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In 2014, we participated in a special issue of Frontiers examining the

neural processing of appetitive and aversive events. Specifically, we reviewed

brain areas that contribute to the encoding of prediction errors and value

versus salience, attention and motivation. Further, we described how we

disambiguated these cognitive processes and their neural substrates by using

paradigms that incorporate both appetitive and aversive stimuli. We described

a circuit in which the orbitofrontal cortex (OFC) signals expected value and

the basolateral amygdala (BLA) encodes the salience and valence of both

appetitive and aversive events. This information is integrated by the nucleus

accumbens (NAc) and dopaminergic (DA) signaling in order to generate

prediction and prediction error signals, which guide decision-making and

learning via the dorsal striatum (DS). Lastly, the anterior cingulate cortex

(ACC) is monitoring actions and outcomes, and signals the need to engage

attentional control in order to optimize behavioral output. Here, we expand

upon this framework, and review our recent work in which within-task

manipulations of both appetitive and aversive stimuli allow us to uncover

the neural processes that contribute to the detection of outcomes delivered

to a conspecific and behaviors in social contexts. Specifically, we discuss

the involvement of single-unit firing in the ACC and DA signals in the NAc

during the processing of appetitive and aversive events in both social and

non-social contexts.

KEYWORDS

anterior cingulate cortex, dopamine, social behavior, salience, attention, reward,
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Introduction

The neural activity of many brain regions is modulated by expected outcomes; in
some cases, it is assumed that this activity corresponds to internal value representations.
For example, increased neural firing in response to cues associated with reward delivery
might be interpreted as reflecting the value of the anticipated reward. While this might
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be true, this signal might reflect its salience, which induces
changes in attention, arousal, or motivation that accompany
the anticipation of valued outcomes. Likewise, if an animal
is not expecting reward but one is delivered, increased firing
to reward delivery might be interpreted as a representation
of a positive prediction error (i.e., an event that is better
than predicted). However, once again, it would also be a
reasonable interpretation that these changes in firing might
better reflect changes in attention, arousal or motivation that
accompany salient events. Manipulating both appetitive and
aversive stimuli within the same task circumvents this issue,
making it possible to disambiguate the encoding of genuine
value predictions and prediction errors from the processing of
salient events generally. If neural activity increases to cues that
predict reward decrease to cues that predict an aversive event,
then activity may genuinely represent value. Likewise, if activity
increases and decreases to unexpected reward and punishment,
respectively, then activity likely reflects signed prediction errors.
Alternatively, if neural firing increases for both appetitive and
aversive events, then firing might better reflect factors that co-
vary with value. That is, activity might be better explained as
neural correlates of cognitive functions that accompany salient
events – such as heightened attention, arousal and motivation.

In our previous review, we laid these ideas out in more
detail, and extensively covered a number of studies that
incorporated both aversive and appetitive outcomes within a
paradigm in order to disambiguate value and salience signals
arising from several brain areas. Note, generally, we use the
term salience because salient stimuli and outcomes induce
changes in attention, arousal and motivation, processes that
we do not try to disambiguate here in this review. With that
said, we think of attention as being more involved in the
increased processing of both appetitive and aversive sensory
events whereas motivation is more involved in engaging motor
systems in the pursuit and avoidance of appetitive and aversive
events, respectively. We described a circuit (Figure 1; Bissonette
et al., 2014) in which OFC value signals are influenced by BLA
encoding of the valence, intensity, and salience of appetitive and
aversive events (Wassum and Izquierdo, 2015; Fiuzat et al., 2017;
Brockett et al., 2021). These two areas update each other during
learning, and when behavior needs to be flexible (Brockett et al.,
2021). Both areas project to the NAc and VTA (Wassum and
Izquierdo, 2015; Brockett et al., 2021). Separate populations of
neurons in the NAc encode the value and motivational level
associated with stimuli (Day and Carelli, 2007; Day et al., 2010;
Bissonette et al., 2013, 2014; Wassum et al., 2013). DA neurons
in the ventral tegmental area (VTA) and substantia nigra pars
compacta (SNc) return prediction errors and salience signals
to the NAc, and to the dorsomedial (DMS) and dorsolateral
striatum (DLS) to inform goal-directed and habitual behaviors
via spiraling connectivity (Zahm and Brog, 1992; Haber et al.,
2000; Stalnaker et al., 2012; Bissonette et al., 2014; Burton et al.,
2015, 2018; Keiflin and Janak, 2015; Pignatelli and Bonci, 2018).

FIGURE 1

Circuit diagram of decision-making circuit. Gradients denote
whether the corresponding brain region better encodes value or
salience. Arrows represent the flow of information. PM,
premotor cortex; SNc, substantia nigra compacta; GP, globus
pallidus; Thal, thalamus; SNr, substantia nigra reticulata; VTA,
ventral tegmental area. Adapted from Gentry et al. (2019).

Lastly, the anterior cingulate cortex (ACC) is monitoring actions
and outcomes, and signals the need to engage attentional control
in order to optimize behavioral output (Weissman et al., 2005;
Quilodran et al., 2008; Bryden et al., 2011; Hayden et al., 2011;
Hyman et al., 2013; Wu et al., 2017; Vázquez et al., 2020).

After writing this review, it was clear that more work was
needed to understand how neural systems signal appetitive and
aversive stimuli, and to continue to elucidate valence-modulated
signals and how they relate to subsequent behaviors or changes
in cognitive states. What also became clear is that we needed
to explore how the encoding of appetitive and aversive events
might be modulated in social contexts. Several recent human
neuroimaging studies and physiological work in animals have
revealed that many of the regions that have been implicated
in value processing or attention appear to also be involved in
social cognition – such as in the ability to recognize emotions
in others. From these studies, several areas (e.g., striatum, BLA,
OFC, ACC, VTA) have emerged as being important contributors
to the adaptation of behavior based on the appraisal of what is
happening to others and how these outcomes extend to oneself
(Blair et al., 1999; Bush et al., 2000, 2002; Kerns et al., 2004;
Etkin et al., 2006; Olsson and Phelps, 2007; de Greck et al., 2008;
Northoff and Hayes, 2011; Sheth et al., 2012; Báez-Mendoza and
Schultz, 2013; Rudebeck and Murray, 2014; Lockwood, 2016;
Allsop et al., 2018; Carrillo et al., 2019; Cox and Witten, 2019;
Kim et al., 2019; Lockwood et al., 2020; Yankouskaya et al., 2020;
Gangopadhyay et al., 2021).

From this body of work, it is clear that these brain areas
contribute to social cognition, but–because studies exploring
social decision-making focus on either appetitive or aversive
outcomes, not both – there is little disambiguation of value
encoding from other psychological constructs such as arousal,
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attention, and motivation to generally salient events. That is,
neural signals related to reward evaluation may signal the
valence of outcomes delivered to oneself and another, while
signals related to arousal might play a role in driving attention
and motivation indiscriminately toward salient social and non-
social cues in the environment. Here, we provide updates
with regards to appetitive and aversive encoding in non-social
contexts, and how it extends to our recent work dissociating
attentional signaling (i.e., unsigned signals in response to salient
stimuli) from value encoding (i.e., signaling if something is
good or bad) or prediction error encoding (i.e., signaling events
that are better or worse than expected) in social contexts. We
achieved this by manipulating both appetitive and aversive
stimuli within the same paradigm, thus taking advantage of
the fact that both positive (e.g., reward) and negative (e.g.,
shock) outcomes are arousing and attention-grabbing in both
non-social and social domains. Here, we will briefly summarize
key aspects of our previous review, but focus more on our
recent work examining how single-unit firing in the ACC
and DA signals in the NAc contribute to the processing of
attention and subjective prediction errors in both social and
non-social contexts.

Importantly, the circuit we will discuss in this text is not
panoptic. In this review, we have focused on regions that have
been studied in the context of within-task exposure to both
aversive and appetitive events, allowing us to disambiguate the
neural processing of value versus salience under both social and
non-social contexts.

Anterior cingulate cortex’s
contribution to reward, cognitive
control, and social attention –
integrative processing of
appetitive and aversive stimuli

The ACC has been implicated across a plethora of cognitive
functions – including reward processing, conflict monitoring,
arousal, surprise, feedback processing and error detection,
perceptual decision-making, and attentional control (Niki and
Watanabe, 1979; Carter et al., 1998; Botvinick et al., 1999, 2004;
Dayan et al., 2000; Paus, 2001; Ito et al., 2003; Kerns et al.,
2004; Roelofs et al., 2006; Seidman et al., 2006; Weissman et al.,
2006; Seo and Lee, 2007; Croxson et al., 2009; Kennerley et al.,
2009; Kennerley and Wallis, 2009; Hillman and Bilkey, 2010;
Koob and Volkow, 2010; Bledsoe et al., 2011; Bryden et al.,
2011; Hayden et al., 2011; Narayanan et al., 2013; Laubach et al.,
2015; Kolling et al., 2016; Soltani and Izquierdo, 2019; Stolyarova
et al., 2019; Brockett et al., 2020; Schneider et al., 2020; Vázquez
et al., 2020; Cai and Padoa-Schioppa, 2021). However, many of
these studies do not parse how these signals might be impacted
by outcomes of opposite valence, and thus did not allow for

the complete disambiguation of subjective value signaling from
salience or attention encoding.

Generally speaking, across decision-making circuits, neural
activity (e.g., in regions such as the striatum or OFC) is
flexibly modulated by expected outcomes and their valence
in the service of optimally driving adaptable behavior. Other
cognitive processes – such as attention and motivation toward
salient events – also play an important role in modulating
responses toward differently valued outcomes (Bissonette et al.,
2014). Attentional bias is modulated by reward outcome, and
directed toward reliably predictive stimuli. Stimuli of either
appetitive or aversive valence can drive attention in a way that
subsequently facilitates decision-making and learning. We have
found that attention-related signals in ACC can be driven by
unsigned prediction errors when there are unexpected changes
in outcome valence or cues that signal the need to change
behavior (Bryden et al., 2011, 2019; Brockett et al., 2020;
Brockett and Roesch, 2021).

We have observed neural correlates in the ACC
relating to attention-based learning using a variation of
a reward-guided decision-making task in which reward
contingencies unexpectedly change, and reward size and
delay are independently manipulated. Importantly, optimal
task performance requires rats to detect unexpected changes
in reward value and update behavior accordingly to select
the more favorable reward outcome on free-choice trials,
while maintaining accurate responding on forced-choice
trials (Bryden et al., 2011; Vázquez et al., 2020). This
reward-based task relies on dynamic, flexible behavior –
as reward contingencies change throughout the task; successful
performance requires rats to suppress prepotent responses
toward previously learned associations and update their
behavioral strategies.

Using this task, we previously found that ACC activity
correlates with changes in attention proposed by the Pearce and
Hall model of associative learning, wherein the attention given
to a cue is a product of the average unsigned prediction error
generated over past trials (Pearce and Hall, 1980; Bryden et al.,
2011; Roesch et al., 2012). Unsigned prediction errors reflect
the degree to which an outcome is unexpected, and result from
the difference between the value of expected reward, versus the
actual outcome. Following the model, in order for learning to
occur, unsigned prediction errors should subsequently lead to
increases in attention toward the cue (Pearce and Hall, 1980;
Pearce et al., 1982). We have shown that ACC engagement
during learning is consistent with this model (Bryden et al.,
2011; Vázquez et al., 2020). ACC activity is higher after
both unsigned up-shifts and down-shifts in reward value –
when outcomes are better or worse than expected, respectively
(Bryden et al., 2011; Vázquez et al., 2020) – a finding supported
by models suggesting that the ACC serves to process valence-
independent salience (Alexander and Brown, 2011; Hayes and
Northoff, 2012; Yee et al., 2022).
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More recent work suggests that ACC also contributes
to evaluation and cognition in social contexts. Lesion and
inactivation studies have implicated the ACC in vicarious fear
conditioning – wherein aversion is learned through observation,
instead of through direct exposure to the aversive stimulus
(Jones et al., 2010; Allsop et al., 2018; Burgos-Robles et al.,
2019; Carrillo et al., 2019) – and in fear learning that requires
heightened attention (Han et al., 2003; Bissière et al., 2008).
However, many of these studies only use stimuli of a negative
valence, and thus it is difficult to discern whether ACC activity
reflects global social attention or processing of prediction
errors/value, or is providing outcome-specific information
related to primary outcomes delivered to the self or another.

Much like non-social cues (e.g., conditioned stimuli like
lights or tones), social cues can provide a wealth of information
about one’s environment, and thus are often beneficial to attend
to. The attentional functions that ACC is thought to contribute
to in non-social contexts may also contribute to navigating
behaviors in social contexts. It is known that the ACC is engaged
during a number of different emotion- and social-related tasks
across species. Human studies have found ACC engagement
during affect-based Stroop tasks, and vicarious fear learning
(Etkin et al., 2006; Olsson and Phelps, 2007). Importantly, the
rodent ACC shares high degrees of functional homology with
the human ACC, and connectivity studies also support this
finding (Brown and Bowman, 2002; Heilbronner et al., 2016;
Brockett et al., 2020).

Likewise, in monkeys, ACC contributes to cognitive
functions in both non-social (Bonelli and Cummings, 2007;
Wallis and Kennerley, 2010; Hayden et al., 2011; Kennerley
and Walton, 2011), and social contexts (Etkin et al., 2011;
Chang et al., 2013; Lockwood, 2016; Lindstrom et al., 2018;
Gangopadhyay et al., 2021). Specifically, it has been shown
that ACC neurons encode reward outcome information about
the self, the other, or both in social contexts (Chang et al.,
2013; Lindstrom et al., 2018; Noritake et al., 2018). In rodents,
the ACC is not only involved in observational fear learning –
responding to self-directed and socially derived cues during the
task – but ACC neurons are also necessary for acquisition of the
learned behavior (Jones et al., 2010; Kim et al., 2012; Allsop et al.,
2018; Carrillo et al., 2019). Further, optogenetic inactivation of
BLA-projecting ACC neurons results in impaired acquisition of
observational fear conditioning. Clearly, the ACC contributes
to social cognition across species, but the extent to what ACC
signals in social contexts remains unclear.

Although primate studies focus on tasks that manipulate
reward, most studies investigating the role that rodent ACC
plays in social cognition have focused heavily on aversive
stimuli. This focus makes sense given the role of the ACC in the
affective sensation of pain – as part of the medial pain system
alongside the anterior insula (Shackman et al., 2011; Xiao and
Zhang, 2018; Zhao et al., 2018). Based on this connectivity –
and sensitivity to both personal and vicarious pain stimuli

(Singer et al., 2004) – researchers have suggested that, across
species, the ACC may integrate pain and social stimuli through
“emotional mirror neurons” (Preston and de Waal, 2002; Baird
et al., 2011). The notion of emotional mirror neurons has been
supported in rats showing subpopulations of ACC neurons that
respond both to witnessing and experiencing pain, suggesting
that one function of the ACC is to signal the affect of pain and
fear to both the self and others (Carrillo et al., 2019). However,
some of these neurons might also contribute to attention, an
established non-social function of the ACC. That is – given the
non-social functions of the ACC related to cognitive control,
arousal and attention – it might steer attention to salient events
(i.e., conspecific being shocked) regardless of their valence in
social contexts as well.

To dissociate between the aforementioned signals related
to value and attention, we recorded from the rat ACC in a
task where presentation of stimuli predicted the valence of
the outcome that was to be delivered at the end of each
trial – reward, shock or nothing (Schneider et al., 2020). By
manipulating both reward and shock, we determined whether
activity reflected attention (both reward and shock are attention-
grabbing, thus firing should be similar for both trial-types) or
outcome identity (reward and shock would be differentially
encoded). We showed that ACC contributes to both of these
functions through different populations of neurons. However, at
the population level, there was a significant positive correlation
between reward- and shock-related firing – meaning that units
that had increased firing to reward, also increased firing to shock
(i.e., valence-independent). These findings suggest that one of
ACC’s main functions in our paradigm is to heighten attention
in both social and non-social contexts.

The specifics of the task are illustrated in Figure 2. In
this study, rats were placed in opposite sides of a modified
shuttle box, which was separated by a mesh divider so they
could still observe, approach, and sense their conspecific. The
walls opposite to the divider were equipped with a directional
cue light, a food cup, and a shock grid (Figure 2A). Five
seconds after onset of the illumination of a house light, an
auditory stimulus (5 s) predicted delivery of one of three possible
corresponding outcomes (either a sucrose pellet, foot-shock,
or nothing randomly interleaved), and a cue light predicted
whether that outcome would be delivered to either the recording
rat (self) or the conspecific (other). After presentation of the
directional light for 5 s, the outcome (reward, shock or nothing)
was delivered to the same side as the illuminated light cue
(Figures 2B–D). When reporting the results below, we will refer
to “Self ” trials as trials during which the outcome was delivered
to the recording rat, whereas “Other” trials refer to trials in
which the outcome was delivered to the conspecific.

In this paradigm, rats increased and decreased beam-breaks
in to the food cup on reward-self (blue) and shock-self (red)
trials relative to neutral (yellow) trials (Figure 2E). Rats also
froze more to cues that predicted shock-self and shock-other
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FIGURE 2

(A–D) Pavlovian social outcome task that interspersed reward (B), neutral (C), and shock (D) trials. Pairs of rats (recording rat and conspecific)
were placed in a chamber, separated by a divider that allowed them to hear, smell, and see each other. Each trial begins with the onset of a
house light; after 5 s, an auditory cue indicates the type of outcome that will be delivered (shock, reward, or none), and a 10 s directional light
cue indicates which side the outcome will be delivered to (recording rat or conspecific). (E) Average beam breaks (food cup entry) as a
percentage of trial time for each type of outcome (blue: reward; yellow: neutral; red: shock) for outcomes delivered to self (solid lines) and the
conspecific (dashed lines). (F) Percentage of trials recording rats froze during each epoch for each type of outcome (blue: reward; yellow:
neutral; red: shock) for outcomes delivered to self (solid lines) and the conspecific (dashed lines). (G) Same as panel (F), but for rat approach to
the divider – defined as when the recording rat moved toward, or was actively interacting at, the divider. (H–J) Normalized average firing rate of
all recorded ACC neurons (n = 139) across each trial type (blue: reward, red: shock, yellow: neutral) for outcomes delivered to self (H) and the
conspecific (I,J). In panel (J), predictive cues were used but no outcomes were delivered to the conspecific. (K) Correlation of ACC activity on
shock-self and reward-self trials. Adapted from Schneider et al. (2020).

(Figure 2F), and then would approach each other toward
the end of shock trials relative to neutral trials (Figure 2G).
Critically, in this paradigm, reward and shock trials have
opposite valences, but both outcomes are arousing and attention
grabbing, thus allowing us to dissociate value encoding from
attention in ACC.

Figures 2H–J show the average activity over all recorded
ACC neurons (n = 139) across each trial-type. As in previous
studies, we saw increases in firing during shock trials compared
to neutral (yellow) in trial blocks for both shock-self and shock-
other. Notably, these firing increases on shock-other trials were
not observed during sessions in which the conspecific was
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not present, suggesting that the presence of the conspecific
was necessary for the observed increases in activity. Further,
firing was also present on shock-other trials, even when the
shock was omitted (Figure 2J). Importantly, firing across the
population was not only higher for shock compared to neutral
trials, but was also higher during reward-self trials. Further,
the two were positively correlated – cells that exhibited higher
firing during shock trials also exhibited higher firing during
reward trials (Figure 2K). Thus, these findings suggest that
the ACC, under this paradigm, contributes to attention-related
processing of social and non-social cues. Although activity at
the population level in ACC was elevated for both reward
and shock – suggesting that overall function of ACC is closely
aligned with attention in this paradigm – other neurons did
respond selectively to shock or reward delivered to the Self or
the Other (Schneider et al., 2020).

Thus, consistent with previous reports, we found that ACC
firing was modulated by aversive stimuli delivered to both self
and other. Additionally, we found that – while the activity of
some of these neurons genuinely reflected outcome identity
(i.e., reward or shock) – the population as a whole responded
similarly for both reward and shock, as well as for cues that
predicted their occurrence. Similar to the role it plays in
non-social decision-making, we conclude that ACC processes
information about outcomes (i.e., identity, recipient) in the
service of promoting attention in social contexts.

Basolateral amygdala –
multidimensional encoding of
negative and positive valence

Due to the BLA’s bidirectional connectivity with the ACC,
and its involvement in learning and social processing, here
we briefly review the BLA’s contribution to these processes.
At the level of single neurons, BLA activity is modulated by
the value and predictability of outcomes (Roesch et al., 2010).
These signals are similar to the aforementioned attentional
signals we found in the ACC; however, an important distinction
is that ACC activity increased prior to trial events following
unexpected switches in reward contingencies (Bryden et al.,
2011), while BLA signaled unsigned prediction errors at the time
of reward (Roesch et al., 2010). The bidirectional nature of ACC
and BLA connectivity suggests that this circuit is responsible
for the detection of prediction errors, and the subsequent
attentional increases that are necessary for dynamic learning
to occur (Bryden et al., 2011). Supporting this idea, other
studies have shown that disruption of this connectivity results
in impaired decision-making and behavioral flexibility (Murray,
2007; Salzman and Fusi, 2010; Yang et al., 2016; Yizhar and
Klavir, 2018; van Holstein et al., 2020; Brockett et al., 2021).
Further, during aversive conditioning, unsigned prediction error

signals in the primate BLA are transmitted to the ACC via
synchronous theta phase coupling (Taub et al., 2018). These
results are consistent with a study that was able to find that these
theta oscillations were positively correlated with the rate of fear
learning in humans (Chen et al., 2021). Together, these studies
suggest that heightened activity in the amygdala may be helping
synchronize ACC activity in a way that transfers error signal
information, subsequently leading to the increases in attention
that facilitate flexible learning (Taub et al., 2018; Chen et al.,
2021).

However, many single-unit recording studies have found
evidence that BLA neurons also signal valence, independent
from attention (Salzman and Fusi, 2010; Gore et al., 2015;
O’Neill et al., 2018). For example, during performance of a
Go/No-Go task, rats were trained to associate one odor (“go”)
with responding into a fluid well to receive a reward. Another
odor (“no-go”) was associated with an aversive outcome
(quinine delivery instead of sucrose) (Schoenbaum et al.,
1998). Thus, rats learned to withhold prepotent responding
on “no-go” trials. Researchers found that 36% of recorded
BLA neurons differentially encoded outcome identity – by
developing selectivity toward a cue associated with a particular
valence (Schoenbaum et al., 1998).

While the intention of each of these accounts of BLA
function (e.g., fear, reward, valence, salience, prediction errors)
have led to insights about the BLA’s role in behavior,
these unidimensional explanations may oversimplify function,
constrained by paradigms designed to tightly control and
monitor all aspects of behavior so as to better correlate neural
signals with learning and behavior. Recordings from amygdala
have often revealed highly complex selectivity (Nishijo et al.,
1988; Belova et al., 2007; Rigotti et al., 2013; Fusi et al., 2016;
Kyriazi et al., 2018, 2020; Putnam and Gothard, 2019; Gothard,
2020) that is reminiscent of selectivity found in frontal brain
regions. For example, Kyriazi and colleagues have mapped
conditioned stimuli (CS)- and conditioned response (CR)-
related activity toward appetitive and aversive stimuli in BLA
neurons to determine whether individual cells in the amygdala
encode CS, CR, or both. During performance of a Risk-Reward
Interaction (RRI) task – which required rats to respond to
both reward predicting and shock predicting cues – researchers
found that single BLA neurons concurrently and independently
encode CSs (signaling both appetitive and aversive outcomes)
and learned CRs (both approach and avoidance behaviors),
suggesting that most BLA neurons heterogeneously encode
multiple task and stimulus features (Kyriazi et al., 2018). Other
studies in primates learning to associate reward or punishment
with two different behavioral contexts showed that activity
in amygdala reflected context representations – in addition
to encoding stimulus identity and reinforcement expectations
(Saez et al., 2015).

Along with its well-studied, critical component in non-
social learning and decision-making, the amygdala has gained
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considerable attention for its contributions to social cognition.
For example, as mentioned above, during observational fear
conditioning, inhibition of BLA-projecting ACC neurons
prevented vicarious learning during the task (Allsop et al.,
2018). BLA recordings obtained during the procedure suggested
that ACC inputs were modulating the baseline activity of BLA
neurons, potentially facilitating association of perceived social
cues during the task. Consistent with those findings, it has
been shown that inactivation of BLA alters the investigation
of social cues in female rats, suggesting that it is required for
the prioritizing of social cues (Song et al., 2021). Notably, it
is not just basolateral portions of the amygdala that have been
linked to social cognition; other studies have shown that the
central and medial amygdala subregions contribute to various
social behaviors (Hong et al., 2014; Minami et al., 2019; Andraka
et al., 2021; Hu et al., 2021). Unlike these regions, the BLA is
thought to be upstream from more central amygdala structures,
activating them differentially to achieve different behavioral
outcomes (Janak and Tye, 2015). Together, previous non-social
and social findings in BLA have spotlighted it as a potential area
for the processing of social outcome valence, especially because
it is thought to encode the affective perception of pain at the level
of neural ensembles (Corder et al., 2019; Brockett et al., 2021).

Dopaminergic involvement –
prediction errors and salience
processing

Lesion studies have shown that the aforementioned signals
in the BLA appear to be partially dependent on midbrain
dopamine – specifically from the VTA – which, unlike the
signals we described for BLA, are thought to encode signed
reward prediction errors (Esber et al., 2012). Signed reward
prediction error signals are generated when there are differences
between expected and actual outcomes – facilitating the
updating of response-outcome associations so that learning can
occur (Schultz et al., 1997; Keiflin and Janak, 2015; Nasser
et al., 2017). While a plethora of studies have documented the
way in which dopaminergic signals are modulated by the value
of stimuli and transmit prediction error related information
(Schultz, 1998, 2010; Collins et al., 2016; Eshel et al., 2016;
Berke, 2018; Walton and Bouret, 2019), the DA signal does not
always differentiate between appetitive or aversive stimuli and
outcomes, reflecting their salience (Kutlu et al., 2021).

We have addressed these issues recently by looking at
dopamine release in the NAc in the context of unavoidable and
avoidable shock. While DA function has been widely implicated
in function pertaining to reward, a growing literature has
examined how DA contributes to aversive associative learning.
Several studies have shown a valence-dependent DA response
profile wherein aversive stimuli decrease DA firing and release,

while the omission of expected aversive outcomes result in an
increased DA response (Roitman et al., 2008; Darvas et al., 2011;
Badrinarayan et al., 2012; Budygin et al., 2012; Oleson et al.,
2012; Oleson and Cheer, 2013; Volman et al., 2013). With that
said, increased DA activity has also been shown to occur in direct
response to aversive physical stimuli – including tail pinches,
foot shocks, or air puffs (Abercrombie et al., 1989; Young et al.,
1993; Wilkinson et al., 1998; Brischoux et al., 2009; Matsumoto
and Hikosaka, 2009; Budygin et al., 2012) and activation of both
striatal D1 and D2 receptors is necessary for the formation of
fear memories (Fadok et al., 2009; Ikegami et al., 2018).

It has been suggested that some of the heterogeneity seen
in the response profiles of midbrain DA neurons to aversive
stimuli is actually due to the incorrect classification of DA
vs. non-DA neurons (Ungless et al., 2004; Ungless and Grace,
2012). Other studies have shown that while DA neurons in
the dorsal VTA were inhibited by aversive foot shock, DA
neurons in the ventral portion of VTA were excited by the
same foot shock (Brischoux et al., 2009). Further heterogeneity
has been described in primates along the dorsoventral and
mediolateral axes (Bromberg-Martin et al., 2010), with more
medial and ventral midbrain DA neurons signaling reward
prediction errors, and more dorsolateral SNc neurons encoding
salience signals (Matsumoto and Hikosaka, 2009; Bromberg-
Martin et al., 2010).

Heterogeneity of DA signals has also been described in
mice (Cohen et al., 2012; Lammel et al., 2014). In these
studies, DA neurons were identified optogenetically, and were
shown to respond to reward predictive cues, rewards, and
reward omissions conforming to reward prediction errors.
Other reports from the same group demonstrated that the firing
of many DA neurons to air-puffs and cues that predict them
were biphasic, suggesting that some of the reported excitatory
DA neuron responses to aversive stimuli may be due to an
initial excitatory response, followed by longer lasting decreases
in activity (Tian and Uchida, 2015). Further, DA neurons
more reliably signal prediction errors when aversive stimuli are
presented in different reward contexts within the same task
(Tian and Uchida, 2015). VTA projections are also an important
consideration. Optogenetic and addiction studies by Lammel
and colleagues have shown that VTA efferents projecting to
NAc are involved in appetitive processing, while efferents to the
prefrontal cortex are implicated in aversion (Lex and Hauber,
2008; Lammel et al., 2011, 2012, Ben-Ami Bartal et al., 2014).

It has also been proposed that DA neurons take prediction
errors as an input, transform the information, and signal
salience as an output (Berridge, 2007) and that signals differ
as a result of variable DA innervation, regional differences in
dopamine sensitivity, and variations in signal kinetics across
striatal regions (Wickens et al., 2007; Saddoris et al., 2015).
Consistent with these ideas, recent observations demonstrate
that changes in NAc DA release can be dissociated from changes
in DA neuron action potential firing (Hamid et al., 2016;
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Berke, 2018; Mohebi et al., 2019), and it has been hypothesized
that DA encoded value signals can underlie both prediction
errors and salience (Berke, 2018). Further support for a
role of presynaptic regulation in sculpting DA signals comes
from fiber photometry studies examining neuron terminals in
various regions of the striatum, showing that signals match
prediction error signals and salience signals in the ventral
and dorsal striatum, respectively, for both appetitive and
aversive related stimuli (Menegas et al., 2017; Yuan et al.,
2019). Interestingly – in both the dorsomedial and dorsolateral
striatum – prediction error (PE) signals were more prominent
for reward-related stimuli, whereas salience signals were more
evident for punishment-related stimuli (Yuan et al., 2019).

While many of these studies have focused on unavoidable
shock or punishment, others have examined the DA system
in the context of avoidance. In a typical avoidance paradigm,
an animal is presented with a warning cue (e.g., tone) which
precedes an aversive outcome (e.g., shock) unless a required
behavioral response (e.g., lever press) is performed. This type
of behavior has long been thought to rely on both Pavlovian
(i.e., fear of warning cue) and instrumental learning (i.e.,
terminating the warning cue reinforces the behavior). A number
of studies have shown that DA is important for avoidance. For
example, lesioning midbrain DA neurons or DA terminals in
NAc specifically prevents animals from acquiring avoidance,
while leaving other escape behaviors intact (Cooper et al.,
1974; Fibiger and Phillips, 1974; Zis et al., 1974; Amalric and
Koob, 1987; McCullough et al., 1993). Further, tonic DA levels
tend to be higher in the striatum during both the acquisition
and maintenance of avoidance behavior (McCullough et al.,
1993; Dombrowski et al., 2013), broadly inhibiting DA using
antagonists prevents animals from acquiring avoidance (Fibiger
et al., 1975; Beninger et al., 1980; Arnt, 1982; Wadenberg
et al., 1990; Inoue et al., 2000; Fadok et al., 2009), and D1-
knockout mice show impaired acquisition of fear conditioning
and extinction (Ikegami et al., 2018).

These studies all suggest that DA release increases during
avoidance. However, in computational models of the two-factor
theory of avoidance (Dayan, 2012; Lloyd and Dayan, 2019),
positive prediction errors are generated when aversive events
are successfully avoided, because the value of the outcome (no
shock) is referenced to the estimated value (shock). Consistent
with this model, it has been shown that DA release increases
to the warning cue only when animals subsequently avoided
shock, and that no increases in DA release were present to cues
that were followed by failed presses, or by lever presses that
terminated shock after it had already begun (escape response).
Instead, during escape responses there was a significant decrease
in DA between the cue presentation and lever press (Oleson
and Cheer, 2013). It is possible, then, that increases in phasic
DA released to shock avoidance cues and to the receipt of
safety could be analogous to cues predicting reward and reward
delivery – wherein successful avoidance of an expected aversive

consequence is rewarding. The researchers also went on to show
that predicted unavoidable shock paused DA release. Combined,
these results suggest that increased cue-evoked DA release in
the NAc predicts successful shock avoidance, whereas a pause
in DA transients occurs during the presentation of unavoidable
aversive stimuli (Roitman et al., 2008; Darvas et al., 2011;
Badrinarayan et al., 2012; Oleson and Cheer, 2013; Volman et al.,
2013).

Although there is now a considerable body of literature that
has studied DA contribution to reward approach and active
shock avoidance, very few have set out to do so explicitly within
the same task. To address this issue, we developed at task
in which rats experienced three separate cues predicting the
possibility for reward, the possibility for shock, or no change
in the environment. After presentation of the cue, a lever was
extended into the chamber, at which point rats could press to
either receive a sucrose pellet (positive reinforcement) or to
prevent foot shock (negative reinforcement) depending on the
identity of the predictive cue. If the rat failed to press the lever,
no food reward was delivered or shock was commenced (Gentry
et al., 2016, 2019).

We found that DA release within the NAc increased to
both reward approach and shock avoidance cues. Further, we
found significant positive correlations between DA release on
reward and shock trials relative to neutral trials during the
presentation of cues and during the lever press. This work
confirmed that, at least within the NAc core, local DA release
can signal the need for approach or avoidance behavior, and
tracks the value of each cue. This result coincides with prior
results from Oleson et al. showing that DA release in NAc core
predicts successful avoidance, and is inhibited by unavoidable
shock (Oleson et al., 2012). We have recently replicated these
results in similar tasks that not only manipulated reward and
shock within the same paradigm, but also manipulated reward
and shock that would be delivered to a conspecific nearby as we
will describe below.

In these studies, we have shown that DA release in NAc
reflects the subjective value placed on appetitive and aversive
events as opposed to the objective value of the event itself. To
achieve this, we recorded DA release in the NAc using fast-scan
cyclic voltammetry (FSCV) in two different social paradigms –
one that used Pavlovian cues to predict reward or unavoidable
shock to either the recording rat or to a nearby conspecific, and
a second that was instrumental – allowing the recording rat to
refrain from the pursuit of reward in order to avoid harmful
consequences (i.e., footshock) for itself or the conspecific. In
both studies, we found signs that rats were “empathetic” and/or
“prosocial” as previously described; however, we also showed
that rats are often not overly empathetic or prosocial, in that
their behavior and DA signals were modulated far more by
potential reward and shock that occurred directly to them as
opposed to their conspecific, typically reflecting a prioritization
of their own physical state over their conspecific’s across
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multiple within- and across-task comparisons (Kashtelyan et al.,
2014; Lichtenberg et al., 2018; Schneider et al., 2020).

Our first contribution to this field was to show that DA
release is modulated both by delivery of reward to the self and
a conspecific, and by a mixture of affective states during the
observation of conspecific reward (Figures 3A–D) – initially
exhibiting increases in appetitive calls (50 kHz; Figure 3E) at
the beginning of reward-other blocks, then exhibiting increases
in aversive calls (22 kHz; Figure 3F) as reward-other trials
continued (Kashtelyan et al., 2014). Thus, when rats first
observed another rat receive reward, it found it to be appetitive,
but after experiencing that event several times, the rats observing
the other rat receive reward found it to be aversive, perhaps
reflecting the understanding that it would not be the one
receiving the reward. Like ultrasonic vocalizations (USVs;
Figures 3E,F), DA signals (Figures 3C,D) were modulated by
delivery of reward to the conspecific, which mapped onto the
emotional state associated with the conspecific receiving reward
(i.e., initially appetitive, then aversive; Figures 3E,F; Kashtelyan
et al., 2014). These results demonstrated that the appetitive
and aversive states associated with conspecific reward delivery
modulated DA signals related to learning in social situations
in a signed fashion, reflecting the subjective self-interested
evaluation of rewards delivered to conspecific.

After publishing these results, we replicated these findings
and extended them using the newly designed Pavlovian task
described above in the context of ACC recording (Figures 2A–
D), that not only manipulated reward, but also shock. Unlike
firing in ACC, which we suggested reflected attention to salient
cues, average DA release over all sessions increased to cues and
rewards delivered to the recording rat (Figures 4A–E; blue)
but was lower during the presentation of cues that predicted
unavoidable shock (Figure 4A; red; note that due to shock
artifact we could not record DA release during shock-self trials
during this study). Thus, as described previously, DA release
increased and decreased during cues that predicted appetitive
and aversive events, respectively, reflecting value and/or errors
in reward prediction (Schultz et al., 1997; Roitman et al., 2008;
Bromberg-Martin et al., 2010; Roesch et al., 2010; Schultz, 2010,
2015; McCutcheon et al., 2012; Oleson et al., 2012; Wenzel et al.,
2018). Interestingly, we also found that the decline of DA release
induced by the presentation of shock-self cues was attenuated
in the conspecific’s presence (Figure 4A; thick red vs. thin red;
cue epoch: gray bar) consistent with the reductions in behavioral
measures of fear observed on these trials, suggesting that fear is
buffered by social interaction.

These data show that DA release increases and decreases
to cues that predict reward and shock to oneself, respectively,
reflecting subjective value. Notably, when reward and shocks
were directed at the conspecific, instead of the recording rat,
DA release also tracked the subjective value the recording rat
placed on those stimuli, as opposed to their physical nature.
We found that there was an increase of DA release similar

to what was observed during reward-self trials; however, after
directional cue presentation – when rats became aware that the
conspecific would receive the reward – DA declined to pre-cue
levels (Figure 4F). As a result, DA release was significantly lower
when reward was delivered to the conspecific compared to when
reward was delivered to the recording rat, consistent with our
previous work showing that rats find rewards delivered to a
conspecific not appetitive with repeated exposure. Remarkably,
the opposite was true on shock-other trials – prior to shock
delivery, we found that DA release was similar for shock-self
and shock-other trials. However, after shock was delivered to the
conspecific, DA release actually increased relative to when the
rat was alone (Figure 4F; red; Figures 4G–J), possibly reflecting
that shock delivered to the other is better than shock delivered
to oneself and/or confirming that the shock will not be directed
to the recording rat via the observed distress of the conspecific.
Together, these findings suggest that DA is modulated by the
social context in which appetitive and aversive outcomes occur.

Taken together, the analysis of behavior and DA release
during the Pavlovian Social Distress Paradigm suggested that
DA release better reflected the subjective valuation of appetitive
and aversive events, as opposed to the objective value of stimuli
and outcomes or their salience. However, since that paradigm
was completely Pavlovian, rats were never given the opportunity
to perform “prosocial” acts that relieved distress for others,
making it difficult to truly characterize the DA response and
the nature of their behavior. To address this issue, we had a
different cohort of rats perform an Instrumental Social Distress
Task, illustrated in Figures 5A–D. During performance of this
task, rats were presented with a lever 5 s after presentation of an
auditory stimulus. Lever pressing always led to sucrose reward,
but on some trials the auditory stimulus predicted that lever-
pressing would also lead to a shock being delivered either to
oneself or to the conspecific. After extension of the lever, rats
had 5 s to press; otherwise, the lever retracted and no outcome
was delivered. Overall, rats were less likely (Figure 5E) and took
longer (Figure 5F) to lever press on shock-other trials relative
to non-shock trials, consistent with “prosocial” behavior seen
in other studies (Atsak et al., 2011; Ben-Ami Bartal et al., 2011,
2014; Burkett et al., 2016; Meyza et al., 2017).

Although cues that predict unavoidable footshock suppress
DA release (as in the Pavlovian Social Outcome Paradigm) – as
we have described above, cues that predict avoidable shock and
avoidance of shock itself, can increase DA release to a similar
degree as cues that predict reward delivery (Oleson et al., 2012;
Oleson and Cheer, 2013; Gentry et al., 2016; Wenzel et al.,
2018). Notably, we replicated those results in this task. Thus,
unlike cues that predict unavoidable shock – which are aversive
and suppress DA release – cues that predict avoidable shock
increase DA release, reflecting the value of successfully avoiding
an aversive outcome. Remarkably – as during non-press shock-
self trials – a similar, yet reduced, pattern of DA release emerged,
with DA release occurring to the cue and during the absence
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FIGURE 3

(A,B) Task design, with an example of the order of blocks within a session. Reward (sucrose pellet) was delivered 10 s following the onset of cue
lights. Each session consisted of three block types (B): (blue: recording rat receives reward, green: recording rat observes conspecific receiving
reward, or red: recording rat observes a sucrose pellet being delivered to an empty chamber), with an average of 15 trials per block. Rats were
able to observe, smell, and hear the conspecific through a wire mesh. (C) Average dopamine concentration in NAc over time during the first
(thick lines) and second (thin lines) trial of each trial type (blue: recording rat receives reward, green: recording rat observes conspecific
receiving reward, or red: recording rat observes a sucrose pellet being delivered to an empty chamber). (D) Average dopamine release for all
trial types (blue: recording rat receives reward, green: recording rat observes conspecific receiving reward, or red: recording rat observes a
sucrose pellet being delivered to an empty chamber) during the reward epoch of the first six trials within the block. (E,F) 50 (E) and 22 kHz (F)
ultrasonic vocalization rates for the first six trials during the reward epoch (2 s following reward delivery to the conspecific). Asterisks denote
significant difference between indicated trial and the last trial; Wilcoxons, p < 0.05. Adapted from Kashtelyan et al. (2014).

of the shock (Figures 5G–J). This reduced DA release when
the conspecific was saved during shock-other trials, relative
to when the recording rats avoided shock for oneself, likely
reflects lesser concern for the conspecific compared to oneself
as demonstrated by significantly less avoidance on shock-other
compared to shock-self trials (Figures 5E,F).

Orbitofrontal cortex–evaluation of
expected rewards delivered to self
and others

In our original review we heavily discussed the OFC – as
it is a region that is critical for encoding expectations about

future appetitive and aversive outcomes, which is imperative
for guiding learning and flexible decision-making (Schoenbaum
et al., 1998; Roesch and Olson, 2004; Schoenbaum and Roesch,
2005; Plassmann et al., 2010; Morrison et al., 2011; Morrison
and Salzman, 2011; Bissonette et al., 2014). However, this
brain region has yet to be examined in a social paradigm
that manipulates both appetitive and aversive stimuli. Further,
in non-social tasks that have presented both appetitive and
aversive stimuli, it has been shown that OFC activity reflects
value as opposed to motivation (Roesch and Olson, 2004;
Bissonette et al., 2014). It has also been shown that in addition to
populations of OFC neurons that represent value, the activity of
other neurons reflects the actual offers being made or the option
that will be eventually chosen during performance of a choice
task (Padoa-Schioppa and Assad, 2006; Morrison et al., 2011;

Frontiers in Systems Neuroscience 10 frontiersin.org

https://doi.org/10.3389/fnsys.2022.926388
https://www.frontiersin.org/journals/systems-neuroscience
https://www.frontiersin.org/


fnsys-16-926388 July 28, 2022 Time: 15:9 # 11

Vázquez et al. 10.3389/fnsys.2022.926388

FIGURE 4

(A) Average dopamine concentration over time on reward (blue), neutral (yellow), and shock (red) trials when the outcome was delivered to the
recording rat – when the rat was with a conspecific (thick line) or alone (thin line) during performance of the task described in Figure 2. Shock
trials are truncated due to noise artifacts. (B–E) Reward (reward minus neutral) and shock (shock minus neutral) indices of dopamine release
during the directional cue epoch (gray bar in A) across sessions when the recording rat was alone (B,C) or with a conspecific (D,E). (F) Same as
(A), but when the outcomes were being delivered to the conspecific (G–J) same as (B–E), but when the outcomes were being delivered to the
conspecific instead of to the recording rat (reward epoch = gray bar in F). Asterisks denote significant shifts from zero; Wilcoxons, p < 0.05.
Adapted from Lichtenberg et al. (2018).

Bissonette et al., 2014). Collectively, these studies have shown
that OFC has all the signals necessary, at the single unit level,
to make reward-guided decisions, as opposed to facilitating
behavior through general motivational mechanisms. Recent
work demonstrates that this is also true in the social domain
(Machado and Bachevalier, 2006; Azzi et al., 2012; Chang et al.,
2013). Further, studies involving OFC disruption in humans
(Bechara et al., 2000; Blair, 2010; Forbes and Grafman, 2010),
rats (Rudebeck et al., 2007; Kuniishi et al., 2017; Jennings et al.,
2019), and non-human primates (Machado and Bachevalier,
2006) report impairments in social behaviors. Lastly, OFC is also
activated during mutual cooperation in a prisoner’s dilemma-
type task (Decety et al., 2004) and OFC neurons signal the value

of rewards that are to be delivered to the self and others, with
an emphasis on self-directed reward (Chang et al., 2013). Future
work examining OFC in tasks that manipulate both appetitive
and aversive domains are necessary to determine how its signals
are impacted by aversive stimuli directed to others in relation to
reward and shock delivered to the self.

Other regions of interest – future
directions

There are a multitude of other regions also involved in
the processing of rewarding and aversive events in non-social
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FIGURE 5

(A–D) Instrumental social distress task design. Recording rats were presented with a lever 5 s after presentation of 1 of 3 different auditory
stimuli. Lever pressing always led to sucrose reward, but on some trials, different auditory stimulus predicted that lever-pressing would also lead
to shock delivery – either to oneself (red; Shock-Self), or to the conspecific (orange; Shock-Other). After lever extension, rats had 5 s to press;
otherwise, the lever retracted and no outcomes were delivered. Thus, on “Shock-Self” trials, if the recording rat pressed, it received reward and
shock. On “Shock-Other” trials, if the recording rat pressed, it received reward and the conspecific was shocked. If they did not press on “Shock”
trials, they avoided shock for themselves or the conspecific (depending on the trial-type), at the cost of not receiving reward. On “No-Shock”
trials recording rats pressed the lever for reward with no threat of shock to oneself or the conspecific (blue). (E) Percentage of lever presses per
trial type. (F) Latency to lever-press. (E–F) Wilcoxon, p < 0.05. (G) Dopamine release (nM) in NAc over time (s) across each trial type. Blue
solid = recording rat pressed the lever for reward; Blue dashed = recording rat failed to press the lever for reward; Red = recording rat did not
press during shock-self trials, thus avoided shock for oneself and forfeited reward on that trial; Orange = recording rat avoided shock to the
conspecific at the cost of giving up reward for oneself. (H–J) Indices of DA release for each trial type during the outcome cue epoch (gray bar in
G) across sessions: (H) shock self (no press) minus shock other (no press); (I) shock self (no press) minus no shock (press); (J) shock other (no
press) minus no-shock (press). (H–J) Asterisks denote significant shifts from zero; Wilcoxons, p < 0.05. Adapted from Lichtenberg et al. (2018).
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and social tasks that we do not have the space to discuss here
[e.g., hypothalamus, lateral habenula, rostral tegmental nucleus,
dorsal raphe, pedunculopontine tegmental and laterodorsal
tegmental nucleus, hippocampus, insula, and locus coeruleus
(Sara and Segal, 1991; Jhou et al., 2009; Wang et al., 2017;
Noritake and Nakamura, 2019)]. Some of these regions have
been studied in the context of both appetitive and aversive
events within the same paradigm, but not in the context of
social processing, whereas others have been studied in the social
domain, but their firing has not yet been fully characterized. For
example, using fiber photometry, researchers found excitatory
responses in the lateral habenula to aversion-predicting cues,
and inhibitory response patterns to reward-predicting cues
(Wang et al., 2017). Future studies should look into whether
these response patterns extend to social contexts. Another
region of interest is the insula, which has been implicated in
social cognition across species (Droutman et al., 2015; Rogers-
Carter et al., 2018). Along with the ACC, it forms an integral
part of the “salience network,” which plays an important role
in selecting which stimuli an organism attends to Qadir et al.
(2018) and Seeley (2019). Tasks that apply both appetitive and
aversive stimuli might better uncover the nature of signals
observed in this region and how it relates to attentional signals
observed in ACC in both social and non-social contexts. Finally,
the locus coeruleus (LC) – a region with widespread projections
throughout the entire central nervous system – consists of
neurons that synthesize norepinephrine and play a major role
in arousal and attention (Breton-Provencher et al., 2021) is also
thought to contribute to social stress (Reyes et al., 2015). Future
studies should investigate how norepinephrine release in ACC
might modulate attention to social cues.

Conclusion

In our findings, both ACC firing and attention to the task
increased on trials immediately following unsigned prediction
errors, (i.e., trials following outcomes that were either better
or worse than expected) and when rats anticipate and receive
both reward and shock (Bryden et al., 2011; Hayden et al.,
2011; Schneider et al., 2020; Vázquez et al., 2020). The observed
alterations in attentional control likely impact decision-making
in social and non-social context, particularly with regards to
being able to dynamically update behavior in environments
that are uncertain. These attentional signals in ACC modulate

and are modulated by signed and unsigned prediction error
signals from VTA and BLA, and evaluative expectancy signals
in OFC. The BLA’s involvement in both appetitive and aversive
processing also likely plays a pivotal role in context-dependent
associative learning, and assigning salience and value to cues
that signal specific appetitive and aversive outcomes (Brockett
et al., 2021), whereas DA signals arising in VTA might better
reflect errors in reward predictions based on the subjective value
that the animal places on outcomes delivered to oneself, as well
as those delivered to others. Notably, DA signals arising from
different subregions of the midbrain and/or those that project to
different regions in striatum and prefrontal cortex might better
reflect salience, or be modified downstream depending on task
context and innervation.
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