by expressing
programmed death-ligand (PD-L)1 and PD-L2 and can secrete immune suppressive factors
such as PGE2 and IDO [111,112]. Stiffened and densified TME, as a result of elevated ECM
deposition, further limits immune cell infiltration to the tumor.

Chemoresistance is triggered by CAFs as shown in human prostate cancer using the
genotoxic agent mitoxantrone [32]. This agent apparently stimulates Wnt-16B secretion by
CAFs and, thus, induces increased proliferation and invasion of carcinoma cells. In human
colorectal cancer (CRC), chemotherapy-induced IL-17A production by CAFs promoted
CSC self-renewal and tumor growth [113]. Chemoresistance of tumors can also be triggered
by CAFs expressing G protein-coupled C5a receptor 77 (GPR77) and membrane metallo-
endopeptidase (MME) that establish a survival niche for CSC [114].

2.3.3. CAF Subtypes

Although most CAFs are αSMA-positive, there are CAF subgroups that do not express
αSMA and co-exist with other CAF subtypes in the TME. Recent studies have under-
lined the hypothesis of tumor-promoting and tumor-restricting CAF subtypes [115,116].
However, to date there is no consensus on the molecular definition of CAFs (Table 1) [117].

Notably, CAF subtypes with a low expression of β1-integrin, FAP, and PDGF receptor
(PDGFR)β were assigned to a luminal location and correlated with reduced tumor progres-
siveness. CAFs with a high expression of FAP, αSMA, and PDGFRβ were found to have
immunosuppressive properties and are thus presumably associated with more aggressive
breast cancer phenotypes, such as triple-negative cancers [115]. In analogy to breast can-
cer, CAFs in PDAC could be grouped into CD10-positive and -negative. CD10-positivity
correlated with tumor progression and chemoresistance, through persistent NF-κB acti-
vation and resultant IL-6 and IL-8 secretion [114,118]. The aforementioned study by Su
and colleagues identified that CD10+ and GPR77+ CAFs are a promising antitumor target
as this CAF subpopulation establishes a survival niche for CSC by protecting them from
chemotherapeutic attacks through ABCG2 expression in cancer cells [114].

Furthermore, CAF subsets seem to cluster at certain locations within the TME relative
to the tumor. For instance, αSMA-expressing and FAP-positive myofibroblastic CAFs
(myCAF) were adjacent to the tumor, while “inflammatory” CAFs (iCAF) with reduced
αSMA expression were found in the dense stroma and secreted IL-6, CXCL-1, and CXCL-2
through the activation of IL-1α-Janus kinase (JAK)-STAT signaling [116,119]. αSMA expres-
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sion seems to be an unprecise marker of tumor progression as expression differs among
different CAF subtypes that correlate with tumor progressiveness [115,119].

Tumor release of IL-1 was shown to induce differentiation of CAFs into iCAFs and the
binding of TGF-β1 promoted differentiation into myCAFs by blocking the IL-1/JAK/STAT
pathway [116]. In squamous cell carcinoma, a subgroup of CAFs induced epithelial mes-
enchymal transition (EMT) of malignant keratinocytes through secretion of TGF-β and may
thus be causal for the induction of stemness features in malignant cancer cells [120–122].
Other CAF markers are fibroblast specific protein (FSP)-1 and PDGFR-α/β and the well-
regulated intercellular crosstalk between tumor cells and fibroblasts contributes to CAF
subdifferentiation on a spatial and functional spectrum [43,123,124]. In this context, addi-
tional CAF subtypes were identified [125]: CAF-1 cells expressing FSP-1, which promote
metastatic colonization of tumor cells through tenascin- and VEGF-mediated angiogen-
esis [126]; and CAF-2 cells that are characterized by the presence of αSMA, neural/glial
antigen 2 (NG2), and PDGFRβ [127]. The CAF-2 cell type accounts for type I collagen
deposition, forming the stiff ECM, which acts as a tissue barrier preventing antitumor cells
(e.g., cytotoxic T lymphocytes) from infiltrating tumor tissue [128].

Table 1. Summarizes different subtypes of CAFs that have been described by different studies. At this point, the interrela-
tionship between different CAF subtypes and whether there are overlying phenotypes is not clear.

CAF Type Markers and Proteins Function Specific Therapeutic Agents Study

myCAF αSMA, FAP, TGF-β,
Collagen

metastasis, chemoresistance,
proliferation

Losartan, Nab-paclitaxel,
Galunisertib, [116]

iCAF
IL-6, IL-8, CXCL-1,

CXCL-2, LIF, CCL-2,
CCL-17

inflammation, metastasis,
angiogenesis,

immunosuppression
Ruxolitinib [116]

apCAF MHCII, CD74+, immunomodulation [129]

CAF-1 FSP-1, VEGF, TNC metastasis, angiogenesis Dasatinib [127]

CAF-2 αSMA, NG2, PDGFRβ,
collagen

ECM formation,
immunosuppression Dasatinib [127]

CAF-N Hyaloronic acid, MMPs ECM formation, Metastasis,
immunosuppression

Losartan, Nab-paclitaxel,
Galunisertib [120]

CAF-D TGF-β invasion Losartan, Nab-paclitaxel,
Galunisertib [120]

CAF-A MMP2, DCN, COL1A2,
FAP ECM formation [127]

CAF-B ACTA2, TAGLN, PDGFA ECM remodeling, metastasis [127]

CAF-S1 FAP, TGF-β, CXCL-12, IL-6,
IL-10, IL-17

metastasis,
immunosuppression, Dasatinib, Galunisertib [130]

CAF-S2 FAP-, αSMA-, CD29-,
PDGFRβ-

-to be investigated/
physiologic- [130]

CAF-S3 FAP-, αSMA-, CD29-/+,
PDGFRβ-/+

-to be investigated/
physiologic- Dasatinib [130]

CAF-S4 TGF-β, CXCL-12 metastasis, proliferation,
angiogenesis Dasatinib [130]

pCAF αSMA proliferation, metastasis [131]

rCAF Meflin, αSMA-, PDGFRα,
Gli1 tumor suppression [131]

Other CAF subtypes are labelled CAF-N (normal) and CAF-D (divergent). While
the former secrete hyaluronic acid and MMPs, the latter induce EMT by expressing TGF-
β [120,132]. Other CAF subtypes have been identified in CRC and were named CAF-A
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and CAF-B; however, their specific function has not yet been identified [127]. In PDAC
tumors, another subset of CAFs was identified: one group highly expressing meflin (a
glycosylphosphatidylinositol-anchored protein), which was thus named meflin-rich CAF
(rCAF); and another group poorly expressing meflin (pCAF). Interestingly, rCAF seemed
to act as a tumor suppressor [131,133]. Most recently, Costa et al. identified four other
CAF subtypes named CAF-S1 to CAF-S4 that expressed six markers in different ratios in
breast cancer with different properties, and these results were reproduced in head, neck,
and lung cancers [115,130,134]. Thus, CAF-S1 was strongly positive for all six markers and
CAF-S2 was negative for all markers. CAF-S3 was defined by the expression of ITGB1,
FSP-1, and PDGFRβ and CAF-S4 by the same markers and the additional expression
of αSMA [115]. A subsequent study by the same group reasoned using transcriptomic
data that the CAF-S1 type presents a spectrum of eight different functional clusters, each
expressing specific genes coding ECM proteins (Table 2). Notably, different clusters are
associated with different CAF types. For instance, clusters S0, 3, 4, 6, and 7 are associated
with myCAFs and clusters S1, 2, and 5 are associated with iCAFs, especially IFN-γ-iCAFs.

Table 2. CAF-S1 clusters that are described by the expression of different marker proteins and hence
yield different tumor-modulating functions [134].

Cluster Markers Described Function

(0) ecm-myCAFs LRRC15, GBJ2 Synergize with cluster 3

(1) detox-iCAFs ADH1B, GPX3

(2) IL-iCAFs RGMA, SCARA5

(3) TGFβ-myCAFs CST1, TGFβ1 Upregulation PD-1 and CTLA4 in Treg

(4) wound-myCAFs SEMA3C, SFRP4 Indicative for anti-PD-1 response

(5) IFNγ-iCAFs CCL19, CCL5, CD74+ apCAF

(6) IFNαβ-myCAFs IFIT3, IRF7

(7) acto-myCAFs GGH, PLP2

Progress in identifying CAF subgroups with specific markers will result in the identi-
fication of novel potential and specific therapeutic targets. Furthermore, targeting CAFs,
which account for a large percentage of the total tumor volume, may have better pharmaco-
dynamics effects than focusing on CSCs only. From a histological point of view, CAFs are
localized in the periphery of tumors and are thus directly accessible to therapeutic agents
that diffuse from the blood, and breaking this outer wall might ultimately result in the
breaching the cancer’s fortress [135].

3. Targeting Tumor Stroma Cells

Essentially, there are three potential treatment strategies when targeting stroma cells in
cancer treatment: (1) using tumor-tropism of MSCs for the delivery of antitumor molecules;
(2) directly targeting CAFs by depletion; and (3) inhibiting intercellular crosstalk between
CAFs, tumor cells, and other cell types (Table 3).

As stated previously, fibroblasts and MSCs play a crucial role in tumor development
and may therefore present a strategic target for anticancer therapies [86,98,136]. In healthy
tissue, fibroblasts modulate immune cell reactions by excreting chemo- and cytokines with
different specificities. For instance, in a mouse model for colon cancer inhibited tumor
growth and metastatic dissemination, they targeted and killed FAP-positive cells via an
oral DNA vaccine [47]. In this context, T cell distribution was altered as fewer TH2 cells but
more TH1 cells were recruited, expressing IL-2 and IL-7, and infiltrated the tumor [48]. The
authors concluded that a reduced infiltration of M2 macrophages resulted in reduced levels
of type 2 cytokines and subsequently increased infiltration of CD8+ T cells, which enforce
tumor-lytic activity. Accordingly, targeting CAR T cells against FAP increased endogenous



Cancers 2021, 13, 1466 9 of 19

antitumor immunity and thus presented an effective treatment strategy in the preclinical
setting [137].

Table 3. Overview of selected studies targeting stroma cells, indicating the type of study and the type of tumor studied.

Author Year Type of Study Cancer Type Short Summary

Sun Y. et al. [32] 2012 In vitro prostate cancer
Damage to the tumor environment
promotes prostate cancer therapy
resistance

Loeffler M. et al. [47] 2006 In vitro/animal study
(mice) general

Tumor stromal antigen FAP can
serve as a novel target for active
vaccination against cancer

Liu C. et al. [72] 2011 In vitro prostate cancer
MicroRNA miR-34a inhibits prostate
cancer stem cells and metastasis by
repressing CD44

Scherzed A. et al. [75] 2011 In vitro HNSCC

Bone marrow derived stem cells
enhance the survival of paclitaxel
treated squamous cell carcinoma
cells in vitro

Roodhart J. et al. [77] 2011 Animal (mice) general

Mesenchymal stem cells induce
resistance to chemotherapy through
the release of platinum-induced
fatty acids

Hombach A. et al. [110] 2020 In vitro colorectal cancer
IL7-IL12 engineered mesenchymal
stem cells improve A CAR T Cell
attack against colorectal cancer cells

Lotti F. et al. [113] 2013 In vitro colorectal cancer

Chemotherapy actives
cancer-associated fibroblasts to
maintain colorectal cancer-initiating
cells by IL-17A

Jiao J. et al. [126] 2018 Animal study (mice) hepatocellular
carcinoma

Depletion of S100A4+ stromal cells
reduces the stem cell-like phenotype
of HCC but does not prevent tumor
development

Mizutani Y. et al. [131] 2019 In vitro/animal study
(mice) pancreatic cancer

Meflin-positive cancer-associated
fibroblasts inhibit pancreatic
carinogenesis

Olive K.P. et al. [135] 2009 Animal study (mice) pancreatic cancer
Inhibition of hedgehog signaling
enhances delivery of chemotherapy
in mice with pancreatic cancer

Wang L.C.S. et al. [137] 2014 In vitro/animal study
(mice) general

Targeting fibroblast activation
protein with chimeric antigen
receptor T cells can inhibit tumor
growth

Hasnis E. et al. [138] 2014 In vitro/animal study
(mice) pancreatic cancer

Anti-Bv8 antibody and metronimic
gemcitabine improve pancreatic
andonocarcinoma

Valenzuela P. et al. [139] 2021 Clinical trial gastrointestinal cancer Multiplex cytokine measurements in
GIT cancer patients

Mariathasan S. et al. [140] 2018 In vitro general/urothelial
cancer

TGFß attenuates tumor response to
PD-L1 blockade by excluding T-cells
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Table 3. Cont.

Author Year Type of Study Cancer Type Short Summary

Zhong H. et al. [141] 2016 In vitro general IL-6 antibody sensitizes multiple
tumor types to chemotherapy

Finkel K. A. et al. [142] 2016 In vitro HNSCC
IL6 inhibition with MEDI5117
decreases the fraction of head and
neck cancer stem cells

Park J.S. et al [143] 2019 Clinical trial NSCLC
combination of afatinib and
ruxolitinib in EGFR mutant NSCLC
with progression on EGFR-TKIs

Hurwitz H.I. et al. [144] 2015 Clinical trial pancreatic cancer

Roxolitinib or placebo in
combination with capecitabine in
patients with metastatic pancreatic
cancer

Steele C.W. et al. [145] 2016 In vitro pancreatic cancer

CXCR2 inhibition suppresses
metastases and augments
immunotherapy in pancreatic ductal
adenocarcinoma

Tan W. et al. [146] 2011 In vitro mammary cancer
Tumor-infiltrating T-cells stimulate
mammary cancer metastasis
through RANKL-RANK signaling

Feig C. et al. [147] 2013 In vitro/animal study
(mice) pancreatic cancer

Targeting CXCL12 from FAP
synergizes with anti-PD-L1
immunotherapy in pancreatic cancer

Ammirante M. et al. [148] 2014 In vitro/animal study
(mice) prostate cancer

Tissue injury and hypoxia promote
malignant progression of prostate
cancer by inducing CXCL13 in
tumor myofibrolasts

Holmgaard R.B. [149] 2018 In vitro/animal study
(mice) general Targeting TGFß with galunisertib

promotes antitumor immunity

Shi Y. et al. [150] 2019 In vitro/animal study
(mice) pancreatic cancer

Targeting LIF-mediated paracrine
interaction in pancreatic cancer
therapy

Kakarla S. et al. [151] 2013 In vitro general Antitumor effects of chimeric
receptor engineered human T cells

Lo A. et al. [152] 2015 In vitro general Tumor-desmoplasia is disrupted by
depleting FAP cells

Özdemir B. C. [153] 2014 In vitro/animal study
(mice) pancreatic cancer

Depletion of myofibroblasts in
mouse pancreas cancer led to
invasive tumors

Sherman M.H. [154] 2014 In vitro pancreatic cancer

Vitamin D receptor stromal
reprogramming suppresses
pancreatitis and enhances pancreatic
cancer therapy

Other studies investigated the crosstalk between CAFs and CSCs. A study by Korkaya
et al. attempted to inhibit the IL-6/STAT-3/NF-κB loop by functional blocking of IL-6
through an anti-IL-6 receptor antibody and found a decreased chemoresistance of HER2
breast cancer cells against trastuzumab [100].

A combination of different therapeutic agents for antitumor therapy at certain intervals
may thus result in lower effective dosages. Low-dose metronomic (LDM) chemotherapy
has become a clinically applicable strategy to enhance the success of antitumor therapy by
converting the therapy-induced stromal alterations in desmoplastic cancers [138,139]. In
the context of a mouse PDAC model, a low daily dosage of gemcitabine was additionally
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added to the high weekly dose, and in combination with Bv8 blockade of myeloid derived
suppressor cells (MDSCs), a significant reduction in tumor growth, angiogenesis, and
metastasis was reached [138]. A clinical study by Valenzuela demonstrated that patients
with gastrointestinal tumors undergoing metronomic chemotherapy with a 5-fluorourcacil
prodrug, celecoxib, and cyclophosphamide had predictive cytokine profiles that indicated
treatment success. They also postulated that this drug combination impacted Tregs and
suppressed MDSCs [139].

Inhibition of the nodal and activin receptor ALK4/7, which is expressed on pancreatic
CSCs and stromal cells, using SB431542 reduced stemness markers and invasive capacities
of CSCs in human pancreatic adenocarcinoma cell lines. Blockade of the ALK4/7 receptor in
combination with gemcitabine led to decreased chemoresistance and subsequent complete
CSC elimination [155]. Co-treatment with anti-PD-L1 and TGF-β blockers was associated
with better tumor control [140].

Another strategy tested to achieve tumor remission was the inhibition of CD10+ and
GPR77+ CAFs by IL-6 and IL-8 antibodies or anti-GPR-77 antibodies in combination with
docetaxel in a xenograft model [114]. Other therapeutics targeting the IL-6-STAT-3 signaling
axis are under development, including a high affinity anti-IL-6 antibody, MEDI5117, but
they have not yet reached the clinical testing phase [141,142]. Another potential therapeutic
agent inhibiting JAK is ruxolitinib, but its clinical relevance remains controversial [143,144].
As MSCs also express IL-6 and IL-8, these concepts synergize with MSC- and CAF-targeted
therapeutics and effectively block the stroma-derived pro-stemness signals in desmoplastic
tumors [68].

Increased expression of CC-chemokine-ligands (CCL) 2 to 5 by stromal cells attracts
blood immature myeloid cells and Tregs to hypoxic tumor tissue where they initiate the
expression of proangiogenic cytokines and enzymes or suppress the invasion of other
immune cells, which promote tumor growth, angiogenesis, and metastasis [146,156]. CXC-
chemokine ligand 12 (CXCL12) is another immune-modulating factor that is expressed
by FAP+ CAF cells and is responsible for tumor cell survival and T cell compartmental-
ization within the TME in a lung cancer mouse model [147]. For antagonization of these
effects, different small-molecule inhibitors of CXCR-2 such as AZ13381758 and SB225002
or AMD3100 (Plerixafor) in the case of CXCR-4 showed promising preclinical efficacy in
PDAC models [31,145,157]. Blockade of the CXCL12 receptor CXCR4 resulted in limited
tumor growth by rapid T-cell accumulation within the TME and subsequent sensibilization
to checkpoint blockade therapy [147]. CXCL13 expression by FAP+ CAFS accounted for
B and immunosuppressive plasma cell recruitment into the TME and is associated with
clinical severity and malignant progression as demonstrated in a mouse model for prostate
cancer [148].

Notably, the role of CXCL13 is ambiguous as CD8+ T lymphocytes are attracted and
transcripts linked to cytotoxicity were increased in follicular T helper cells [158]. For
instance, it was postulated that CXCL13-dependent immune cell recruitment to the TME
creates a tumor mass in which durable antitumor responses can be generated [159].

Targeting of CAFs using a DNA vaccine directed on the FAP demonstrated tumor
suppression and reduced the potential for metastasis in CRC and breast cancer models [47].
TGF-β presents a target for antitumor therapy as well its inhibition using SD208 or galunis-
ertib (LY3200882) as the invasion of CD8+ T lymphocytes is increased and tumor growth is
inhibited [149]. Furthermore, this resulted in reduced CAF expression of stemness markers
and more differentiation markers in a CRC model [160]. A further therapeutic approach
involves transducing CAFs with a nanocarrier-formulated plasmid encoding a secretable
form of TNF-related apoptosis inducing ligand (TRAIL). As CAFs are intrinsically resistant
to the effects of TRAIL, transduction transformed them into TRAIL-producing cells and
triggered apoptosis of neighboring cancer cells [161]. Another recent therapeutic approach
involves targeting of LIF: an IL family protein responsible for CSC promotion expressed by
CAFs, which resulted in reducing the percentage of CSCs in a PDAC mouse model [150].
A more sophisticated approach involved CAR T cells that specifically killed FAP+ CAFs,
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delaying tumor growth in mice [151,152]. The combination of FAP+ CAF and EPH receptor
A2 (EphA2)+ targeting resulted in complete tumor remission, which suggests a crucial
supplemental role of CAF-targeting strategies along with conventional cancer therapies.

Nonetheless, depletion of CAFs does not necessarily result in tumor suppression as
ganciclovir-induced depletion of CAFs resulted in the occurrence of invasive and undif-
ferentiated tumors [153,162]. In this context, there is growing evidence to suggest that
functional and unconventional inhibition of CAFs may be safer than their depletion. For
example, vitamin D receptor (VDR) signaling has been shown to antagonize TGF-β/SMAD
signaling-induced activation of stem cells in PDAC, which was initially mediated by IL-6,
CCL-2, and CXCL-1 [154]. In combination with gemcitabine treatment, the vitamin D
analog calcipotriol enhanced chemotherapeutic tumor control.

4. Conclusions

Heterogeneity in cellular composition represents a major challenge in the era of
patient-specific modern oncology. In-depth understanding of intercellular crosstalk and
the function of different cell types is crucial for the development of novel, cutting-edge
antitumor therapies. Concomitant targeting of specific tumor stroma cells and especially
CAFs will most certainly result in more effective antitumor protocols.
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