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An fMRI dataset for whole-body 
somatotopic mapping in humans
Sai Ma   1,3, Taicheng Huang2,3, Yukun Qu2, Xiayu Chen1, Yajie Zhang1 & Zonglei Zhen   1,2 ✉

The somatotopic representation of the body is a well-established organizational principle in the human 
brain. Classic invasive direct electrical stimulation for somatotopic mapping cannot be used to map 
the whole-body topographical representation of healthy individuals. Functional magnetic resonance 
imaging (fMRI) has become an indispensable tool for the noninvasive investigation of somatotopic 
organization of the human brain using voluntary movement tasks. Unfortunately, body movements 
during fMRI scanning often cause large head motion artifacts. Consequently, there remains a lack of 
publicly accessible fMRI datasets for whole-body somatotopic mapping. Here, we present public high-
resolution fMRI data to map the somatotopic organization based on motor movements in a large cohort 
of healthy adults (N = 62). In contrast to previous studies that were mostly designed to distinguish 
few body representations, most body parts are considered, including toe, ankle, leg, finger, wrist, 
forearm, upper arm, jaw, lip, tongue, and eyes. Moreover, the fMRI data are denoised by combining 
spatial independent component analysis with manual identification to clean artifacts from head motion 
associated with body movements.

Background & Summary
Somatic representation of the body is a well-established organizational principle in the human sensorimotor cor-
tex. In particular, body movement is mapped onto the primary motor and somatosensory cortices following the 
topographic relations of the body parts at a fine scale, known as the motor homunculus1–3. Similar somatotopic 
mapping is also found in a coarse manner in other regions of the motor system, including the supplementary 
motor area4–6, premotor cortex7,8, and cerebellum9,10. This topographical organization implements an internal 
body representation that is fundamental to precise motor control, spatial cognition, and social interaction11.

Direct electrical stimulation (DES) is the classic and main technique used to map the somatotopic organ-
ization of the cortex1,5. It achieves this by examining which parts of the body show positive movement effects 
(involuntary movements or twitches of muscles), while direct current is delivered to a site of the cortex in 
patients undergoing craniotomy. Although DES somatotopic mapping provides valuable insights into somato-
topic organization, this procedure has two limitations12,13. First, DES can only be performed in eligible patients 
during surgery. This excludes it from being used to characterize individual variability in a large cohort of healthy 
participants. Second, DES can miss negative motor areas whose activities are inhibited by the applied stimula-
tion14. Modern functional magnetic resonance imaging (fMRI) provides a complementary approach to DES to 
noninvasively map brain functions. Functional MRI has shown both high sensitivity and specificity for revealing 
somatotopic maps based on the voluntary movement task3,9,15–21. Unfortunately, body movements during acqui-
sition of fMRI data often cause large head motion, which in turn can lead to severe artifacts in somatotopic map-
ping22,23. The recent publicly released Human Connectome Project(HCP) dataset contains a set of motor task 
fMRI data24. The somatotopic organization of the sensorimotor cortex has been revealed with the dataset though 
only finger, toe, and tongue movements were explicitly mapped in its motor task paradigm25. Consequently, 
there remains a lack of publicly accessible fMRI datasets for whole-body somatotopic mapping.

In this study, we present a public high-resolution fMRI data to characterize somatotopic maps in vivo in a 
large cohort of healthy adults (N = 62). The data are markedly different from existing fMRI data for somato-
topic mapping. First, in contrast to previous studies that were mostly designed to distinguish body representa-
tions, such as the foot, hand, and tongue, almost all body parts that are allowed to move in the scanner were 
mapped in this study, including the toe, ankle, leg, finger, wrist, forearm, upper arm, jaw, lip, tongue, and eyes.  
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Second, the data covered the whole brain, including the entire cerebellum, with unprecedented spatial resolu-
tion (2 mm isotropic) acquired on a Siemens 3T MAGNETOM Prisma scanner. Third, in contrast to previous 
studies with small sample sizes (N < 20), a large sample size was used (N = 62). This makes it possible to explore 
the interindividual variability of somatotopic maps in a healthy population. Finally, to remove the confound-
ing artifacts caused by body movements and other factors, the fMRI data were denoised by combining spatial 
independent component analysis (ICA) with manual identification of artifacts26. Both head motion and physio-
logical artifacts, including cardiac and respiratory noise, were effectively alleviated by this denoising procedure.

Methods
Participants.  The study was approved by the Institutional Review Board (IRB) of Beijing Normal University. 
Flyers approved by the IRB were posted on campus network to recruit potential participants. To eliminate the 
possible confounding from handedness, right handedness was set as an inclusion criterion. Initially 68 right 
handed participants, who were screened using the revised Edinburgh Handedness Inventory27, were admitted 
into the experiment. All participants had normal or corrected-to-normal vision, reported no history of psychiat-
ric or neurological disorders, and provided written informed consent prior to their participation. Six participants 
were excluded from somatotopic mapping fMRI experiment because they showed inferior performance in the 
behavior training (see section Behavior training for body movements). As a result, a total of 62 healthy partici-
pants (34 females), ranging in age between 19 and 29 years (mean ± standard deviation[SD], 22.76 ± 2.22 years), 
participated in the whole-body somatotopic mapping fMRI experiment. All participants provided their informed 
consent for sharing the anonymized data. The detailed demographic data of the participants are provided in 
Supplementary Table 1.

Experimental procedure.  To establish the topographic map of body movements in humans as comprehen-
sively as possible, participants were instructed to perform movements of various body parts, including the toe, 
ankle, leg, finger, wrist, forearm, upper arm, jaw, lip, tongue, and eyes. The same movement was performed on 
both sides of the body at the same time, except for the legs. All movements were self-paced at a speed between 
0.5 Hz and 5 Hz. The experimental conditions and associated movement patterns (i.e., instructions) for each con-
dition are listed in Table 1. The experiment consisted of two behavior training sessions and one MRI scan session.

Behavior training for body movements.  Two behavior training sessions were completed before each participant 
was scanned to familiarize himself/herself with different types of movements and to reduce the possible head 
motion caused by the movements. First, the day before the experiment, the participants were instructed to lie 
supine on a comfortable bed to practice each movement following a video tutorial. The goal of the training was 
to have the participants master the required movement patterns, magnitude, and speed while avoiding head 
movements or movements from unrelated body parts. Second, prior to the MRI scan on the day of the experi-
ment, the participants lying supine on a yoga mat were trained under the same visual instructions as those used 
in the fMRI scan. Feedback was provided by the experimenter to help participants refine their movements. Only 
participants whose performances were refined and qualified, as verified by two experimenters, were allowed to 
take part in the fMRI scan. Six participants were excluded because they showed inferior training performance.

Task paradigm for somatotopic mapping.  Each participant underwent one fMRI session consisting of six 
blocked-design runs, each of which lasted 7 min 44 s. The experimental conditions consisted of the movements 
for each of twelve body parts, including toe, ankle, left leg, right leg, finger, wrist, forearm, upper arm, jaw, lip, 
tongue, and eye. Because the cortical motor and sensory systems are topographically organized (i.e., neighbor-
ing body parts are represented by neighboring brain areas), we grouped twelve different conditions (i.e., body 

Experimental conditions Movement patterns for each condition

Toe movements Flex and extend the toes from both feet.

Ankle movements Dorsiflex and release both ankles.

Left leg movements Lift and lower the left leg (maximum 10°) with the leg, ankle, and toes straight.

Right leg movements Lift and lower the right leg (maximum 10°) with the leg, ankle, and toes straight.

Finger movements Clench and loose both fists.

Wrist movements Pitch and roll both wrists with clenched fists.

Forearm movements Flex and release both forearms at the elbow (maximum 20°) with the wrists and fingers straight.

Upper arm movements Lift and lower the upper arms (maximum 20°) with the upper arms, forearms, wrist, and fingers straight.

Jaw movements Bite or twist jaws.

Lip movements Expand and contract the lips with the teeth being bitten and tongue still.

Tongue movements Circular tongue with the teeth being bitten and lips closed.

Eye movements Blink or saccade eyes.

Rest Fixate on the dot presented in the center of the screen.

Table 1.  The experimental conditions and associated movement patterns for each condition (i.e., body part).
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parts) into two sets to make the conditions for adjacent body parts (e.g., toe and ankle) into distinct sets and thus 
reduce the overlap of BOLD signals from adjacent body parts. One set consisted of toe, left leg, forearm, wrist, 
eye, and lip, whereas the other consisted of ankle, right leg, upper arm, finger, jaw, and tongue (Fig. 1a). Each set 
was repeated twice, counterbalanced within a run, and intermixed with five rest blocks at the beginning, middle, 
and end of the run. The order of the conditions was randomized within each set and run. Both the movement 
and rest blocks lasted 16 s (Fig. 1b). In each movement condition, the participants maintained eye fixation and 
moved one of their body parts following the instructions presented on the screen. The instructions specifically 
indicated the moving part, moving pattern, and limits of the moving magnitude and speed (Table 1). During the 
rest period, the participant performed no movement while maintaining eye fixation. Notably, to acquire more 
data for movement conditions and thus increase the detection power of brain activations as much as possible, 
the rest blocks were only inserted between pair of condition sets instead of each pair of conditions. This strategy 
has been widely used in fMRI localizer for other domains such as visual object representations28,29. Moreover, it 
should be pointed out that no pauses inserted between movement conditions may cause a small delay between 
the instructional cue and the movement onset. However, as the blocked design is relatively insensitive to the 
small shift of the onset, we expected the small delay could be negligible in a block lasting 16 s.

The movement instructions were presented at the center of the screen within a visual angle of 4°, in a 
black monospaced font, on a gray background using the Psychophysics Toolbox Version 3(PTB-3)30 via an 
MR-compatible LCD screen. The vertical refresh rate of the LCD projector was 60 Hz. The head motion of the 
participants was restrained using a foam pillow and extendable padded head clamps. Moreover, head motion 
was monitored using a real-time video recording system. It was evaluated by the experimenters and fed back to 
the participants to help them improve their movements in the next run.

Magnetic resonance imaging acquisition.  Magnetic Resonance Imaging (MRI) was performed on a 
Siemens 3 Tesla (3 T) MAGNETOM Prisma MRI scanner at the BNU Imaging Center for Brain Research, Beijing, 
China, using a 64-channel phased-array head coil. We collected task-based fMRI, field map, and structural MRI 
in one scan session approximately 60 min duration. Six functional runs (7 min 44 s/run) for the body movement 
task were acquired in order. A spin-echo field map was acquired to correct the magnetic field distortion (2 min 
27 s) between the third and fourth functional runs. A T1-weighted (T1w) anatomical image was obtained at the 
end (6 min). Earplugs were used to attenuate the scanner noise. The physiological data including heartbeat and 
breathing rates were not recorded. A summary of the session organization and MRI acquisition parameters can 
be found in Supplementary Table 2.

Functional MRI.  Blood-oxygenation-level-dependent (BOLD) fMRI data were collected using a gradient-echo, 
multi-band (MB) accelerated echo-planar imaging T2*-weighted sequence with the following parameters: 72 
transversal slices parallel to the AC-PC line; in-plane resolution, 2 × 2 mm; slice thickness, 2 mm without gap; 
phase encoding, A» P; field of view (FOV), 200 × 200 mm; repetition time (TR), 2000 ms; echo time (TE), 34.0 
ms; flip angle, 90°; echo spacing, 0.54 ms; bandwidth, 2380 Hz/Px; and MB factor, 3.

Field map.  The two-dimensional spin-echo maps were acquired using the following parameters: 72 slices with 
the same position as fMRI; slice thickness, 2 mm without gap; voxel size, 2 × 2 × 2 mm; phase encoding, R» L; 
FOV, 200 × 200 mm; TR, 720 ms; TE1/TE2, 4.92/7.38 ms; and flip angle, 60°.

Fig. 1  The blocked-design body movement task for mapping the topographical representations of human body. 
(a) The 12 body parts (i.e., conditions) were grouped into two sets to make the adjacent body parts into different 
groups as possible. (b) Each set was repeated twice in a run. The order of the set was counterbalanced, and the 
order of six movement conditions within each set was randomized.
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Structural MRI.  Structural T1w images were acquired with a three-dimensional magnetization-prepared rapid 
acquisition gradient echo sequence: 1 slab; 208 sagittal slices; FOV, 256 × 256 mm; slice thickness, 1 mm; iso-
tropic voxel size, 1 × 1 × 1 mm; phase encoding, A» P; TR, 2530 ms; TE 2.27 ms; TI, 1100 ms; and flip angle, 7°.

Data Analysis
Data organization.  The Digital Imaging and Communications in Medicine (DICOM) images acquired from 
the Siemens scanner were converted into the Neuroimaging Informatics Technology Initiative (NIfTI) format and 
then reorganized into the Brain Imaging Data Structure (BIDS) using HeuDiConv (https://github.com/nipy/heu-
diconv). The anatomical T1w images were anonymized by removing facial features using the PyDeface (https://
github.com/poldracklab/pydeface).

Data preprocessing.  The data were preprocessed using fMRIPrep 20.2.131. Each T1w volume was corrected 
for intensity nonuniformity using N4BiasFieldCorrection32 and skull-stripped using antsBrainExtraction33. The 
brain surfaces were reconstructed using recon-all from FreeSurfer34. Spatial normalization to the ICBM 152 
Nonlinear Asymmetrical template version 2009c was performed using antsRegistration33. Brain tissue segmen-
tation was performed on the brain-extracted T1w images using FAST35. Functional data were motion-corrected 
using MCFLIRT36. SDCflows was used to estimate the field map on the phase-difference B0 maps and to correct 
the field distortion of the fMRI data (https://www.nipreps.org/sdcflows). This was followed by boundary-based 
co-registration to the corresponding T1w using bbregister37. Finally, motion-correcting transformations, 
BOLD-to-T1w transformation, and T1w-to-template (MNI) warp were concatenated and applied in a single step 
using antsApplyTransforms with Lanczos interpolation33. No additional spatial or temporal filtering was applied. 
Further details on the fMRIPrep pipeline can be found in fMRIPrep documentation (https://fmriprep.org).

Data denoising.  To reduce confounding artifacts from head motion and physiological factors (e.g., cardiac 
and respiratory), the fMRI dataset was denoised separately for each run from each participant (i.e., 6 × 62 = 372 
runs in total) by manually identifying artifacts from the spatial ICA. Specifically, a spatial ICA was performed on 
each run from each participant in the individual native space using MELODIC (version 3.15) from the FSL with 
default parameters38. Nine categories of artifact-related ICs (A-ICs) and two categories of signal ICs (S-ICs) were 
then manually identified according to their spatial maps, time courses, and power spectrum of the time courses 
using melview (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Melview)26,39.The A-ICs included artifacts from head motion, 
susceptibility motion, non-brain, respiratory, cardiac, sagittal sinus, white matter, MRI hardware, and unclear 
sources. The S-ICs included known and unknown signals. A known signal is a well-known characteristic of 
neural-related signals and is correlated with some of the body movement waveforms. The unknown signal shows 
neither typical characteristics of neural-related signals nor clear characteristics of artifacts. The ICs were labeled 
as unknown signals to preserve as much of the signal of interest as possible. The characteristics of the different 
IC categories are summarized in Table 2. Examples of labeled S-ICs and A-ICs are provided in Supplementary 
Figs. 1–11. Overall, 101 ± 13 (mean ± SD) ICs were decomposed from one run of the fMRI data; on average, 
43 ± 10 and 58 ± 11 (mean ± SD) of them were labeled as S-ICs and A-ICs, respectively. After the A-ICs were 
identified for each run, the data were cleaned using partial regression of the time series of the A-ICs from the 
original data.

Activation analysis.  The manually denoised data were adapted to a CIFTI-based grayordinate format using 
Ciftify to allow combined cortical surface and subcortical volume analyses40. Specifically, anatomical data were 
converted from FreeSurfer to CIFTI formats. MNI inter-subject anatomy-based registration and resampling were 
performed using the ciftify_recon_all function. Functional MRI data were projected onto the surface using the 

Category Spatial map Time series Power spectrum

Signal Small number of contiguous 
clusters of voxels in gray matter Correlated with some movement conditions Predominantly in low frequencies 

(<0.1 Hz)

Head motion Ring-like shape or stripes around 
the edge of the brain

Sudden jumps or gradual drifts (correlated 
with realignment parameters)

Broadband, but dominated by low-
frequency content

Susceptibility motion Areas near air cavities or blood 
vessels

Sudden jumps and correlated with 
realignment parameters

Predominantly in low frequencies 
(<0.1 Hz)

Non-brain Eyeball, tongue, and throat Regular oscillatory patterns Predominantly in low frequencies 
(<0.1 Hz)

Cardiac
Contiguous clusters of voxels 
overlapped with the known 
anatomical structures

Regular oscillatory patterns, no sudden 
jumps or gradual change

Usually dominated by high 
frequencies (>0.1 Hz), sometimes 
aliased into low frequencies 
(<0.1 Hz)

Respiratory

Sagittal sinus

White matter

MRI related Abrupt intensity changes in slice 
direction Sudden jumps and/or oscillation patterns Predominantly in high frequencies 

(>0.1 Hz)

Unclassified noise Mixture of multiple types of 
artifacts Sudden jumps and/or oscillation patterns Broadband

Unknown signal Usually a mixture of signal and noise, hard to be identified as signal or noise unambiguously.

Table 2.  Spatial, temporal, and power characteristics of different categories of ICs.
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cifitfy_subject_fmri function. Statistical analyses of the time series were performed using the TaskfMRIAnalysis 
script from Human Connectome Project (HCP) pipelines41, which ran FMRIB’s improved linear model with a 
local autocorrelation correction for each run42. A predictor was created for each of the twelve movement condi-
tions by convolving the boxcar function of each condition with a gamma hemodynamic response function. The 
temporal derivative was also added to the model. Because the data had been denoised manually, no nuisance 
variables were included in the linear model. A fixed-effects model was used to summarize the parameter (i.e., 
beta) images across runs for each participant. Finally, the group-level analysis was performed for each contrast of 
interest using a one-sample t-test with beta images from all participants as inputs via the TaskfMRIAnalysis script 
from HCP pipelines, which incorporates FLAME (FSL’s Local Analysis of Mixed Effects) to provide accurate 
parameter estimates43.

Data Records
The data were organized according to the Brain-Imaging-Data-Structure (BIDS) Specification version 1.7.044 
and can be accessed from the OpenNeuro public repository (accession number: ds004044)45. All MRI data were 
successfully collected from each participant. No special circumstances occurred in data collection and no anom-
alies were found in further data processing.

Raw data.  Structural MRI: <Sub-ID>/ses-1/anat/<SUB-ID>_ses-1_run-01_T1w.nii.gz
Functional MRI: <Sub-ID>/ses-1/func/<Sub-ID>_ses-1_task-motor_<Run-ID>_bold.nii.gz
Field mapping: <Sub-ID>/ses-1/fmap/<Sub-ID>_ses-1_run-01_<magnitude/phasediff>.nii.gz
Task events: <Sub-ID>/ses-1/func/<Sub-ID>_ses-1_task-motor_<Run-ID>_events.tsv. The event tabular 

file describes onset, duration and trial type (i.e., condition) for each block during a run.

Preprocessed data.  Preprocessed functional MRI: derivatives/fmriprep/<Sub-ID>/<Sub-ID>_ses-1_
task-motor_<Run-ID>_space-T1w_desc-preproc_bold.nii.gz

Manually denoised fMRI data.  Denoised fMRI: derivatives/fmriprep/<Sub-ID>/<Sub-ID>_ses-1_
task-motor_<Run-ID>_space-T1w_desc-preproc_bold_denoised.nii.gz

Spatial maps from ICA: derivatives/melodic/<Sub-ID>/ses-1/<Sub-ID>_ses-1_task-motor_<Run-ID>.
ica/melodic_IC.nii.gz

Time series from ICA: derivatives/melodic/<Sub-ID>/ses-1/<Sub-ID>_ses-1_task-motor_<Run-ID>.
ica/melodic_mix

Manually classified labels: derivatives/melodic/<Sub-ID>/ses-1/<Sub-ID>_ses-1_task-motor_<Run-ID>.
ica/classified_labels.csv

Brain activation data.  Native surface: derivatives/ciftify/<Sub-ID>/native_surface
Results of task analysis: derivatives/ciftify/<Sub-ID>/GLM

Technical Validation
The quality of the datasets was validated in four aspects. First, the brain coverage of the data was evaluated. 
Second, we assessed the magnitude of head motion. Third, we showed that the denoising procedure remarkably 
improved the quality of the data. Finally, we demonstrated the potential of the data in mapping fine-scale topo-
graphical representations of body movements.

The data cover the whole brain.  Previous studies have shown that self-paced body movements can induce 
extensive brain activation in cortex, subcortical and cerebellum. To check whether our data could completely 
cover these brain structures, a coverage probabilistic map was computed across all participants in the MNI space. 
The map coded the probability that each location would be recorded across the participants. As shown in Fig. 2, 

Fig. 2  The coverage probabilistic map provided a voxelwise description for the brain coverage, indicating all 
brain structures were covered in each individual.

https://doi.org/10.1038/s41597-022-01644-4


6Scientific Data |           (2022) 9:515  | https://doi.org/10.1038/s41597-022-01644-4

www.nature.com/scientificdatawww.nature.com/scientificdata/

all of the locations within the MNI152 template are perfectly covered (i.e., 100% covered), indicating that the data 
are suitable for mapping fMRI responses to movements from any brain structure, including the subcortical cortex 
and cerebellum.

The head motion is in good control.  Beyond all questions, head motion is the major confounding factor 
in acquiring fMRI data to establish a topographic map of body movements because the movements of body parts 
inevitably lead to head movements. The mean framewise displacement (FD), which measures instantaneous head 
motion by comparing the motion between the current and previous volumes46, was calculated to evaluate whether 
the magnitude of head motion is acceptable in the data. As shown in Fig. 3a, the 95% coverage interval of the FD 
from all volumes, runs, and participants appeares approximately within [0, 0.43], indicating that head motion is 
not unusual in performing body movements. As expected, head motion varied much across the movement con-
ditions (Fig. 3b). Leg and upper arm movements caused larger head motions than the other conditions. However, 
even for these two conditions, only a few volumes show FD larger than 0.5 mm, which is often used as a criterion 
to identify the volume with large head motion in the literature46. These results indicate that head motion is in 
good control under our carefully designed tasks and experimental protocols.

The data show high temporal signal-to-noise ratio.  Next, we characterized the signal-to-noise ratio 
(SNR) of fMRI time series in terms of temporal SNR (tSNR). The tSNR was computed on a vertex-wise basis on 
the surface and defined as the mean of each vertex’s time course divided by its standard deviation for each run. 
Because we were interested in the brain areas that are associated with movement and sensory representations of 
various body parts, we constrained these analyses within the somatotopic region of interest, which was generated 
by combining areas 1, 2, 3a, 3b,and 4 in the multimodal parcellation atlas25. More than 95% of the vertices show 
tSNR values greater than 50 on the preprocessed data without ICA-based denoising, indicating that the data are of 
good quality even before denoising (Fig. 4a). The ICA-based denoising procedure, in which the signal and noise 
components were manually identified, further improved the tSNR of the data. The Cohen d effect size of the tSNR 
improvement is larger than 0.5 for most vertexes, indicating a moderate to large effect of the denoising procedure 
(Fig. 4b). Importantly, the representational dissimilarities between different body parts, which were calculated as 
the correlation distance (1-r) between multi-voxel activity patterns from each pair of conditions, grow larger in 
the denoised data on both group averages and individuals (Fig. 4c), indicating that the neural representations for 
different body parts become more distinct after denoising. Altogether, these results demonstrate that the data are 
of good quality, particularly after ICA-based denoising.

The data could reveal topographical representations of different body parts.  To demonstrate 
the potential of the data in mapping brain representation for different body parts, brain activation maps from 
two example contrasts were examined: the fingers versus the tongue and the fingers versus the wrists. The former 
aimed to map the two body parts that are far apart (i.e., two brain areas located distantly), whereas the latter was 
used to map the two body parts that are close together (i.e., two brain areas located adjacently). As shown in 
Fig. 5a, the activations for both the fingers and tongue are well identified at the expected locations. The fingers 
are localized in the dorsal part of the motor and somatosensory cortices, whereas the tongue is localized in the 
ventral parts. Moreover, the wrists activations are well separated from the fingers’ activations. The wrists are local-
ized more dorsally than the fingers although they are very close to each other (Fig. 5b). Together, these analyses 

Fig. 3  The distribution of head motion magnitude measured by framewise displacement (FD). (a) The 
histogram of FD calculated from all runs and participants. The long tail of the distribution indicates that 
instantaneous head motion is small. (b) The histogram of FD for different movement conditions displayed as 
violin plots.
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demonstrate that the data have the potential to map the topographical representation of body movements in 
humans.

Usage Notes
Here, we presented a public fMRI dataset for whole-body somatotopic mapping acquired from a large cohort 
of participants (N = 62) with a 2-mm isotropic spatial resolution. A manual denoising procedure was used to 
remove head motion artifacts caused by body movements during the task. These data provide unique opportu-
nities to study the motor and somatosensory systems of the human brain at high resolution. First, the data are 
ideal for examining the topographical representation of body movements in humans (see Technical Validation). 
Precise mapping of individual motor representations and characterization of variabilities among individuals will 
lay the foundation for further understanding the function of different motor and somatosensory areas. Second, 
the data are suitable for constructing an in vivo brain atlas for motor areas in humans, which in turn can supply 

Fig. 4  The functional magnetic resonance imaging (fMRI) data showed high temporal signal-to-noise 
ratio (tSNR) within somatotopic cortices. The tSNR was calculated for each vertex within the somatotopic 
region of interest on the fsLR surface and averaged across all runs and participants. (a) The tSNR map for the 
preprocessed fMRI data before independent component analysis (ICA)-based denoising. (b) Cohen’s d effect 
size of the tSNR improvement. Cohen’s d was calculated by dividing the mean difference by the standard 
deviation of the difference between the tSNR from the fMRI data before and after ICA-based denoising. (c) Left: 
The group-averaged representational dissimilarity matrix for the 12 body movement conditions, calculated 
from the data before (lower triangular part) and after (upper triangular part) ICA-based denoising. Right: The 
scatterplot of the mean representational dissimilarities (MRD) across all pairs of conditions calculated on each 
individual. Almost all of the participants show improved representational dissimilarities after the data were 
denoised.
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a quantitative spatial reference system to integrate multiple sources of information (e.g., postmortem histology 
or MRI) to understand the structure and function of human motor and somatosensory systems47,48. Finally, the 
data can be used to examine how different motor areas interact in body movements using approaches similar to 
resting state functional connectivity analysis17,49,50.

Although we believe that this dataset is a unique resource for mapping the topographical representation of 
body movements in humans, we should acknowledge its limitations. First, in our task paradigm, the adjacent 
body parts were arbitrarily divided into distinct sets to reduce the possible overlap of BOLD signal from condi-
tions for adjacent body parts. Although this choice could increase the detection power for the brain activations 
from each body part, it results in that the dataset cannot be used to examine the interactions between neighbor-
ing body part representations because the areas for neighboring body parts were even not activated at the same 
time. Second, to save time in acquiring as many functional volumes as possible and thus improve the power of 
activation detection, we did not collect resting-state fMRI and diffusion MRI data. This makes it impossible to 
directly explore the association among task activation, resting-state functional connectivity, and anatomical 
connectivity in individuals. Third, only right-handed participants were included in this experiment. This limits 
the possibility of examining how finer-grained motor topology is affected by handedness. Finally, although the 
finger movements were mapped in the task, the data cannot afford to map individual fingers because subjects 
were asked to move all fingers simultaneously in the finger movement condition. It would be a good attempt to 
map individual fingers by combining our data with other publicly available fMRI data in which the representa-
tions of the individual fingers can be resolved51,52.

Code availability
All codes for the experimental design, data organization, and technique validation are available at https://github.
com/BNUCNL/WholebodySomatotopicMapping. Preprocessing was performed using fMRIPrep version 20.2.1 
(https://fmriprep.org). ICA was performed using MELODIC version 3.15 (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/
MELODIC), and IC classifications were manually performed using melview (https://fsl.fmrib.ox.ac.uk/fsl/
fslwiki/Melview). Grayordinate-based (CIFTI format) brain activation analysis was performed by combining 
the Ciftify (https://github.com/edickie/ciftify) and HCP pipelines (https://github.com/Washington-University/
HCPpipelines).
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