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Abstract: Functional non-retentive fecal incontinence (FNRFI) is a common problem in pediatric age.
FNRFI is defined as unintended loss of stool in a 4-year-old or older child after organic causes have
been excluded. FNRFI tends to affects up to 3% of children older than 4 years, with males being
affected more frequently than females. Clinically, children affected by FNRFI have normal intestinal
movements and stool consistency. Literature data show that children with fecal incontinence have
increased levels of separation anxiety, specific phobias, general anxiety, attention-deficit/hyperactivity
disorder (ADHD), and oppositional defiant disorder. In terms of possible relationship between
incontinence and sleep, disorders of sleep organization have been observed in the pathogenesis of
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enuresis so generating the hypothesis that the orexinergic system may have a crucial role not only
for the sleep organization per se but also for the sphincterial control in general. This study aimed to
focus on specific neurophysiological aspects to investigate on the possible relationship between sleep
organizational abnormalities and FNRFI. Specifically, we aimed to measure orexin serum levels in
children with FNRFI and assess their polysomnographic sleep macrostructure patterns. Two study
groups were considered: FNFRI (n = 45) and typically developed (TD) (n = 45) group. In both groups,
sleep patterns and respiratory events were assessed by polysomnographic recordings (PSG) during a
period of two nights at least, and plasma levels of Orexin-A were measured in each participant. The
findings of this initial investigation seem to support a major role of Orexin-A in sleep organization
alterations in children with FNFRI. Also, our data suggest that sleep habits evaluation should be
considered as screening and complementary tool for the diagnosis of fecal incontinence in children.

Keywords: functional non-retentive fecal incontinence (FNRFI); polysomnographic (PSG) assessment;
orexin-A; sleep organization disorders

1. Introduction

Functional non-retentive fecal incontinence (FNRFI) is a relatively common problem in pediatric
age [1]. FNRFI is associated with high levels of distress for both children and parents and with
emotional disorders in about 30–50% of affected children [2]. Two major forms of fecal incontinence
can be differentiated: fecal incontinence with and without constipation. According to the Rome
IV criteria [3] fecal incontinence is defined as unintended loss of solid or liquid stool occurring in
inappropriate places in a 4-year-old or older child after organic causes have been ruled out.

Although epidemiological data are still contrasting and the estimated prevalence depending on
the definition used, FNRFI tends to affects up to 3% of children older than 4 years [4,5]. Moreover,
males seem to be affected more frequently than females and daytime FNRFI is more frequent than
nocturnal FNRFI, which is most often due to organic causes [6].

Children affected by FNRFI have normal intestinal movements and stool consistency, infrequent
abdominal pain, normal colon transit and no stool mass. In general, coordination of pelvic visceral
activities allowing appropriate elimination behaviors requires a mutual interaction between brain
and pelvic organs. Barrington’s nucleus, located in the Pons, plays a key role in this complex
mechanism. Barrington’s nucleus neurons project to both pelvic visceral motorneurons (lumbosacral
spinal preganglionic neurons giving rise to the parasympathetic innervation of the pelvic viscera) and
cerebral norepinephrine neurons (Locus Coeruleus, LC), which modulate behavior. This regulatory
circuit coordinates descending limb of the micturition reflex with a central limb that initiates arousal
and shifts the focus of attention to facilitate so elimination behavior. It is important to note how
elimination disorders can be mutually interconnected with cognitive disorders and behavior. This
important association may be due in part to releasing stress-related neuropeptides such as the releasing
corticotropin factor (CRF), which, for example, is prominent in the Barrington’s nuclear neurons [7].
CRF is released in PVN and stimulates adrenocorticotropic hormone secretion (ACTH) from the
anterior pituitary gland. ACTH stimulates the release of glucocorticoid from the cortex of the adrenal
gland [8]. This system is activated under stress conditions, along with another endocrine system, the
sympathetic-adrenal-medullar axis, which determines the release of adrenaline and noradrenaline
from the adrenal medulla [9,10]. These mechanisms determine metabolic, cardiovascular, immune
and behavioral responses [11–13]. The gastrointestinal tract from the esophagus to the distal colon
is innervated by efferent vagal parasympathetic fibers from the dorsal motor nucleus of the vagus
nerve [14]. Studies in animals have shown that vagotomy reduces the motility in the distal colon [14,15].
Therefore, it would be possible to hypothesize that pathways involved in the stress reactions alter the
motility of the colon through parasympatic vagal activation, resulting in impairment of evacuation.
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On the other hand, efferent Barrington’s nucleus fibers send projections to the sacral spinal cord and
terminate in the region of the pelvic nerves [16,17]. These pelvic nerves send projections to the colon
and rectum [18]. Studies in animals have shown that pelvic nerve activation modulates the motility of
the rectum and the distal colon [19,20]. It is of note that 30–50% of all children with fecal incontinence
have comorbid emotional or behavioral disorders.

Specifically, data in the literature show that children with fecal incontinence have increased
separation anxiety (4.3%), specific phobias (4.3%), general anxiety (3.4%), ADHD (9.2%) and oppositional
defiant disorder (11.9%) [21], although relevant stressful events seem not to be involved in the
pathogenesis of fecal incontinence [22]. However, data on comorbidities are limited and have mainly
focused on ADHD and enuresis [23]. Considering the frequent relationship between enuresis, ADHD
and sleep regulation, it is interesting to evaluate possible deficits of sleep organization in FNRFI
children [24,25]. Sleep organization disorders have been already associated with the pathogenesis
of enuresis. A series of studies, in fact, have shown that the noradrenergic projections from LC are
responsible for the arousal, as the LC is activated by stimulation of bladder relaxation during deep
sleep [26].

In light of this evidence, one could speculate that the orexinergic system is crucial not only for
sleep organization, but also for the sphincteric control. However, data considering sleep organizational
disorders in FNRFI children are sparse. The aim of this study was to reduce this gap of knowledge by
focusing on specific neurophysiological aspects and Orexin-A plasma levels as measured in FNRFI vs.
control children. To the best our knowledge, this is the first polysomnographic/orexin-A association
study performed in FNRFI children.

2. Materials and Methods

2.1. Study Design

The present study and experimental design represented the efforts of a multicenter case-control
protocol, involving Sleep Labs at University Child and Adolescent Neuropsychiatry and Paediatrics
Clinic in different Regions in Italy (Campania, Umbria, Abruzzo, Calabria, Sicily), and on the Island
of Malta.

2.2. Population

Forty five (45) children (24 males and 21 females, mean age 9.13 ± 1.31) affected by FNRFI were
recruited and compared with 45 typically developing children (TD) (controls) (22 males and 23 females,
mean age 9.32 ± 1.5).

Exclusion criteria were: intellectual disability (IQ < 70), autism spectrum disorders (ASD), obesity
(z-BMI ≥ 95 percentile) and overweight (z-BMI ≥ 85 percentile), epileptic disorders. Children of both
groups were all Caucasians.

The patients were recruited in the same urban area with comparable socio-economic status as
computed by Hollingshead Four Factor Index of Social Status [27].

All parents gave their informed consent prior clinical assessment (PSG recordings), plasma
orexin-A detection, and for the de-identified dissemination of the results for scientific purposes. This
study was carried out in accordance with the principles of the Declaration of Helsinki and was
registered in European Clinical Trials Registry (EuDRACT 2015-001163-39).

2.3. Polysomnographic Sleep Recordings and Scoring

As described in Roccella et al. [28], sleep macrostructural patterns, nocturnal respiratory events,
and periodic limb movements index (PLMI) among FNFRI and TD children were assessed with full
polysomnographic recordings (PSG) and visually scored according to the standard criteria of the
American Academy of Sleep Medicine (AASM) [29].
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An expert scorer (MC) evaluated all the following conventional sleep parameters: Time in bed
(TIB), Sleep period time (SPT), Total sleep time (TST), Sleep latency (SOL), REM latency (FRL), Number
of stage shifts/hour (SS/h), Number of awakenings/hour (AWN/h), Sleep efficiency (SE%), Percentage
of sleep period time spent in sleep stages 1 (N1%) and 2 (N2%), slow-wave sleep (N3%), and REM
sleep (REM%), Arousal indexes during the NREM and REM periods.

All variables were analyzed by Hypnolab 1.2 sleep software analysis (SWS Soft, Troina, Italy),
according to the international criteria for pediatric age. According to the international criteria, we
selected only the last PSG recordings for analysis.

2.4. Plasma Orexin-A Detection

Blood samples were drawn from a peripheral vein at 8:00AM after overnight fast into Vacutainer
tubes (BD, Franklin Lakes, NJ, USA) containing EDTA and 0.45 TIU/mL of aprotinin. First, each
sample was mixed and then immediately a centrifugation at 3000 rpm for 12 min at 4 ◦C was executed.
Plasma was stored at −80 ◦C until analysis. Enzyme-linked immunoassay kits (ELISA) were used to
measure plasma Orexin-A levels. Hypocretin orexin-A1 ELISA kits were purchased from Phoenix
Pharmaceuticals Inc. (Burlingame, CA, USA). Before measurements, plasma Orexin-A was extracted
using Sep-Pak C18 columns (Waters Corporation, Milford, MA, USA). 10 mL of methanol and 20 mL
of H2O were used to activate the columns. The following step consisted of adding 1–2 mL of sample
to the column and washing with 20 mL of water. Samples were eluted slowly with 80% acetonitrile
and resulting volume was reduced to 400 µL under nitrogen flow. An aliquot was led to exsiccation
using Speedvac (Savant Instruments, Holbrook, NY, USA). The dry residue was dissolved in water and
used for ELISA. There was no cross-reactivity of the antibody for hypocretin-1(16–33), hypocretin-2,
agouti-related protein (83–132)-amide. The minimal detectable concentration was 0.37 ng/mL, the
intra-assay error <5% and the inter-assay error <14%.

2.5. Statistical Analysis

Descriptive statistics were expressed as medians and interquartile ranges (IQR) for continuous
variables. Comparisons of categorical data were performed with chi-squared test and Fisher’s exact
test, while continuous data were analyzed with nonparametric Mann–Whitney U test. A p value ≤
0.05 was considered statistically significant. The software Statistica version 8.1 (StatSoft Inc, Tulsa, OK,
USA) was used for all statistical tests.

3. Results

No differences between FNRFI and TD children were found for the mean age (t-values = −0.6661;
p = 0.51) and gender (chi-square = 0.044; p = 0.833). Plasma Orexin-A levels in FNFRI children (981.5 ±
252.4 pg/mL; range 729–1223 pg/mL) were significantly higher than TD children (584.3 ± 291.8 pg/mL;
range 875–293 pg/mL; t = 6.906, p < 0.001) (Table 1).

Table 1. Characteristics of participants (mean ± SD).

FNRF
IN = 45

TD
N = 45 p

Age 9.13 ± 1.21 9.32 ± 1.5 0.51

Gender (M/F) 24/21 22/23 0.833

Plasma Orexin-A levels (pg/mL) 981.5 ± 252.4 584.3 ± 291.8 <0.001

Table 1 shows differences between FNRFI) vs. TD children groups for the mean age, gender,
and plasma Orexin-A levels (pg/mL). Chi-square test and t-Students’ analyses were performed where
appropriate. p ≤ 0.05 values were considered significant.



Brain Sci. 2020, 10, 129 5 of 9

Table 2 summarizes the PSG parameters between two study groups: FNRFI vs. TD children.
Specifically, as for macrostructural sleep stages, FNRFI children showed higher values of sleep onset
latency (SOL-min) (p < 0.001), stage shifting-h (SS-h) (p < 0.001), AWN-h (p < 0.001), and lower Time
in Bed (TIB-min) (p < 0.001), Sleep Partial Time (SPT-min) (p < 0.001), Total Sleep Time (TST-min)
(p < 0.001), Sleep Efficiency percentage (SE%) (p < 0.001), stage 2 percentage (N2%) (p < 0.001)vs. TD
children. Moreover differences were found also for the arousal index in both NREM (p < 0.001) and
REM (p = 0.013) sleep arousal index.

Table 2. Polysomnographic macrostructural parameters comparison between the groups (median, inter
quartriles analysis; Mann-Whitney U test).

FNRFI Children
N = 45

TD Children
N = 45

Median IQR Median IQR z-Value p

Time in Bed (TIB)-min 474.35 434.617–513.45 573 506–609 −6.363 <0.0001
Sleep Partial Time (SPT)-min 409 382–474.3 544.5 485–596 −6.532 <0.0001
Total Sleep Time (TST)-min 352.7 325.5–411.1 518 471–552 −7.719 <0.0001
Sleep Onset Latency (SOL)-min 39.183 18.8–76.3 19.5 9.5–29 3.611 <0.0001
First REM Latency (FRL)-min 100.5 98.5–125.5 129.5 92.5–152 −1.521 NS
Stage Shifting (SS)-h 10.2 9.2–10.7 5.8 4.8–7.8 5.415 <0.0001
Awakenings (AWN)-h 8.4 4.3–10.4 1.2 0.4–2.2 6.766 <0.0001
Sleep Efficiency (SE)% 76.538 69.593–81.382 90.6 87.2–94.5 −6.452 <0.0001
Wake After Sleep Onset (WASO)% 14.903 12.338–18.454 3.7 0.6–7.4 6.403 <0.0001
Stage 1 (N1)% 10.436 5.116–15.564 1.6 1–4 5.701 <0.0001
Stage 2 (N2)% 28.629 22.648–32.689 43.4 35.2–47.7 −5.645 <0.0001
Slow waves sleep (N3)% 27 16.933–29.609 27.6 23.8–34.8 −1.650 NS
Rapid eyes movement (REM)% 19.969 17.146–23.235 21.5 16.2–24.1 −0.238 NS
NREM Arousal Index 9.7 9.2–10.2 8.0 6.6–8.6 6.540 <0.0001
REM Arousal Index 8.8 8.3–9.4 9.4 8.7–9.8 −2.494 0.013
Apnea/Hypopnea (AHI)/h 6.4 5.2–8.1 0.3 0.2–06 8.171 <0.0001
Oxygen desaturation index (ODI) 3.9 2.6–4.8 0.0 0.0–0.3 8.171 <0.0001
Oxygen Saturation (SpO2)% 97.6 96.8–98.1 98.7 98.4–98.8 −6.064 <0.0001
Oxygen saturation (SpO2) nadir% 92 89.4–94.4 98 97.5–98 −7.767 <0.0001
Oxygen desaturation (SpO2) % 3.9 3.2–5.3 0.0 0.0–1.1 7.856 <0.0001
Periodic Limb Movements Index (PLMI) 5.12 3.7–6.42 3.1 2.1–3.4 5.838 <0.0001

NS: Not significant.

Table 2 shows the differences between FNRFI vs. TD children for the following polysomnographic
(PSG) sleep parameters: Time in bed (TIB), Sleep period time (SPT), Total sleep time (TST), Sleep
latency (SOL), first REM latency (FRL), stage shifts/hour (SS-h), number of awakenings/hour (AWN/h),
Sleep efficiency% (SE%), Percentage of each sleep stage (N1%; N2%, N3%, REM%),NREM and REM
arousal index; apnea/hypopnea index (AHI), Oxygen desaturation index (ODI), SpO2%, SpO2 nadir
percentage, SpO2 desaturation, Periodic Limb Movement Index (PLMI). t-Student’s analysis was
performed. P values < 0.05 were considered as significant.

As for the respiratory nocturnal parameters, FNRFI children showed higher apnea/hypopnea/hour
(AHI) (p < 0.0001), oxygen desaturation index (ODI), lower SpO2% (p < 0.0001) and nadir SpO2%
(p < 0.0001) and the Periodic Limb Movements Index/hour (PLMI) (p < 0.0001) than TD children
(Table 2).

4. Discussion

Our findings show that FNRFI children have a relevant reduction in sleep stages representation,
mainly resumed in the lack of adequate sleep duration and reducing noteworthy sleep efficiency.
Particularly, stage 2 and REM sleep% are reduced in FNRI children while between 9 and 16 years stage
2 sleep tend to be more represented, corresponding to the decline in synaptic connectivity among
neurons during the transition towards adulthood Evacuation disorders are not just incontinence or
bedwetting, but they are indeed a more complex clinical entity that still needs to be fully considered
and studied in depth. Evacuation disorders in pediatric age pose a physical, social, and emotional
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burden for children and families. Indeed, children with FNRFI have been described as having more
symptoms of anxiety/depression, family environment with less expressiveness and poor organization,
greater attention difficulties, more social problems, more destructive behaviors and school-based school
performance [30]. These typical aspects may be explained also by the sleep macrostructural parameters
reduction, considering the relevance of adequate sleep efficiency in neurodevelopmental disorders.

In particular, studies have shown that children with primary nocturnal monosymptomatic enuresis
(PMNE) and FNRFI present a higher rate of daytime incontinence and micturition problems, thickened
bladder walls, pathological electroencephalography, increased frequency of hyperkinetic syndromes,
emotional disturbances (anxiety/depression) and behavioral disorders [31]. The higher rate in sleep
discontinuity (awakenings/h, stage shifting/h, wake after sleep onset %), the sleep-related breathing
disorders and the pathological index for periodic limb movements may sustain the diurnal hyperactivity,
behavioral and emotional disorders [32–34].

It seems then possible that PMNE and FNRI may be somehow connected to each other starting
from their related neuroanatomical circuits and corresponding regulatory mechanisms. For example,
the Barrington’s pontine nucleus regulates both micturition and activity of other pelvic organs such
as colon and genitals and these type of neurons are activated when bladder pressure increases and
receives afferent information from the bladder, spinal cord, and periaqueductal gray region, relevant
in modulating stress effects on micturition regulation. The Barrington’s nuclear neurons have also
synaptic contacts with the distal colon [35] and this could suggest that these systems may function in a
reciprocal way as evidenced by co-activation of bowel and bladder during stressful conditions [36].
In addition, the Barrington’s nuclear neurons projecting to the spinal cord also project to the locus
coeruleus (LC) [37–39] that projecting to the forebrain, tend to play a key role in activating and
maintaining excitement in response to stimuli [38,40]. LC neurons are mainly triggered by visceral
stimuli such as bladder and colon distension [41–43]. The activation of LC in response to intestinal
and pelvic stimuli is correlated with cortical electroencephalographic indices of excitement, such as
desynchronization and a shift from high-rise, low-frequency activity at low intensity, high-frequency
activity [44–46].

In general, alterations of the complex system involving the Barrington’s nucleus may sustain
pathophysiological mechanisms underlying elimination disorders, considering the frequent association
between fecal incontinence, enuresis and sleep disturbances [47]. On the other hand, LC is associated
with the hypocretin/orexin system playing a key role in sleep/wake regulation and the administration
of hypocretins directly in LC tend to increase wakefulness and to reduce REM sleep [48]. Moreover, the
orexin receptors are expressed in Barrington’s nucleus [49] supporting the role of the orexins system in
sleep alterations of FNFRI children as described in our study and reported in other neurodevelopmental
disorders [50].

In the medical literature, there are currently very limited data reporting sleep quality in children
with fecal incontinence. Considering the social impact of this disorder, a better understanding of the
pathophysiological mechanisms underlying this disturb is crucial.

We have taken into account some limitations of the present study such as lack of follow-up
evaluation, which could represents a second step of the current study. However, we also would
like to emphasize one of the strengths of this study that consisted in the relatively large number of
FNFRI children enrolled and that this is one of the first report describing alterations of sleep PSG and
Orexin-A abnormalities in these pediatric patients. Also, we propose that the analysis of sleep habits,
PSG recordings and Orexin-A plasma levels, may be considered as aclinical tool for the screening and
confirmation of FNFRI in children. However, further studies are necessary to establish specificity
and sensitivity of the polysomnographic recordings and their orexin-system plasma correlates in the
context of a complex disorder of the development, which remains still to be better understood.
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