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Dr Lewis Sheiner and his colleagues established nonlinear 
mixed effects (NLME) modeling three decades ago as an 
integral part of the analysis of pharmacokinetic (PK) and 
pharmacodynamic (PD) data.1 Since then improvements in 
computation, estimation algorithms, and our understanding 
of biology and pharmacology have led to an increase in the 
development and application of mechanism-based models 
of PK and PD using NLME. A PubMed literature search 
with the terms “mechanistic model” plus either “pharma-
cology” or “biology” returned 516 publications, with 87% 
of the articles published since the year 2000. Mechanism-
based or physiologically based models have advantages 
over empirical ones, which apply arbitrary mathematical 
functions to establish a parsimonious fit to the data. One of 
the most challenging and important objectives in biomedi-
cal research is the need to translate between one experi-
mental condition and/or model to another one (i.e., from 
animal to human). Mechanism-based models can facilitate 
this process of translation/extrapolation beyond the experi-
mental conditions from which the data have been collected. 
This is because the parameters of mechanism-based 
models have a fundamental basis in our understanding of 
the biological/pharmacological system, and thus, reason-
able hypotheses can be developed to predict how these 
parameters will change under new experimental conditions 
or in different experimental models. The use of mecha-
nistic models to characterize biomarker data is not new; 
in the 1930s, Torsten Teorell used physiologically based 
models to characterize the PK of xenobiotics.2 However, 
mechanism-based PK/PD models that account for different 
sources of variability using NLME are a relatively recent 
development. Incorporation of random effects using NLME 
in mechanism-based PK/PD models is important because 
it permits prediction of not only the expected outcome but 
also the variability and uncertainty regarding that outcome. 
The development and application of these types of models 
have increased as more pharmacologists and clinical phar-
macologists learned to adopt NLME estimation in the last 
three decades.

CHALLENGES FOR MECHANISM-BASED NLME 
MODELING

There are major challenges for development of mechanism-
based models using NLME approaches. Mechanism-based 
PK/PD models typically describe first-order physiological 
processes that require systems of ordinary differential equa-
tions. Repeatedly solving these complex systems of ordinary 
differential equations during the iterative estimation of ran-
dom and fixed effects can be very computationally intensive.

Another challenge is that mechanism-based models have 
many parameters to be estimated, permitting more degrees 
of freedom for which to describe the data. The limited size 
and breadth of typical experimental data sets do not permit 
estimation of all of the physiological parameters of complex 
mechanistic models; often because many of the PD markers 
needed to describe the system are lacking and/or the number 
of samples collected over time too few. Traditional “frequentist” 
statistics suggests that a model should not have more degrees 
of freedom than are supported by the current analysis data 
set. However, physiological parameters are useful for extrapo-
lation and may be informed by prior knowledge if the current 
analysis data set does not support their estimation. Markov 
chain Monte Carlo (MCMC) Bayesian estimation approaches 
allow this to be done in a more statistically rigorous manner.

APPLICATION OF BAYESIAN APPROACH TO NLME

Traditional NLME estimation approaches, such as weighted 
least squares and maximum likelihood, have limited options 
for incorporation of prior information; parameters can be 
fixed to a specific value, or they can be estimated based on 
the analysis data set. MCMC Bayesian approaches allow 
the incorporation of a probability distribution to the prior 
knowledge, with means and variance for the model’s prior 
parameters. The variance of the prior means for the model 
parameters determines how much weight should be given to 
the prior relative to current analysis data set (Figure 1). The 
resulting posterior model is thus based on the combination 
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Mechanism-based pharmacokinetic/pharmacodynamic models have a fundamental basis in biology and pharmacology and, 
thus, are useful for hypothesis generation and extrapolation beyond the conditions of the original analysis data. The complexity 
of these models necessitates the incorporation of prior knowledge to inform many of the model parameters. Markov chain 
Monte Carlo Bayesian estimation offers a robust and statistically rigorous approach for incorporation of prior information into 
mechanism-based models. This article provides a perspective on the utility of this approach.
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of prior knowledge and the current experimental data. With 
Bayesian estimation approaches, there is no need to either 
completely ignore prior knowledge (an unrealistic prospect 
for mechanism-based models) or assume it is correct with 
absolute certainty.

The theory of Bayesian statistics goes back to the 18th 
century, when Thomas Bayes introduced the theorem for 
how one may update the probability estimate for a hypoth-
esis as additional evidence is acquired. His theory provided 
the mathematical equation for indicating that future outcome 
has a probability that is based on current data and prior 
knowledge:

Bayes theorem P H E
P E H P H

P E
( | )

( | ) ( )
( )

=

where the probability of a hypothesis H conditional on a 
given body of data E is the ratio of the unconditional prob-
ability of the conjunction of the hypothesis with the data to the 
unconditional probability of the data alone (P(E)). In Bayesian 
model optimization, P(E|H) is the marginal posterior density 
for model, given the priors and the analysis data set.3

Bayesian theory fits quite well with the need for mecha-
nistic PK/PD models to incorporate prior knowledge to 
adequately inform the parameters of the system of ordinary 
differential equations. This theory has been difficult to imple-
ment for statistical modeling until the advent of more powerful 

computing resources and MCMC sampling approaches.4 For 
nearly all statistical models, there is no closed form solu-
tion for the Bayesian posterior density estimator needed for 
model optimization; therefore, computational methods with 
numerical integration are a necessity. The MCMC sampling 
technique provides an effective approach for sampling from a 
distribution of parameters to solve this problem using iterative 
numerical integration. The MCMC approach samples a distri-
bution of parameters at each iteration that is dependent on 
the conditional distribution, which is in turn dependent on the 
values sampled from the previous iterations. The posterior 
distribution is arrived at through this stochastic, iterative pro-
cess that is informed by a combination of the current model, 
the model priors, and the analysis data set. The optimal set 
of fixed and random effects of the model is derived once the 
iterative MCMC process has reached a state of equilibrium, 
often called the “stationary” distribution. In this equilibrium 
state, the parameters vary stochastically about their means 
with a defined variance that is based on the optimal relation-
ship between the model/priors and the analysis data. During 
the initial series of MCMC iterations, efficiently obtaining the 
stationary can be challenging. There are different approaches 
to arrive at the stationary distribution, but the most common 
is to use a “burn-in” period of MCMC iterations during which 
a large number of iterations are discarded. Following a suf-
ficiently long “burn-in” period, the posterior parameters will 
converge to the stationary distribution. This is analogous to 
convergence to the maximum likelihood using more tradi-
tional estimation algorithms, with the exception that there is 
not convergence to a single maximum likelihood, but rather 
a probability distribution from which various useful statistics 
can be derived (e.g., mean, median, and SD). Determin-
ing the appropriate number of burn-in iterations to achieve 
convergence to the stationary distribution is the greatest 
challenge for model optimization using MCMC Bayesian esti-
mation algorithms, particularly with complex PK/PD models.

Two problems that cause difficulty for convergence to 
the stationary distribution are as follows: correlation of the 
parameters with their initial estimates and autocorrelation, 
which is a systematic sequential within chain correlation. 
Diagnostic tests have been developed to determine whether 
convergence to the stationary distribution has occurred 
and include single chain vs. multiple MCMC approaches.5 
Many of these convergence diagnostics are available in the 
Bayesian Output Analysis package available for R or S-Plus 

Table 1 MCMC Bayesian convergence diagnostics

Single chain diagnostics

  Geweke MCMC is divided into two “windows,” containing the first 10% and last 50% of the iterations. The convergence  
diagnostic Z is the difference between the two means divided by the asymptotic standard error of their difference

P < 0.05 indicates lack of convergence

  Heiderlberg and Welch Compare sequential intervals of the MCMC to determine whether stationarity and a sufficient number of samples 
have been collected to estimate posterior mean

  Raftery and Lewis Estimates the number of iterations required to achieve convergence and the number iterations for the stationary  
distribution required to estimate the parameter at the desired confidence level

Multiple chain diagnostics

  Gelman and Rubin Essentially the ratio of between-chain variance to within-chain variance. Statistic should approximate 1 once  
stationary distribution has been achieved. Can also be performed as a multivariate test on all of the parameters

Rule of thumb is that the 0.975 quantile should be ≤1.2

MCMC, Markov chain Monte Carlo.

Figure 1 Illustration of the update to the prior mean and variance of 
hypothetical parameter, theta. The prior mean has a wide variance, 
but after MCMC Bayesian estimation, the mean has shifted to the 
right and the posterior variance has narrowed due to the information 
content of the analysis data set.
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(Table 1).6 The Geweke and Gelman and Rubin diagnostics 
can be plotted as a function of iteration to determine the 
progress of convergence as a function of the number of 
iterations. To determine whether the posterior parameters 
are uncorrelated with their initial estimates, it is typical to 
perform at least three MCMC with parameters that have dif-
ferent starting values. If the three chains converge to simi-
lar posterior distributions as  determined by a multiple chain 
convergence diagnostic (e.g., Gelman and Rubin), then it 
is assumed that they are no longer correlated with their 
initial estimates. Autocorrelation is typically a more difficult 
problem for Bayesian NLME PK/PD modeling because it 
is often caused by correlation between parameters in the 
model (often related to the structure of the model) and may 
require tens of thousands of MCMC iterations before the 
autocorrelation is corrected. The degree of autocorrelation 
is typically assessed using a lag-autocorrelation plot, which 
determines the degree of autocorrelation within chains 
based on the distance (i.e., number of iterations or lag) 
between the sampled parameters. NONMEM and BUGS 
(WinBUGS or OpenBUGS) are two common platforms for 
implementation of MCMC Bayesian estimation for PK/PD 
modeling.7,8 However, neither platform incorporates these 
convergence diagnostics; thus, assessment of conver-
gence must be conducted using an external tool.

CONCLUDING REMARKS

Few published examples exist of the application of MCMC 
Bayesian estimation to complex, mechanism-based PK/PD 
models. The approach has been more commonly adopted in 
the field of toxicology for physiologically based PK modeling 
of xenobiotic compounds in humans and animals.9 This is, 
in part, due to the fact that environmental toxicologists often 
need to estimate the risk posed by different xenobiotic agents, 
which fits in well with the ability of Bayesian approaches to 
provide a posterior probability distribution for the model. In 
addition, there has been widespread adoption in toxicology of 
ordinary differential equation modeling software tools such as 
acslX, which have incorporated MCMC Bayesian algorithms.

The use of MCMC Bayesian NLME approaches for 
application to clinical PK/PD problems is much less com-
mon. In 2007, Jonsson et al10 published a “reanalysis” of 
a mechanism-based PK/PD model of neutropenia, which 
was the first example of the fully transparent application 
of MCMC Bayesian methods to a complex, hierarchical 
mechanistic PK/PD problem. They highlighted the difficul-
ties with determining convergence and the time-consuming 
model optimization process using MCMC Bayesian esti-
mation. Jonsson and co-authors conclude that the MCMC 

Bayesian approach enables efficient use of all available 
information from data, scientific evidence, and more reliable 
predictions based on that information. In the current issue 
of Pharmacometrics & Systems  Pharmacology, Leil et al 
report the application of an MCMC Bayesian approach to a 
mechanism-based PK/PD model for prediction of CYP3A4-
mediated drug interactions. These examples demonstrate 
that the Bayesian approach to PK/PD modeling will require 
a shift in the approach to PK/PD modeling, with more effort 
being invested in identifying a biologically plausible model 
and in finding informative priors than in achieving parsi-
mony. The MCMC Bayesian approach currently represents 
the most robust and statistically rigorous manner in which 
to make use of prior knowledge to develop NLME PK/PD 
models that can be used to improve decision making in bio-
medical research and development.
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